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Spin-orbit splitting in semiconductor quantum dots with a parabolic confinement potential

O. Voskoboynikov,1,2 C. P. Lee,2 and O. Tretyak1
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~Received 10 May 2000; revised manuscript received 6 October 2000; published 2 April 2001!

We present a theoretical study of the effect of spin-orbit interaction on the electron energy spectrum of
cylindrical semiconductor quantum dots. The study is based on a simple effective one-band approximation.
The dependence of energy levels on parameters of the dots and the applied external magnetic field is studied.
Contributions of the bulk inversion asymmetry~the Dresselhaus term! and the system inversion asymmetry
~the Rashba term! to the spin splitting of the electron energy states are discussed. The spin splitting of electron
states with nonzero angular momentum is demonstrated theoretically for InSb and InAs small quantum dots at
zero magnetic field. We find a ‘‘crossing’’ of the electron energy states with the same angular momentum and
different spin polarizations in a nonzero magnetic field.
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Experimental and theoretical investigations of sp
dependent confinement and transport in semiconductor q
tum heterostructures have attracted considerable attentio
recent years~see Refs. 1–7, and references therein!. The in-
creasing interest in this topic stems from two facts. Fi
advances in semiconductor technology have made it pos
to create structures which possess electrical properties
are highly sensitive to electron spin. So-called ‘‘spintronic
devices can be controlled by the electron-spin polarization8,9

Second, one can use a quite general physical approac
clarify unusual spin-dependent phenomena in lo
dimensional semiconductor quantum structures.1–5,10–13

Electron spin can significantly impact the electronic pro
erties of quantum structures through different mechanis
Among possible spin-dependent interactions there is an
teraction between orbital angular and spin momenta of
electron known as spin-orbit~SO! interaction.14,15Despite its
relativistic nature, SO interaction can play an observable
in the energy-band structure of many semiconductors. W
the potential through which the carriers move is invers
asymmetric, spin-orbit interaction removes the spin deg
eracy even without an external magnetic field. While the
interaction impact on the electron quantum confinemen
semiconductor quantum wells and quantum wires has b
extensively studied theoretically and experimentally~see for
instance Refs. 1, 2, 10, and 11!, SO interaction in semicon
ductor quantum dots ~QD’s! has largely been
uninvestigated.16

In a zinc-blende crystal with bulk inversion asymmet
~BIA !, energy bands are split for a given direction of t
electron wave vector.14,17–19 Additional spin splitting in
semiconductor quantum structures may also occur ownin
the structure confinement potential invention asymme
~SIA!.15,19Since SO interaction has been used successfull
experimental result interpretations for various quantum w
and quantum wire structures, it also appears to provid
well-defined contribution to the spin properties of QD
Clearly, SO interaction depends heavily on the quantum s
0163-1829/2001/63~16!/165306~6!/$20.00 63 1653
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tem geometry as well as the effective external and inter
fields. With advanced semiconductor technology, QD’s
easily realizable within a wide range of dot geometric
shapes and built-in fields.20 Therefore, the spin-dependen
phenomenon in those structures is of worthwhile interest

The goal of this paper is to start a theoretical discussion
how SO interaction can affect the electron energy states
magnetic properties of QD’s. Spin-orbit interaction is d
scribed by two contributions to the effective one-band s
dependent Hamiltonian. One of them arises from the b
Hamiltonian, and was first considered by Dresselha
~BIA !.14,17 The second contribution, known as the Rash
term, represents the spin-orbit interaction of an elect
moving in a QD confinement potential~SIA!.4,15 The Cou-
lomb interaction between electrons is neglected for simp
ity. However, a recent investigation21 indicated that the ef-
fect of electron-electron interaction in systems with stro
confinement can enhance the SO interaction. The follow
discussion clearly reveals that principal consequences of
SO interaction can be described with the used simplifi
tions.

This study next considers SO interaction in semicond
tor cylindrical quantum dots with a quasi-two-dimension
confinement for electrons.16,22,23Widely used to describe QD
energy states, this model can successfully describe the e
tronic properties of circular disk-shaped quantum dots~arti-
ficial atoms!24,25 as well as QDs formed in two-dimension
electron-gas systems by external electric16,26 and strain
fields.27 In cylindrical coordinates, we consider a quasi-tw
dimensional effective parabolic lateral confineme
potential28,29

Vc~r!5 1
2 mv0

2r2, ~1!

where\v0 is the characteristic confinement energy,r is the
radius vector, and the electron effective mass is given by4

1

m~E!
5

1

m~0!

Eg~Eg1D!

~3Eg12D! F 2

E1Eg
1

1

E1Eg1DG ; ~2!
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hereE denotes the electron energy in the conduction ba
m(0) is the conduction-band-edge effective mass, andEg
andD are the main band gap and the spin-orbit band splitt
respectively.

Consider a situation in which thez axis is normal to the
disk and parallel to the@100# direction ~the most frequently
used orientation!, and assume that thez-direction potential is
symmetric. The SO interaction is comprised of the two pa
mentioned above. In an axial magnetic field of the symme
gauge for the vector potentialA5(Br/2)ef , ~wheref is the
azimuthal angle! the Dresselhaus~BIA ! term can be written
explicitly in cylindrical coordinates when the dot lateral si
(r0) is sufficiently larger than the dot height (z0),12,13,17

Vso
D ~r,f!5bH SfS kf1

e

2\
Br D1SrkrJ , ~3!

when

Sf5S 0 ieif

2 ie2 if 0 D ,

Sr5S 0 eif

e2 if 0 D .

kf52 i (1/r)]/]f, kr52 i ]/]r, and e is the electron el-
ementary charge. The parameterb can be represented as

b.gcS p

z0
D 2

,

wheregc is the material-specific constant.17

The Rashba~SIA! term in the cylindrical coordinates i
given by4,10,12,13

Vso
R ~r,f!5sza

dVc~r!

dr S kf1
e

2\
br D , ~4!

wheresz is the Pauliz matrix, anda is the Rashba spin-orbi
coupling parameter.4

By including the Zeeman term, an approximate effect
Hamiltonian can be obtained in the form

H52
\2

2m~E! F ]

r]r
r

]

]r
1

1

r2

]2

]f2G2
i

2
\vc~E,B!

]

]f

1
1

8
m~E!vc

2~E,B!r21Vc~r!1Vso
D ~r,f!1Vso

R ~r,f!

1
1

2
szmBg~E!B, ~5!

where

vc~E,B!5
eB

m~E!

is the electronic cyclotron frequency,
16530
d,
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e

g~E!52F12
1

m~E!

D

3~Eg1E!12DG ~6!

is the effective Lande˙ factor of the semiconductor,30 mB
5e\/2m0 is the Bohr magneton, andm0 is the free-electron
mass.

An analysis of the problem begins by considering a si
ation in which the dot height is adequately large~that condi-
tion is evaluated below!, so that the Dresselhaus term is n
glected. Under this circumstance, the energy eigenfunc
of Hamiltonian~5! takes the well-known form

Cn,l ,s5
1

A2p
exp~ i l f!Rn,l ,s~r!,

with a radial partRn,l ,s(r) that satisfies

F d2

dr2 1
1

r

d

dr
2

l 2

r2 1
m2~E!Vs

2~E,B!r2

\2

1P ls~E,B!GRn,l ,s~r!50, ~7!

where

Vs
2~E,B!5v0

21
vc

2~E,B!

4
1sa

m~E!v0
2

\
vc~E,B!,

~8!

P ls~E,B!5
2m~E!

\2 H E2
\ l

2
vc~E,B!

2sFmB

2
g~E!B1 lam~E!v0

2G J ,

ands561 refers to the electron-spin polarization along t
z axis. The solution to Eq.~7! has been known for a long
time ~see, for example, Ref. 23!. The electron energy level
are given by

En,l ,s5\Vs~En,l ,s ,B!~2n1u l u11!1 l
\vc~En,l ,s ,B!

2

1sFmB

2
g~En,l ,s!B1 lam~En,l ,s!v0

2G , ~9!

and the corresponding normalized radial wave functions
given by

Rn,l ,s~r!5
&

rs
F n!

~n1u l u!! G
1/2

expS 2
r2

2rs
2 D

3S r2

rs
2 D u l u/2

Ln
u l uS r2

rs
2 D , ~10!

wherers5(\/mVs)1/2, andLn
u l u is the generalized Laguerr

polynomial.31

Equation~9! shows the dependence of the electron ene
on the quantum numbers$n,l ,s% and the external magneti
field B by taking into account the nonparabolicity of th
semiconductor dispersion relation@Eq. ~2!#.
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TABLE I. QD parameters.

Semiconductor m(0)/m0 Eg ~eV! D ~eV! a ~Å2! \v0 ~eV! r 0(0) ~Å!

InSb 0.014a 0.24a 0.81a 500 0.025b 148
InAs 0.04c 0.42a 0.38a 110 0.019c 100
In0.55Al0.45As 0.076d 1.45d 0.34d 4.4 0.043e 48

aReference 32.
bReference 33.
cReference 34.
dReference 35.
eReference 36.
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Consider how the Rashba spin-orbit interaction impa
the energy spectrum of narrow-gap semiconductor QD
The main value of interest is the spin splitting in the electr
energy:

DEn,l~B!5En,l ,11~B!2En,l ,21~B!. ~11!

First we analyze a situation without an external magne
field. The dispersion relation@Eq. ~9!# in this case can be
written as

En,l ,s5\v0F2n111u l uS 11sS~ l !
a

r 0
2D G ,

where r 0(E)5A\/m(E)v0 is an effective QD lateral size
andS( l ) is the sign ofl. The spin splitting

DEn,l~0!5\v0

2la

r 0
2 ~12!

is a weak function onn @due to effects of nonparabolicit
that come to Eq.~9! with r 0(En,l ,s)#. The dependence o
DEn,l(0) on l is of primary concern in this study, and w
examine the lowest-energy levels whenn50. The spin-orbit
interaction separates states with the same orbital momen
and different spin directions. However, states with para
spin andl ~antiparallel spin andl! remain twofold degener
ate. This is the well-known Kramers degeneracy. Doubly
generate electron states with parallel directed spin andl have

FIG. 1. The Rashba spin splitting vs the orbital angular mom
tum for n50 at zero magnetic field for Insb, InAs, an
In0.55Al0.45AsQD’s.
16530
s
s.
n

c

m
l

-

the highest energy. This level hierarchy obviously depe
on the sign of the Rashba constant.

Our calculations for InSb, InAs, and InxAs12xGs QDs are
presented as practical examples. The band parameters
the estimated geometrical parameters of the dots are ta
from the available literature, and are listed in Table I. Figu
1 presents the amount of spin splitting for QD’s as a funct
of the orbital quantum numberl at n50 and zero magnetic
field. According to this figure, the Rashba spin-orbit splitti
can have a well-pronounced magnitude for QD’s with re
tively small effective sizes.

The Rashba spin splitting at zero magnetic field leads
an unusual behavior of the QD energy spectrum whe
magnetic field is present. Figure 2 displays the calcula
spectrum of InSb QD’s as a function of the magnetic fieldB
for a set of$n,l ,s% with n50 and l 50,61,62,63 using
the parameters of Table I. For comparison, inseta shows the
spectrum of InSb QD’s with the same parabolic confinem
potential but without spin-orbit interaction. The spin-orb
interaction provides a ‘‘crossing’’ of the energy levels wi
the same orbital momentum but different spins wh
DEn,l(Bcr)50 ~see insetb in Fig. 2!. Using the linear ap-
proximation for the dispersion relation@Eq. ~9!# allows us to
derive the conditions for the crossing of energy levels.
straightforward consequence of solution~10! is that the area
covered by the electron in stateun,l &5Rn,l ,s in a low mag-
netic field isSn,l5p^ l ,nur2un,l &5pr0

2(2n1u l u11).37 Us-
ing dispersion relation~9! and this expression reveals that,
the point of the crossing,

- FIG. 2. Energy states for an InSb QD with Rashba spin-o
interaction (n50; inseta shows a spectrum without spin-orbit in
teraction; the arrows in insetb show electron-spin polarizations!.
6-3
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Fn,l

F0
52 l ~2n1u l u11!F \g

2m0v0a
1~2n1u l u11!G21

,

~13!

where Fn,l5BcrSn,l is the magnetic flux corresponding t
the effective$n,l ,s% state area at the crossing point andF0

is the magnetic flux quantum. Equation~13! becomes very
simple wheng→0.38 For such a case,Fn,l /F052 l . For
narrow-gap semiconductors, the magnitude ofg in quantum
structures has not yet been totally clarified.39 Nevertheless, if
g is a negative number withugu.2(2n1u l u11)m0v0a/\
[g0(2n1u l u11), it follows from Eq.~13! that the crossing
exists for positivel. For the case of InSb QD’s considere
here,g0'3.2.

Figure 3 shows how the Rashba spin splitting depends
the external magnetic field andl for InSb QD’s. The calcu-
lated spin splitting follows the general tendency describ
above. The calculated magnitudes of the spin splitting
the magnetic fields at level crossing (Bcr) allow us to discuss
more realistic theoretical models of the phenomena, an
verify the effect experimentally.

Next consider a situation when the effective sizes of
quantum dot are such that the Dresselhaus term must be
sidered as well. In this situation, Eq.~5! can be solved by
following the scheme proposed in Refs. 10 and 40. The
lution can be represented in the spinor form

C~r,f!5(
n,l

eil fRn,l
0 ~r!FAl

nS 1
0D1Bl

nS 0
1D G , ~14!

where $Rn,l
0 (r)% is the solution@Eq. ~10!# of Eq. ~5! when

a5b5g50. CoefficientsAl
n and Bl

n are given by the sys
tem of equations

FIG. 3. Dependence of the spin splitting for InSb QD’s on e
ternal magnetic field and orbital momentum~only the Rashba spin
orbit interaction is included!.
16530
n

d
d

to

e
on-

o-

~En,l 11,11
0 2E!Al

n1a
emv0

2

\
B(

m
Gl

nmAl
m

1 ib(
m

H ~ l 21!I l
nm2Pl

nm1
e

2\
BJl

nmJ Bl 21
m 50,

~15!

~En,l 21,21
0 2E!Bl

n2a
emv0

2

\
B(

m
Gl

nmBm
l

2 ib(
m

H ~ l 11!Kl
nm1Dl

nm1
e

2\
BLl

nmJ Al 11
m 50,

where

Gl
nm5E

0

`

r3dr Rn,l
0 ~r!Rm,l

0 ~r!,

I l
nm5Kl 21

mn 5E
0

`

dr Rn,l
0 ~r!Rm,l 21

0 ~r!,

Jl
nm5Ll 21

mn 5E
0

`

r2dr Rn,l
0 ~r!Rm,l 21

0 ~r!,

Pl
nm5E

0

`

r dr Rn,l
0 ~r!

d

dr
Rm,l 21

0 ~r!,

Dl
nm5E

0

`

r dr Rn,l
0 ~r!

d

dr
Rm,l 11

0 ~r!,

and

En,l ,s
0 ~E,B!5\S v0

21
vc

2~E,B!

4 D 1/2

~2n1u l u11!

1 l
\vc~E,B!

2
1sFmB

2
g~E!B1 lam~E!v0

2G .
System of equations~15! can be written in the vector form
A l5M̂Bl 21 and Bl5N̂A l 11 .40 The energy spectrum of th
QD has to be numerically calculated from the followin
equation:

det~ 1̂2M̂N!5det~ 1̂2N̄M̂ !50. ~16!

The chosen basic set$Rn,l(r)% provides a very quick con-
vergence for the roots of Eq.~16!, with an increasing numbe
n. For nmax;15, the net error for the lowest four energ
levels is,1024 for InSb QD’s in a magnetic field near th
crossing points.

First we assume thata50 describes the spin splitting
produced by the Dresselhaus term only. Calculation res
indicate that, at zero magnetic field, the spin splitting
mains for all states withu l u>1. However, in contrast to the
Rashba splitting, the Dresselhaus splitting between pair
twofold degenerate levels is proportional tob2/\v0r0

2 and

-

6-4
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does not depend on the sign ofgc constant. The Kramers
degeneracy also remains for$n50,u l u>1,s% levels.

When the Rashba term is included in Eqs.~15!, the total
~Dresselhaus and Rashba! spin splitting sign heavily depend
on the dot height. For InSb quantum dots with the sa
parameters as in Fig. 3 andz0535 Å, gc5160 eV Å3 ~Ref.
17! at zero magnetic field, the BIA term dominates in t
total spin splitting for$0,61,s% states that is about;5.5
meV. Sinceb depends heavily on the dot height, the S
term becomes dominant forz0*50 Å. In addition, atz0
'80 Å, the Dresselhaus term can be neglected.

Consider the eventual changes of spin splitting at z
magnetic field for ‘‘thin’’ quantum dots, in which the
energy-state crossing demonstrates a different behavior.
ure 4 presents the calculation results for$0,61;s% states of
InSb quantum dots at a magnetic field near the cross
point. In contrast to Fig. 2~b!, for the dot sizez0535 Å, the
Dresselhaus splitting is strong enough to remove the cros
between states with the samel at low magnetic fields@Fig.
4~a!#. When the dot height increases, the Dresselhaus s
ting weakens@Fig. 4~b!#, and then (z0*45 Å) the crossing
appears at relatively large magnetic fields. Forz0570 Å, the
electron energy-level positions are extremely close to th
when only the Rashba term is included@Fig. 4~c!#.

In planar semiconductor systems~e.g., in quantum wells!,
the electron energy spectrum is insensitive to the sign oa.
In quantum dots, however, it is sensitive. Therefore, BIA a
SIA contributions to the total spin splitting can either sum
or subtract from each other, depending on the sign ofa but
independent on the sign ofgc . In our calculation above we

FIG. 4. $0,1,s% energy states for InSb QD’s with Rashba a
Dresselhaus spin-orbit interactions:~a! z0535 Å, ~b! z0546 Å,
and ~c! z0570 Å. The other parameters are the same as in Fig
16530
e

o

ig-

g

ng
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e

d

described the first situation whena.0. To our knowledge,
the absolute signs of those constants remain a controve
issue~see Ref. 2 and references therein!. As an example, Fig.
5 $0,61,s% presents energy-state positions fora,0. For a
negative a we found a cancelation of the Rashb
Dresselhaus terms whenz0546 Å andB→0 @Fig. 5~a!#. In
addition, increasing the dot height leads to the appearanc
a crossing. However, in contrast to the positivea case, the
crossing between electron energy states hasl 521 @Fig.
5~b!#. Therefore, a possible measurement of thea-dependent
characteristics of quantum dots can determine the sign oa,
and provide additional information about the effective sp
orbit interaction.

In conclusion, we presented a study of the effect of sp
orbit interaction on the electronic spectrum of narrow-ba
semiconductor quantum dots. Calculations were made on
basis of an effective one-dimensional spin-dependent Ha
tonian within the envelope-function approximation. For t
parabolic confinement potential model a well-pronounc
spin splitting was found for QD’s with parameters of InS
and InAs.

Our results further demonstrate that the magnitude
sign of the effect depend on the effective size of the QD, a
can gain a measurable value for relatively small QD’s
narrow-gap semiconductors. For relatively thin cylindric
quantum dots, the Dresselhaus mechanism of the spin s
ting is dominant. However, with increasing dot height, t
Rashba term becomes dominant.

The main goal of the paper is to call attention to sp
splitting effects for QD’s. In our calculation, a simple mod
and conventional parameters of the semiconductor b
structures are used. A real three-dimensional calcula
should be performed. However, the major finding is as f
lows: the spin splitting at zero magnetic field and thel-state
crossing with external magnetic field are clear physical p
nomena which are independent of the model. Therefore,
crossing of electron energy levels with different spins m
lead to unusual magnetic properties of QD’s.

This work was supported by the National Science Coun
of R.O.C. under Contract No. NSC89-2215-E009-013.

.

FIG. 5. $0,1,s% energy states for InSb QD’s with Rashba (a
52500 Å2) and Dresselhaus spin-orbit interactions:~a! z0546 Å
and ~b! z0570 Å. The other parameters are the same as in Fig
6-5
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