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Abstract

Two of the authors have recently discussed financial markets operated by quantum computers—quantum market games.

These ‘‘new markets’’ cannot by themselves create opportunity of making extraordinary profits or multiplying goods, but

they may cause the dynamism of transaction which would result in more effective markets and capital flow into hands of

the most efficient traders. Here we focus upon the problem of universality of measurement in quantum market games

offering a possible method of implementation if the necessary technologies would be available. It can be also used to

analyse material commitments that elude description in orthodox game-theoretic terms.

r 2007 Elsevier B.V. All rights reserved.

PACS: 02.50.Le; 03.67.Lx; 05.50.+q; 05.30.d

Keywords: Quantum games; Quantum strategies; Quantum information theory; Quantum markets; Quantum finance
1. Introduction

Quantum market games [1,2] have a unique bootstrap supporting the use of quantum formalism to describe
them—one of the interpretations of quantum mechanics based on the Fokker Wheeler Feynman direct
interaction approach [3,4] refers to market transactions [5]. On the other hand, quantum theory implies
properties of players’ strategies that assuredly form new standards of market liquidity. Quantum strategies
cannot be copied nor destroyed what is guaranteed by the no-cloning and no-deleting theorems [7] but they can
be identified in a non-destructive way (for example, with a test making use of the controlled-swap gate that is
used in the quantum fingerprinting [6]). In addition, they can be shared in a perfect, requiring no regulations
way among players–shareholders (for example in such a way that any group of k shareholders can adopt the
strategy and no smaller group of shareholders can make profit on this strategy [8]). These features are very
promising and initiate research projects that aims at implementation of quantum games in various fields [9].
Optimal management of such quantum strategies requires an appropriate portfolio theory [10]. This should
not be regarded as a disadvantage as risk is associated even with classical arbitrage transactions [11] and
there is a constant need for an appropriate theory to manage the risk associated with any activity.
e front matter r 2007 Elsevier B.V. All rights reserved.
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Currently, quantum theory is the only one that promises this degree of perfection therefore there is only a faint
possibility that quantum game theory might be overvalued. Contemporary markets undergoing a process of
globalization would intensify such evolution. Markets exploring quantum phenomena regardless of such
details as whether its ‘‘quantumness’’ would derive from instruments or human mind properties, would offer
effectiveness impossible in classical markets and therefore would replace them sooner or later [12,13]. In the
present paper, we show how quantum market games can possibly be implemented with help of set of universal
primitives. Existence of such universal primitives is essential for the quantum market idea ever coming true.
We focus here on the very core of a quantum market (the quantum board or the universum of the game)
although the main technological progress in the field of quantum information concerns communication
scenarios and their security that constitute sort of peripheral devices from our point of view. Commercial
quantum information processing instruments have already appeared on the market and our analysis reveals
possible new niches to be found when the appropriate technologies would be available. To set the stage, we
first, in Sections 2 and 3, describe main ideas behind quantum market games and analyse simple two-qubits
strategies. In Section 4, we discuss main features of measurements of quantum tactics. Then, in Section 5, we
show how to adopt Perdrix formalism to prove the universality property of quantum market games. It follows
that reusable quantum hardware for quantum markets is feasible. Finally, in Section 4, we discuss a possible
implementation of the game of 20 questions.

2. Quantum market games

Quantum game theory investigates conflict situations involving quantum phenomena. Therefore it exploits
formalism of quantum theory. Strategies are vectors (called states) in some Hilbert space and can be
interpreted as superpositions of trading decisions. Tactics and moves are performed by unitary
transformations on states. The idea behind using quantum games is to explore the possibility of forming
linear combination of amplitudes that are complex Hilbert space vectors whose squared absolute values give
probabilities of players actions. Description of complex quantum games with unlimited number of players or
non-constant pay-offs is an open problem [14,15]. There are several possible ways of accomplishing this task.
We have proposed a generalization of market games to the quantum domain in Ref. [1]. If a game allows a
great number of players in it is useful to consider it as a two-players game: the kth trader against the rest of the
world (RW). Any concrete algorithm A should allow for an effective strategies of the RW type. Let the real
variable q

q:¼ ln c� Eðln cÞ

denotes the logarithm of the price at which the kth player can buy the asset G shifted so that its expectation
value in the state jcik vanishes. The expectation value of x is denoted by EðxÞ. The representation of prices by
their logarithms is very convenient and often used in financial mathematics.1 We follow this convention.
The variable p

p:¼Eðln cÞ � ln c

describes the situation of a player who is supplying the asset G at the price c according to his strategy jcik.
Supplying G can be regarded as demanding $ at the price c�1 in the 1G units and both definitions are
equivalent. Note that we have defined q and p so that they do not depend on possible choices of the units for G

and $. For simplicity we will use such units that Eðln cÞ ¼ 0. Strategies jcik belong to Hilbert spaces Hk. The
initial state of the game jCiin:¼

P
kjcik is a vector in the direct sum of Hilbert spaces of all players. Following

Refs. [12,13] we define canonically conjugate Hermitian operators of demand Qk and supply Pk for each
Hilbert space Hk. They are analogous to the quantum position and momentum operators. The capital flows
resulting from an ensemble of simultaneous transactions correspond to the physical process of measurement.
A transaction consists in a transition from the state of traders strategies jCiin to the one describing the capital
flow state jCiout:¼TsjCiin, where Ts:¼

P
kd
jqikd kd

hqj þ
P

ks
jpiksks

hpj is the projective operator defined by the
division s of the set of traders fkg into two separate subsets fkg ¼ fkdg [ fksg, the ones who are buying at the
1For example, discount factors become additive, etc.
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price eqkd and the ones who are selling at the price e�pks in the round of the transaction in question. Note that
the operatorTs is the identity only in trivial cases because all possible strategies are scarcely in use at the same
moment. The game consist in an implementation of an effective algorithm A whose role is to determine the
division s of the market, the set of price parameters fqkd

; pks
g and the values of capital flows. The later are

settled by the distributionZ ln c

�1

jhqjcikj
2

khcjcik
dq,

which is interpreted as the probability that trader jcik is willing to buy the asset G at the price c or lower [17].
In an analogous way the distribution

Z ln 1=c

�1

jhpjcikj
2

khcjcik
dp

gives the probability of selling G by trader jcik at the price c or greater. These probabilities are in fact
conditional because they describe the situation after the division s is completed. If one considers the RW
strategy it make sense to declare its simultaneous demand and supply states because for one player RW is a
buyer and for another it is a seller. To describe such situation it is convenient to use the Wigner formalism.2

The pseudo-probability W ðp; qÞdpdq on the phase space fðp; qÞg known as the Wigner function is given by

W ðp; qÞ:¼h�1E

Z 1
�1

ei_
�1
E

px hqþ x=2jcihcjq� x=2i

hcjci
dx.

This measure is not positive definite except for the cases presented below. In the general case the pseudo-
probability density of RW is a countable linear combination of Wigner functions, rðp; qÞ ¼

P
nwnW nðp; qÞ,

wnX0,
P

nwn ¼ 1. The diagrams of the integrals of the RW pseudo-probabilities (see Ref. [17])

Fdðln cÞ:¼

Z ln c

�1

rðp ¼ const:; qÞdq

(RW bids selling at e�p) and

Fsðln cÞ:¼

Z ln 1=c

�1

rðp; q ¼ const:Þdp

(RW bids buying at eq) against the argument ln c may be interpreted as the dominant supply and demand
curves in the Cournot convention, respectively [17]. Note, that due to the lack of positive definiteness of r, Fd

and F s may not be monotonic functions. Textbooks on economics give examples of such departures from the
law of supply and the law of demand (Giffen assets).

3. A two-qubits agent’s strategy

The bewildering phenomenon of quantum dense coding [18] enables us sending two classical bit of
information by exchanging one qubit. This can be presented in the game-like setting as follows. Suppose we
intend to send the information from A to B. Then the circuit (we use the standard graphical representation of
quantum controlled not (Cnot) gate, bit swap and measurement, see Ref. [24])

CnotðUz;a � IÞSwap Cnot Swapj0iAj0
0iB

¼ cosðaÞj00iAj0iB þ i sinðaÞðEzðX Þj0
0iAjIiB þ EzðX

0ÞjI 0iAj0iB þ EzðX
00ÞjI 0iAjIiBÞ
2Actually, this approach consists in allowing pseudo-probabilities into consideration. From the physical point of view this is

questionable but for our aims it is useful, cf. the discussion of the Giffen paradox [16].
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where

X :¼sx; X 0:¼sz ¼ HXH ; X 00:¼sy ¼ iXX 0

are tactics3 given by the Pauli matrices, describes such a process. The representation of tactics Uz;a in terms of
the final strategy is secure against interception because the owner of the pair of qubits A and B can keep the
information distinguishing these two qubits secret (one classical bit); without this information the interception
of the pair of qubits A and B is insufficient for identification of the tactics Uz;a. Such a method has previously
been applied by Wiesner to construct quantum counterfeit-proof banknotes [20]. By adopting a tactics Uz;a

that corresponds to one of four pairwise maximally distant pairs of antipodal points of the sphere S3
4 the

owner of qubit A is able to send two classical bits to the owner of qubit B while sending only one qubit.
According to the analysis given in Ref. [21], the measurable qubits B and A can be interpreted as market
polarizations of their owner (if j0i-supply and if j1i-demand) and therefore his/her inclination to buy at low or
high prices what can easily be seen if we replace the meters with the controlled-Hadamard gates with control
qubit B. In order to connect unequivocally any of the three conjugated bases [20] (or mutually unbiased [22])
with one of their three possible market functions (eigenvectors (fixed points) of X with supply inclination,
eigenvectors of X 0 with demand inclination and eigenvectors of X 00 with polarization) we should transform the
strategy B (after the controlled-Hadamard gate!) with the involutive tactics

G:¼ 1ffiffi
2
p ðX 0 þ X 00Þ

that transforms eigenvectors of X 0 into eigenvectors of X 00. The consideration of the third conjugated basis is
necessary to guarantee the security of the information a la Wiesner’ banknotes (the information about the
respective price carried by qubit A uses two conjugated bases—sets of fixed points of tactics X and X 0).

ð1Þ

If there is no restriction on tactics Uz;a the agent is able to play more effectively by adopting superpositions of
previously allowed strategies. Collective tactics and strategies are also possible. Elsewhere, we have shown that
agents can enter into alliances that can be implemented via the controlled-NOT gates (implemented as gates
between qubit strategies). These gates are universal. Obviously, from the technical point of view, quantum
markets can have various different properties. The polarization qubit is redundant in two-sided auctions but in
bargaining games [21] another qubit is necessary to distinguish the agents who are bidding. Much more
additional qubits are necessary if the corresponding supply and demand curves are continuous (floating point
precision)—one qubit for each binary digit of the logarithm of price. However, these are theoretically
unimportant details—all such forms of quantum markets can be implemented with the use of elementary
market measurements alone what follows from the analysis by Nielsen [23,24], Raussendorf and Briegel [25],
and Perdrix and Jorrand [26,27]. The rest of the paper is devoted to this problem.

4. Measurements of tactics

A measurement of tactics consists in determination of the strategy or, more precisely, finding out which of
its fixed points we have to deal with. If the tactics being measured changes the corresponding strategy, then
non-demolition measurements reduce the strategy to one of its fixed points and the respective transition
amplitudes are given by coordinates of the strategy in the fixed point basis (Born rule). As we will show,
measurements of the tactics X, G and X � X 0 suffice to implement quantum market games. According to the
3We call any unitary transformation that changes agent’s (player’s) strategy a tactics. We follow the notation introduced in Ref. [19]:

SUð2Þ 3 U z;a ¼ eia s!�Ezð s!Þ ¼ I cos aþ i s!� Ezð s
!
Þ sin a, where the vector Ezð s

!
Þ ¼ hzj s!jzi=hzjzi represents the expectation value of the

vector of Pauli matrices s!:¼ðs1;s2; s3Þ for a given strategy jzi. The family fjzig,z 2 C of complex vectors (states) jzi:¼j0i þ zjIi

(j �1i:¼jIi) represents all trader’s strategies in the linear subspace spanned by the vectors j0i and jIi.
4U ¼ a0I þ i

P
kaksk, where a0 ¼ cos a, ak ¼ nk sin a and

P
mðamÞ

2
¼ 1. The corresponding tactics are �I � sk, where the antipodal

points have different signs but represent equivalent tactics.
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Qcircuit.tex standard macros [28], we will denote the corresponding measuring gates as (rounded off shape is
used to distinguish measuring gates):

ð2Þ

Note that measurement of the tactics X � X 0 provides us with information whether the two strategies agree or
disagree on the price but reveals no information on the level of the price in question. To get information about
the prices we have to measure X � I and I � X 0, respectively. Note that the measurement of X 0 can
be implicitly accomplished by measurement of X and subsequently X � X 0. This is shown graphically by
(see Ref. [26] for details):

where the parentheses are used to denote auxiliary qubits. In the following paragraphs, we will analyse
q-circuits with various number of auxiliary qubits that would allow for implementation of tactics via
measurement only—the approach proposed by Perdix [26].
5. Universality of measurements: implementing tactics via measurements

Teleportation and measurement form surprisingly powerful tools in implementation of tactics. The method
used by Perdrix and Jorrand [26,27] to analyse the problem of universality in quantum computation can be
easily adopted to the situation we are considering. Following Ref. [26], we begin by showing how a strategy
encoded in one qubit can be transferred to another (from the upper one to the lower one in the figure
below) and how it changes with a sequence of tactics sH, where s is one of the Pauli matrices (including the
identity matrix):

ð3Þ

Assuming that the input qubit is in the state:

jci ¼ aj0i þ bj1i,

after measuring I� X (with classical outcome j ¼ �1) we obtain:

jc1i ¼ jci � X 0
ð1�jÞ=2 j0i þ j1iffiffiffi

2
p ¼

1ffiffiffi
2
p ðI� X 0

ð1�jÞ=2
Þðaj00i þ aj01i þ bj10i þ bj11iÞ.

Measurement of X � X 0 with outcome k ¼ �1 sets our qubits in state:

jc2i ¼
1ffiffiffi
2
p ðI� X ð1�kÞ=2X 0

ð1�jÞ=2
Þ½ðaþ bÞðj00i þ j10iÞ þ ða� bÞðj01i � j11iÞ�.

The final measurement X 0 � I with outcome l ¼ �1 gives us the final state:

jc3i ¼ ½X
ð1�lÞ=2 � X ð1�kÞ=2X 0

ð1�jÞ=2
HX ð1�lÞ=2�½j0i � ðaj0i þ bj1iÞ�

¼ X ð1�lÞ=2j0i � X ð1�kÞ=2X 0
ð1�j�lÞ=2

Hjci,

and the equivalence of the circuits given above is proved.
Thus, the strategy encoded in the upper state is transferred from the lower qubit and changed with

the tactics sH, where s ¼ X ð1�kÞ=2X 0
ð1�j�lÞ=2. It is evident that the same tactics is adopted when we
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switch the supply measurements with the demand ones (X2X 0). Simple calculation shows that the composite
tactics HsH and sisk reduce to some Pauli (matrix) tactics. Therefore, an even sequence of tactics (3) can be
perceived as the Markov process over vertices of the graph:

It follows that any Pauli tactics can be implemented as an even number of tactics-measurements (3) by
identifying it with some final vertex of random walk on this graph. Although the probability of drawing out
the final vertex at the first step is 1

4, the probability of staying in the ‘‘labyrinth’’ exponentially decreases to
zero. Having a method of implementation of Pauli tactics, allows us to modify the tactics (3) so that to
implement the tactics H—the fundamental operation of switching the supply representation with the demand
representation. It can be also applied to measure compliance with tactics representing the same side of the
market (direct measurement is not possible because the agents cannot make the deal):

In addition, this would allow for interpretation via measurement of random Pauli tactics s because of the
involutiveness of H the gate (3) can be transformed to

ð4Þ

The gate (4) can be used to implement the phase-shift tactics:

T :¼

1 0

0
1þ iffiffiffi

2
p

0
@

1
A.

T commutes with X 0, hence:

Elementary calculations demonstrate that T�1XT ¼ ðX � X 00Þ=
ffiffiffi
2
p

and HðX � X 00Þ=
ffiffiffi
2
p

H ¼ G, therefore:

We have seen earlier that it is possible to remove the superfluous Pauli operators, cf. (4). To end the proof of
universality of the set of gates (2) we have to show how to implement the alliance Cnot (note that fH ;T ;Cnotg
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a set of universal gates [29]). This gate can be implemented as the circuit (as before, the gate is constructed up
to a Pauli tactics) [26]:

ð5Þ

The explicit calculations are as follows:5

Let us assume the input qubits are the first and the second, in state:

jci ¼ aj00i þ bj01i þ gj10i þ dj11i

with the third used as an auxiliary one. States j�i are defined as follows:

j�i ¼
1ffiffiffi
2
p ðj0i � j1iÞ.

The first measurement I� I� X gives us the state below, depending on classical outcome j ¼ �1:6

jc1i ¼ jci � X 0
ð1�jÞ=2

jþi

¼ ðI� I� X 0
ð1�jÞ=2

Þðaj00þi þ bj01þi þ gj10þi þ dj11þiÞ.

After I� X � X 0 with outcome k ¼ �1 we obtain:

jc2i ¼
1

2
½I� X 0

ð1�kÞ=2
� X 0

ð1�jÞ=2
�fðaþ bÞðj000i þ j010iÞ þ ða� bÞðj001i � j011iÞ

þ ðgþ dÞðj100i þ j110iÞ þ ðg� dÞðj101i � j111iÞg

¼
1ffiffiffi
2
p ½I� X 0

ð1�kÞ=2
� X 0

ð1�jÞ=2
�fðaþ bÞj0þ 0i þ ða� bÞj0� 1i

þ ðgþ dÞj1þ 0i þ ðg� dÞj1� 1ig.

Next measurement X 0 � I� X with outcome l ¼ �1 results in state:

jc3i ¼ ½I� X 0
ð1�kÞ=2

X ð1�l�jÞ=2 � X 0
ð1�lÞ=2

�½aj00þi þ bj01þi þ dj10�i þ gj11�i�.

After the final measurement of I� I� X 0 with eigenvalues m ¼ �1 we get:

jc3i ¼ ½X
0ð1�kÞ=2

� X ð1�l�jÞ=2 � X 0
ð1�lÞ=2

�½aj00þi þ bj01þi þ dj10�i þ gj11�i�.

After the final measurement of I� I� X 0 with eigenvalues m ¼ �1 we get:

jc4i ¼ ½X
0ð1�m�kÞ=2

� X ð1�l�jÞ=2 � X ð1�mÞ=2�½ðaj00i þ bj01i þ dj10i þ gj11iÞ � j0i�

¼ ½X 0
ð1�m�kÞ=2

� X ð1�l�jÞ=2 � X ð1�mÞ=2�½CNotjc� j0i�.

It follows that the above circuits are equivalent.
The measurement of the tactics G performed within the quantum market game frame of reference causes

interpretative problems7 that can be resolved if we replace the measurement of G with controlled H gate
(cf. (1)) and the measurement of entanglement for another pair of conjugated bases X 0 � X 00 in the set
of universal primitives. Owing to the fact that G ¼ HGHGH, the measurement of G can be implemented
5The tactics H transforms the demand picture to the supply picture (X2X 0), which results in a switch from control qubit to the

controlled qubit.
6Note that the second and the third qubit appear in reversed order in figure (5).
7Eigenvectors of G lack any rational interpretation in terms of strategies in the quantum market games model. Nevertheless, the tactics

G can be interpreted as a transformation between various bases spanned by vectors representing market strategies. Besides, it can be

implemented as sequence of measurement of strategies (X 0;�X 00 and X 00) as explained in the text.
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in the following way [24]:

where the tactics G is obtained from (3) by the cyclic replacement X ! X 0, X 0 ! X 00 i X 00 ! X :

In fact, the universality property has any set of primitive that contains the controlled H gate and
measurements X k;X p � X q;X r � X s, where paq, ras and par—this can be easily checked [26]. It follows
that to implement a quantum market8 it suffices to have, beside possibility of measuring strategy-qubits and
control of the supply-demand context, a direct method measuring entanglement of a pair of qubits in
conjugated bases.

6. Quantum intelligence à la 20 questions

Let us recall the anecdote popularized by John Archibald Wheeler [30]. The plot concerns the game of 20
questions: the player has to guess an unknown word by asking up to 20 questions (the answers could be only
yes or no and are always true). In the version presented by Wheeler, the answers are given by a ‘‘quantum
agent’’ who attempts to assign the task the highest level of difficulty without breaking the rules. In the light of
the previous discussion, any quantum algorithm (including classical algorithms as a special cases) can be
implemented as a sequence of appropriately constructed questions-measurements. The results of the
measurements (i.e., answers) that are not satisfactory cause further ‘‘interrogation’’ about selected elementary
ingredients of the reality (qubits). If quantum intelligence (QI) is perceived in such a way (as quantum game)
then it can be simulated by a deterministic automaton that follows a chain of test bits built on a quantum
tenor [31]. The automaton completes the chain with afore prepared additional questions at any time that an
unexpected answer is produced. Although the results of the test will be random (and actually meaningless—
they are instrumental), the kind and the topology of tests that examine various layers multi-qubit reality and
the working scheme of the automaton are fixed prior to the test. The remarkability of performance of such an
automaton in a game against Nature is by the final measurement that could reveal knowledge that is out of
reach of classical information processing, cf. the already known Grover and Shor quantum algorithms and the
Elitzur–Vaidman bomb tester. Needless to say, such an implementation of a game against quantum Nature
leaves some room for perfection. The tactics CNot and H belong to the normalizer of the n-qubit Pauli group
Gn [24], hence their adoption allows to restrict oneself to single corrections of ‘‘errors’’ made by Nature that
precede the final measurement. It is worth noting that a variant of implementation of the tactics T makes it
possible to postpone the correction provided the respective measurements methods concern the current state
of the cumulated errors [32]. Therefore in this setting of the game some answers given by Nature, though being
instrumental, have a significance because of the influence of the following tests. There is no need for the final
error correction—a modification of the measuring method is sufficient. In that way the course of game is fast
and the length of the game is not a random variable. This example shows that in some sense the randomness in
game against quantum Nature can result from awkwardness of agents and erroneous misinterpretation of
answers that are purely instrumental. If only one error (lie) in the two-person framework are allowed fast
quantum algorithms for solving the problem exist (Ulams’s problem) [33].
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