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Dimensionless conductance for light propagating through a random medium with amplification

tends to diverge with an increase of gain. This raises questions on the applicability of the localization

criteria based on this quantity. To circumvent this problem, we study the properties of the ratio

between the transmission (conductance) and the energy stored in the random medium. We argue

that the generalized conductance gG ¼ g � ðE0=EÞFconductance normalized by the energy buildup

(ratio between energy stored in the medium with gain E to that in the passive system E0)—may be a

convenient quantity on which a localization criterion can be built.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Anderson localization [1] (AL) of electrons can be understood
as the effect due to repeated self-interference of de Broglie waves
during their propagation in a random medium and the resulting
cessation of diffusion [2,3]. Particle conservation, enforced
because the carriers have charge, lies in the foundation of the
concept of AL.

Since it has been recognized that AL is a wave phenomenon
[4–6], there has been a number of experimental studies of
light localization [7–12]. Understanding the effect of dissipation
[5], ubiquitous in optical systems, turned out to be essential for
proper physical description and interpretation of experimental
results. It also prompted the search [10] for an alternative
criterion of localization in absorbing media. Coherent amplifica-
tion, which leads to an altogether new physical phenomenon of
random lasing [13], demands further refinement of the concept of
AL and its criteria in active random media.

For passive systems, dimensionless conductance, g, averaged
over an ensemble of macroscopically equivalent, but microscopi-
cally different disorder realizations, is closely related to a number
of criteria used to define the onset of localization [14,15]. It has
deep physical roots in the scaling theory of localization [15,16],
where g uniquely determines the scaling function describing
mesoscopic transport through random medium.

Transmittance is [17–19] the electromagnetic counterpart of
conductance. This analogy with mesoscopic electronic transport
makes it tempting to adopt the localization criteria (LC) based on
g in passive systems. However, the LC developed for passive
ll rights reserved.
systems may not be applicable for random media with gain/
absorption. Indeed, in dissipative systems, g51 may not be
indicative of the presence of localization [20,10]. Likewise, gb1 in
an amplifying random medium may not necessarily preclude
localization effects [21,22].

In case of absorption, an alternative criterion, based on the
magnitude of fluctuation of transmission normalized by its
average, was put forward [10]. When gain is present, such an
approach presents a fundamental problem. Indeed, there exists a
non-zero probability of encountering a special realization within
the ensemble where the given value of the gain parameter
exceeds threshold for random lasing [23] (TRL). Without satura-
tion effects, such realizations make the statistics ill-defined.
Inclusion of the saturation introduces a dependence on system-
and material-specific parameters which are not associated with
wave-transport properties of the random medium. To avoid such
dependence, and at the same time to regularize the statistical
ensemble, in Ref. [23] we introduced conditional statistics by
excluding the diverging contributions. We found that correlation
linewidth do obtained in such ensemble can be used to define
Thouless parameter d¼ do=Do in random medium with gain.
Here Do is the average mode spacing which is equal to the
reciprocal of the density of states in the system. It was shown [23]
that g ¼ d relationship does not hold in non-passive systems.
Nonetheless, the decrease of d with an increase of gain strength
correlated with enhancement of fluctuations of conductance
normalized by its average [21]. These observations motivated us
to explore analogies between the effects of amplification and
localization in random media.

Although the conditional statistics approach turned out to be
fruitful, it may be justified in weakly scattering media and when
the gain parameter is far from the diffusive TRL. In strongly
scattering media, where sample-to-sample fluctuations are
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Fig. 1. Transmission /Jþ ðLÞS and reflection /J�ð0ÞS fluxes normalized by the

value of total energy stored inside random medium (solid and dashed lines,

respectively) are plotted as functions of gain strength for a slab of random medium
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pronounced, the above approach is still biased because it depends
on the exact cut-off criterion. Also, it may not be convenient to
consider the quantities that have natural tendency to diverge.

In this work, we investigate a more sophisticated way of
regularizing statistics of wave transport through random media
with amplification, with the goal of identifying a quantity on
which the localization parameter can be based. When taken
separately, both transmittance (conductance) and the energy
inside the system E ¼

R
V Wðr;oÞdV exhibit the divergent behavior

as TRL is approached. Here, Wðr;oÞ ¼ n2ðr;oÞ E2ðr;oÞ is electro-
magnetic energy density expressed in terms of the refractive
index and the local electric field. To counterbalance the divergent
behavior of the transmittance, we propose to form a ratio,
gGpT=E, between T and E from the same disorder realization.
We show that this ratio remains finite (non-singular) in the
vicinity of the threshold. Furthermore, the condition for retaining
the disorder configurations is based only on whether the system is
in the physical regime (i.e. below TRL) and does not require an
additional cut-off criterion.

In Section 2 we study the properties of the ratio T=E in
diffusive and localized regimes. In Section 3, based on T=E, we
introduce generalized conductance and discuss its properties.
Here, we also motivate the use of the generalized conductance as
a localization criterion in random amplifying medium.
of thickness L=‘¼ 100. The divergence in the vicinity of TRL is prevented due to the

normalization—both curves approach the same limiting value.
2. T=E ratio in random medium

2.1. Diffusive regime in slab geometry

Let us consider the effect of gain on T and E in an optically thick
(‘5L) slab of 3D random medium described by the diffusive
equation. The slab thickness is L, D¼ c‘=3 is the diffusion
coefficient, c—speed of light, ‘Ftransport mean free path;
lg ¼ tgc is (ballistic) gain length. The transmission and reflection
coefficients can be directly obtained from the solution for an
absorbing slab in Ref. [24] through formal substitution la ¼�lg .
Such treatment of gain in a scattering problem has become known
as the ‘‘negative absorption’’ model. It has been successfully used
to describe turbid amplifying medium such as incoherent random
lasers [25–27].

In Fig. 1 we plot the ratios of reflection (flux) to energy
/J�ð0ÞS=/ES and transmission (flux) to energy /Jþ ðLÞS=/ES. For
brevity we will refer to these quantities as /RS=/ES and
/TS=/ES. Within framework of the above model, we make the
following observations: (a) sufficiently close to TRL, the reflection
and transmission fluxes diverge and become almost equal. This
signifies the fact that the system approaches the regime when the
gain alone can sustain its energy, without relying on the incident
flux; (b) when normalized by the total energy in the slab, both
/RS=/ES and /TS=/ES do not diverge when the TRL is
approached. Instead, they converge to the finite value of 2pDac

(where a�1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
‘lg=3

p
and ac � p=L); (c) the change of the

quantities /RS=/ES and /TS=/ES is related to modification of
the intensity distribution inside the volume of random medium.
When intensity /IðzÞS assumes the limiting profile given by the
lowest order diffusion mode, /IðzÞSCsinðpz=LÞ, the ratios
/RS=/ES and /TS=/ES saturate.

As we are interested in the interplay between the effects of
gain and light localization, we note that the diffusive description
of this section has limitations: (i) the diffusion approximation fails
when wave phenomena such as localization or coherent random
lasing become important—proper treatment of electric field and
its phase becomes necessary; (ii) an increase of gain or scattering
are expected to lead to a buildup of fluctuations of transport
coefficients [28,23]. Thus, quantity, e.g., /TS=/ES will no longer
adequately represent T=E and instead should be replaced with
/T=ES, which accounts for correlation between T and E in the
same sample; (iii) with further increase of gain toward TRL, the
divergence of fluctuations of T may necessitate the consideration
of higher moments of T=E or, perhaps, its entire distribution; (iv)
at the onset of random lasing, nonlinear [29] and dynamical [30]
processes become essential for proper description of the system
properties and thus, CW (continuous-wave) quantity such as
/T=ES may no longer be suitable.
2.2. Localized regime in one-dimension

To investigate the effects (i)–(iii) from the previous section on
T=E, we consider a system in localized regime . For this purpose a
one-dimensional (1D) model is already sufficient. Long enough 1D
systems are necessarily in the localized regime and, therefore,
fluctuation effects will be essential even at small values of gain.

We model the normal propagation of EM wave through a stack
of dielectric slabs (a 1D system) using 2� 2 transfer matrices
[31–34]. The randomness is introduced through the fluctuations
of the refractive indexes of the slabs whereas the imaginary part
of the index gives rise to linear gain. We use this numerical model
to simulate the continuous-wave (CW) response of the random
system within certain spectral range.

Motivated by our analysis in Section 2.1, we would like to
study the dependence of the ratio between transmission and
stored energy in the above wave-model. Our analysis shows that T

and E are not closely correlated in the localized regime. We find
substantially more resonant peaks in the transmission coefficient
with only about half of which have their counterparts in the
energy. This disparity is an additional source of fluctuation in the
ratio T=E [34]. The goal of this section is to understand this
behavior.

The field distribution inside the sample gives a clue why the
energy may differ from resonance to resonance. At the off-
resonant frequencies we observe nearly exponential decay.
Whereas at or in the vicinity of a tunneling resonance, two
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Fig. 2. Two types of the on-resonance electric field distribution inside random

medium with the center of localization in the first half (bold lines) and the second half

(thin lines) of the sample. In the second case, the same mode is excited by shining the

light onto the system from the right. Due to reciprocity, the value of transmission

coefficient for both cases is exactly the same. However, the amount of energy stored

inside the system is exponentially smaller in the second case. The latter resonance

does not show noticeable peak in EðoÞ. The dashed lines are the schematic envelope

functions formed from segments with expð7x=xÞ spatial dependences.
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Fig. 3. An illustration of the effect gain on the electric field distribution in 1D

random medium. A periodic stack of alternating dielectric layers with a defect at

x0 ¼ L=4 is considered. As demonstrated in Ref. [34], such model qualitatively

describes the field profiles (such as those in Fig. 2) in the random media. Panels

(a) and (b) show the field envelopes obtained when the system is illuminated (at

resonant frequency) from the left and right, respectively. Dashed lines correspond to

the passive medium. The solid curves (from bottom up) are obtained for lg;cr=lg (as

defined in Section 2.1) equal to 0:5;0:9;0:99 in (a) and 0:85;0:95;0:98;0:99 in

(b). The field distribution in (b) shows a dramatic modification with an increase of gain.
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qualitatively distinct behaviors are observed. They are illustrated
in Fig. 2 by considering a stack of 1000 alternating dielectric
layers with dielectric constants of 1 and 1.2. The disorder was
introduced by making the thickness of the layers of the second
kind random with a uniform distribution with 10% width.

In the first scenario, cf. bold line in Fig. 2, the electric field
grows exponentially (the characteristic length is equal to the
localization length, x) towards the localization center x0 and falls
off after it. Such behavior is attributed [35] to the phenomenon of
resonant tunneling via a localized state centered at x0.

In the other case, cf. thin line in Fig. 2, an additional negative
exponential segment can be identified. Because this type of
behavior leads to significantly lesser amount of energy stored
inside the system, the resonances of this type do not show a
pronounced spectral peak in EðoÞ. Although the localized states
with a single cusp in their spatial profiles were studied in
Ref. [35], the second scenario exemplified by thin line in Fig. 2 was
not described in the studies by Azbel and coworkers. We note that
a multi-peaked spatial intensity distribution is expected in case of
so-called necklace states [36–38] when two or more resonant
states coexist at (almost) the same energy in the given disorder
realization. This behavior has lower probability of occurrence in
x5L regime compared to the single states as in Fig. 2.

We find [34] that the difference in two types of behavior in Fig. 2
originates from the spatial location of the localized state: (i) at the
frequencies where peaks in transmission and energy occur simulta-
neously, the center of localization is located in the first half of the
sample 0ox0oL=2 (bold line in Fig. 2); (ii) at the frequencies where
peak in transmission has significantly less pronounced (or non-
distinguishable) peak in energy, the center of localization is located
in the second half of the sample L=2ox0oL (thin line in Fig. 2); (iii)
both profiles can be observed in the same sample at the same
frequency by illuminating the system from left or right (see Fig. 2).

The non-monotonic behavior of the wavefunction can be
understood intuitively as follows. In the regions away from a
localization center the waves propagate via tunneling. There exist
local solutions of Maxwell equation with an exponentially increas-
ing and an exponentially decreasing envelopes [39]. Balance
between these two components is determined from the boundary
conditions. It appears [34] that in L=2ox0oL case, the exponen-
tially increasing component has very small magnitude at the left
boundary, but becomes dominant at the turning point xT ¼ 2x0�L.
In contrast, when the localization center is located in the first half of
the sample, the exponentially increasing component is dominant
right from the left boundary of the sample.

Our analysis above shows that T=E parameter may not be
unique in a given sample—in general, it depends on the direction
of illumination. This observation seems to suggest that such ratio
may be of a limited use as a localization parameter. However, this
limitation can be overcome via simple normalization as we show
in Section 3. Furthermore, in its present form, T=E possesses a
unique property which we discuss next.

2.3. Evolution of T=E with the increase of gain

As we observed in Section 2.1, a change in T=E with gain is
indicative of a modification of the intensity profile inside a
diffusive slab. Similar conclusions can be made in the localized
regime. Here we employ the model described in Section 2.2.

Our simulations demonstrate that a change in T=E indeed
signifies the modification of the field distribution inside the random
medium. Interestingly, we find that such modifications can be very
dramatic in the localization regime and should be observable in
experiments such as in Ref. [40]. Fig. 3 illustrates this effect. At first
glance, this seems to disagree with the conclusions in Refs. [41–43]
where (in localized regime) little or no change in the field pattern
was found with an increase of amplification. The apparent
discrepancy can be explained if one compares the methods used
to excite the system. In our work, we consider the transmission
experiment setup, whereas in the previous works [41–43] the
system was excited throughout its entire volume or relatively close
to the center of localization. Under such excitation conditions, the
situation shown in Fig. 3a is always realized [34]. We also note that
the mode distribution in Fig. 3b was observed to converge to that in
Fig. 3a when the gain approached its critical value. This observation
shows that when the field distribution is maintained by the gain
with little reliance on the incident energy, the excitation scheme is
irrelevant and the observed mode profile, indeed, becomes the
same as that for the uniform excitation considered in Refs. [41–43].
3. Discussion

Although the ratio T=E did not have the tendency to diverge
when gain approached its TRL value, it exhibited additional
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fluctuation due to orientation of the system, Sections 2.2 and 2.3.
It should be noted that due to reciprocity, transmission T (or more
generally conductance) is independent of direction of illumina-
tion—it is the same for both field distributions depicted in Fig. 2.

To circumvent the above problem while retaining the desired
non-singular behavior in the vicinity of TRL, we introduce the
following parameter:

gG ¼ T=E � E0: ð1Þ

Here E0 is the energy stored in the random medium with no gain.
All the quantities entering Eq. (1) should be evaluated for each
disorder realization prior to any statistical analysis. By construc-
tion, gG reduces to the transmission in a 1D system without gain
and becomes conventional (average) conductance upon statistical
averaging in higher dimensional systems. Thus we will refer to gG

as generalized conductance.
By definition, the quantity E0 is equal to volume-integrated

electromagnetic energy density in passive system. The latter
coincides [44] with density of electromagnetic states, which is an
important energy scale that enters such localization criteria as
Thouless number d. Therefore, the generalized conductance can
be interpreted as the conductance in the random medium with
gain scaled down by the energy buildup factor E=E0. This
normalization offsets the tendency of the conductance to diverge
in a random medium with gain and avoids introducing artifacts
such as the orientation dependence.

In future, we plan to investigate both theoretically and
experimentally the statistical properties of the generalized
conductance in Eq. (1) in random medium with gain. Experimen-
tally, all components of gG can be determined from near-field
scanning measurements in two-dimensional random media—s-
tructurally disordered semiconductor films. This opens
up a possibility to corroborate and extend the results of this
study.
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