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1. Introduction

Up to now, study on reflection and refraction of electromagnetic
wave at a lossy interface is still an active research area [1–22]. It is
known early that the usual Snell's law is no longer valid for lossymedia.
Traditionally, the generalized Snell's laws are derived from phase-
matching condition by using harmonic inhomogeneous plane waves
(HIPWs) instead of the well known harmonic homogeneous plane
waves (HHPWs) [1,4,7]. Then the generalized Fresnel's laws are
obtained by combining the complex valued boundary conditions. It is
shown that HIPW is usually elliptically polarized [7]. The elliptical
polarization leads to oscillations of Poynting vector, making it more
difficult to trace the curves of energy flow. Partly due to the complexity
of both HIPWs and the generalized Snell's laws, several assumptions
and/or choices have to be introduced to further find simple explicit
formulas related to energy flow propagation direction, the obtained
results are usually correct only under certain conditions [9–12].
Recently, study on negative refractive index materials has attracted a
great deal of attention,whichoffers anopportunity to further reconsider
the basic concepts and theorem associated with properties of electro-
magnetic wave propagating in lossy media [13–22]. It seems that, in
these cases, effects of energy losses on properties of wave propagation
have not been rigorously treated and fully understood yet [20–23].

In this work, we shall show that, due to oblique propagation of wave
(corresponding to Gaussian surface or integrating loop), a term related
towave vector and propagation directionmust arise in the integral form
of Maxwell's equations, which impact directly on phase-matching
condition and boundary conditions. It is demonstrated that, at a lossy
interface, phase-matching condition and complex valued boundary
conditions are usually valid only for HIPWs. However, the real valued
boundary conditions are valid universally for both HHPWs and HIPWs.
Thus a time-dependentway is developed toderive lawsof reflection and
refraction from real valued boundary conditions by using the well
known HHPWs. Since the electromagnetic wave may be linearly
composited by either HHPWs or HIPWs, the way presented here is
equivalent to the previous ones [1,4,7] in principle and does not lose any
generality. In addition, our work has following advantages: (a) the
adopted HHPWs are simple and well known; (b) the derivation
procedure closely corresponds to the well known dynamical process
of electric and magnetic fields of HHPWs at every moment, hence the
obtained laws have clear physical meaning; (c) in practice, the incident
wave is usually taken as a single HHPWor thewave linearly composited
by HHPWs. Thus laws obtained in this work are feasible to be applied to
rigorously trace curves of energy flow, which may be helpful to further
understand the novel properties of electromagnetic waves, such as
negative refraction. Our study may also stimulate and urge the
reconsideration of properties of electromagnetic fields and electromag-
netic waves in the lossy media from a very fundamental viewpoint.

The remainder of the paper is organized as follows: In Section 2,
integral form of Maxwell's equations and then the boundary
conditions are reconsidered. In Section 3, the generalized laws of
reflection and refraction are derived directly from real valued
boundary conditions by adopting HHPWs. In Section 4, several
novel properties of transmitted wave induced by media losses are
predicted. Finally, some conclusions are shown in Section 5.

2. Reconsideration on integral form of Maxwell's equations and
boundary conditions

We start our study from reconsidering integral form of Maxwell's
equations. It is well known that integral form of Maxwell's equations
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is usually obtained from distribution of the electric field induced by
static charges and/or altering magnetic field and the magnetic field
produced by conduction and/or displacement current [24–26]. In
these cases, effects of the field propagation and energy losses are not
considered directly. Here, analogously, we shall attempt to derive
integral form of Maxwell's equations according to distribution of
electric and magnetic fields of electromagnetic wave (the static (or
quasi-static) electric and magnetic fields may be taken as the special
cases having the propagation constant tends to be zero), and then
address possible effects of energy losses on integral form of Maxwell's
equations, phase-matching condition and boundary conditions. In
addition, it is emphasized that time domain real valued integral form
of Maxwell's equations is basic and universal expression of electro-
magnetic fields. For harmonic electromagnetic fields, the frequency
domain complex valued Maxwell's equations and then the complex
valued boundary conditions are introduced [24–26]. Therefore, we
shall pay our main attention on the time domain real valued
expression of electromagnetic fields.

As a typical example, we study in detail properties of magnetic flux
ψ of a beam of harmonic (homogeneous or inhomogeneous) plane
wave at the chosen Gaussian surface as shown in Fig. 1. Generally, the
true value of magnetic induction intensity B

⇀
of both HHPWand HIPW

can be expressed as [7,24–26]

B
⇀

r⇀; t
� �

= Re ˜B
⇀

0exp −jωt + j ˜k
⇀
⋅ r⇀− r⇀0

� �� �� �
: ð1Þ

Where, ˜B
⇀

0 is complex valued magnetic induction intensity of the
wave at the moment of t=0 and the corresponding position of

r⇀ = r⇀0,
˜k
⇀

= k
⇀0 + j k

⇀
q is complex valued propagation constant of

the wave in the medium. With the classical formulation, media
losses are taken into account by the complex valued propagation
constant. For simplicity, the wave-front is assumed to be rectangle-
shaped with area of w× l (where, w is the width of the beam in the
direction perpendicular to x0z plane, l size of wave-front in x0z plane).
At a moment t, magnetic induction intensity B

⇀
of the wave at the

upper surface is

B
⇀

rx+ x; ry; rz; t
� �

= Re ˜B
⇀

rx; ry; rz; t
� �

exp jk̃ x−rxð Þsin θ
h i� �

: ð2Þ

Here θ is the intersection angle between wave vector and normal
of upper surface. To obtain an appropriate integral form of the
Maxwell's equation, magnetic induction intensity B

⇀
at the lower
),,( zyx rrr

x
0

Electromagnetic wave

z

h

l

θ

Fig. 1. Sketch of a beam of electromagnetic wave propagating in a homogeneous isotropic
medium. The black rectangle refers cross section of the chosen Gaussian surface.
surface is taken as the field traveling from the upper surface after Δt
time

B
⇀

rx+ htgθ + x; ry; rz+ h; t+Δt
� �

= Re ˜B
⇀

rx + x; ry; rz; t
� �

exp −k″h=cosθ
� 	� �

:

ð3Þ

Here, Δt=h/v cos θ is propagation time of the wave insider the
Gaussian surface with height of h, v the phase velocity of the wave in
the medium. Directly, magnetic flux ψ at the given Gaussian surface is
obtained as

Ψ ≡ ∫
Supper

B
⇀

r⇀; t
� �

⋅d
⇀S + ∫

Slower

B
⇀

r⇀; t + Δt
� �

⋅d
⇀S

= ∫rx+ l=cos θ
rx

Re B̃n rx; ry; rz; t
� �

exp jk̃ x−rxð Þsin θ
h in o

wdx :

−∫rx +htgθ+ l=cos θ
rx +htgθ ReVB̃n rx+htg θ; ry; rz +h; t + Δt

� �

× exp jk̃ x−rx−htg θð Þsin θ
h i

twdx

ð4Þ

Note relation of B̃n rx +htg θ; ry; rz +h; t + Δt
� 	

= B̃n rx; ry; rz; t
� 	

exp −kqh=cosθ
� 	

, integrating Eq. (4), we have

Ψ = 1−exp −kqh= cosθ
� 	
 �

Re B̃n rx; ry; rz; t
� � exp jk̃ ltgθ

� �
−1

jk̃ sinθ

2
4

3
5w: ð5Þ

Apparently, Eq. (5) can be rewritten in a complex valued form. It is
seen from Eq. (5) that the integral form of Maxwell's equation for static
field is recovered as lim

k→0
ψ = 0. In addition, magnetic flux ψ at the given

Gaussian surface is always equal to zero when the wave propagating
in the lossless medium. However, in the lossy medium, the magnetic
flux ψ at the given Gaussian surface is generally not equal to zero
(except for Bn(rx,ry,rz, t)=0). Of course, ∮S B

⇀
r⇀; t

� �
⋅d S

⇀≠0 due to

attenuation of electromagnetic wave in lossy media is an interesting
result [24–26], the detailed discussion are beyond the scope of this
paper, we would like to leave it for a further study. Finally, we shall

emphasize that a term of
exp jk̃ ltgθ

� �
−1

jk̃ sin θ
arises in the integration,

which exists also in integral form of Maxwell's other equations. Below,
we shall show that effects of energy losses on boundary conditionsmay
be produced by this term.

Let's further investigate magnetic flux ψ of a beam of harmonic
plane wave obliquely traveling through an interface as shown in
Fig. 2. The wave-fronts are still simply assumed to be rectangle-
shaped with areas of w× lς, lς(ς= i, r, t) are sizes of wave-fronts in
x0z plane, the subscript notations of i, r and t are adopted for the
incident, reflected and transmitted waves, respectively. The height
hς and propagation time Δt=Δt1+Δt2 of the wave insider the
Gaussian surface hold following relationships of hi=v1Δt1 cos θi,
hr=v1Δt2 cos θr, ht=v2Δt2 cos θt, vξ refers phase velocity of the
wave in ξth(ξ=1,2) medium. Analogously, magnetic flux ψ at the
given Gaussian surface is directly obtained as

Ψ = Re B̃i;n 0; ry;0; t
� �

exp k1qhi =cosθið Þ
exp jk̃1litgθi

� �
−1

j k̃1 sinθi

2
4

3
5w

+ Re B̃r;n 0; ry;0; t
� �

exp −k1qhr =cos θrð Þ
exp jk̃1lrtgθr

� �
−1

jk̃1sin θr

2
4

3
5w:

−Re B̃t;n 0; ry;0; t
� �

exp −k2qht =cos θtð Þ
exp jk̃ 2lt tgθt

� �
−1

jk̃2 sin θt

2
4

3
5w

ð6Þ



Fig. 3. Sketch of an obliquely incident TM HHPW travels through an interface.

tθ

z

rθ
iθ )~,~( 11 μεih−

th

rh−

il
rl

tl

)~,~( 22 με
x

0

Fig. 2. Reflection and refraction of a beam of electromagnetic wave at an interface. The
black rectangle refers cross section of the chosen Gaussian surface.
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To address the possible effects of energy losses on phase-matching
condition and boundary conditions, let hi, r, t→0, effects of energy
losses on the magnetic flux ψ is neglected, thus

Ψ = Re B̃i;n 0; ry;0; t
� � exp jk̃1litgθi

� �
−1

jk̃1sin θi

2
4

3
5w

+ Re B̃r;n 0; ry;0; t
� � exp jk̃1lrtgθr

� �
−1

jk̃1sin θr

2
4

3
5w :

−Re B̃t;n 0; ry;0; t
� � exp jk̃2lttgθt

� �
−1

jk̃2 sin θt

2
4

3
5w

= 0

ð7Þ

It is clear from Eq. (7) that, due to existence of the terms of

exp jk̃ξlζtgθζ
� �

−1

jk̃ξ sinθζ
, none but

exp jk̃1litgθi
� �

−1

jk̃1sinθi
=

exp jk̃1lrtgθr
� �

−1

jk̃1sinθr
=

exp jk̃2lttgθt
� �

−1

jk̃2sinθt
, Eq. (7)may be rewritten asΨ = ReV B̃i;n 0; ry;0; t

� 	
+

h

B̃ r;n 0; ry;0; t
� 	

− B̃ t;n 0; ry;0; t
� 	�exp jk̃2lt tgθt

� �
−1

jk̃2 sinθt
tw = 0. Let li, r, t→0,

noting the relations of exp(x)≈1+x and liw/cos θi= lrw/cos θr= ltw/
cos θt=ΔS, we can see that phase-matching condition (8) and usual
complex valued boundary condition (9) are sufficient, but not necessary,
conditions satisfying Eq. (7).

k̃1 sin θi = k̃1 sinθr = k̃2 sin θt ; ð8Þ

B̃ i;n 0; ry;0; t
� �

+ B̃r;n 0r; ry;0; t
� �

− B̃t;n 0; ry;0; t
� �

= 0: ð9Þ

At a lossy interface, HIPWs are traditionally adopted to satisfy
the phase-matching condition (8) and then obtain the generalized
Snell's laws. It is pointed out that, at a lossy interface, phase-
matching condition (8) is generally invalid for HHPW. Thus the
complex valued boundary condition (9) is no longer valid for HHPW.
On the other hand, let li, r, t→0, noting the relations of exp(x)≈1+x
and liw/cos θi= lrw/cos θr= ltw/cos θt=ΔS, a real valued boundary
condition for B

⇀
r⇀; t

� �
may be directly obtained from Eq. (7)

Re B̃i;n 0;0;0; tð Þ
� �

+ Re B̃r;n 0;0;0; tð Þ
� �

= Re B̃ t;n 0;0;0; tð Þ
� �

: ð10Þ

Since the adopted expression (1) is valid for both HHPWs and
HIPWs, the condition (10) is also valid for both HHPWs and HIPWs.
Analogously, the other universal real valued boundary conditionsmay
be obtained.

3. Laws of reflection and refraction from real valued boundary
conditions

It is pointed out that the phase-matching condition may be
obtained from the complex valued boundary conditions. Therefore,
the laws of reflection and refraction may be given directly from
boundary conditions without the phase-matching condition. Below,
we shall derive laws of reflection and refraction from the universal
real valued boundary conditions by using HHPWs. It is emphasized
that, for HHPWs, the planes of constant phase and constant amplitude
are coincide, thus the intrinsic propagation constants are adopted
directly instead of the effective propagation constants [7,9]. In
addition, an incident HHPW may be divided into the usual TM and
TE modes, respectively [7].

Consider an obliquely incident TM HHPW traveling from medium
1 into medium 2 as shown in Fig. 3. The real valued boundary
conditions are written as

bi Re Ẽi

� �
sin θi + br Re Ẽr

� �
sin θr = bt Re Ẽt

� �
sinθt ; ð11Þ

Re Ẽi

� �
cos θi−Re Ẽr

� �
cos θr = Re Ẽt

� �
cos θt ; ð12Þ

Re Ẽi

� �
= Ai + Re Ẽr

� �
= Ar = Re Ẽt

� �
= At

0
: ð13Þ

Where bς = Re ε̃ξ
� 	

−Im ε̃ξ
� 	

Im Ẽς
� �

= Re Ẽς
� �

, Aς= η̃ξη̃
�
ξ Re η̃ξ

� �
+

h

Im η̃ξ

� �
Im Ẽς

� �
=Re Ẽς

� �
�−1 and η̃ξ = μ̃ξ = ε̃ξ

� �1=2
. In order to keep

conservation of energy, At′ is taken as that |At′|=|At| and the sign of
At′ is always identical to that of Ai. Solving Eqs. (12) and (13) gives
the formulae for transmission and reflection coefficients

TE ≡
Re Ẽ t

� �

Re Ẽ i

� � =
At
0

Ai

Ai cosθi + Ar cosθr
Ar cosθr + At

0 cosθt
; ð14Þ
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ΓE ≡
Re Ẽr

� �

Re Ẽ i

� � =
Ar

Ai

Ai cosθi−At
0cosθt

Ar cosθr + At
0cosθt

: ð15Þ

Substituting Eqs. (14) and (15) into Eq. (11), we may obtain

bi Ai sinθi−brAr sinθrð ÞAt
0 cosθt = btAt

0 sinθt−brAr sinθr
� 	

Ai cosθi:

+ btAt
0 sinθt−biAi sinθi

� 	
Ar cosθr ð16Þ

Satisfying the following conditions of (17) and (18), a suitable
solution for Eq. (16) may be given.

biAi sin θi−brAr sin θr = 0; ð17Þ

btA
0
t sin θt−brAr sin θr = 0: ð18Þ

Where bςAς =
c
ω

Re k̃ ξ

� �
−Im k̃ ξ

� �
tg −ωt + k

⇀̃
ξ⋅ r
⇀−αηξ

+ αEςÞ���
,

k̃ ξ =
ω
c

μ̃ ξ ε̃ ξ

� �1=2
the (intrinsic) propagation constant, and αEς

an initial phase associated with response properties of the media.
Since Re Ẽ r

� �
and Re Ẽ i

� �
coexist in the same medium, αEr=αEi.

However, the relation between αEt and αEi is determined by the
response properties of the two media. In addition, for a given
placement vector r⇀, k

⇀̃
ξ⋅ r
⇀ is a constant. Therefore, we can set

bςAς =
c
ω

Re k̃ ξ

� �
−Im k̃ ξ

� �
tg −ωt−αηξ

+ αEς

� �h i
. Thus solving

Eqs. (17) and (18) gives

sin θi = sin θr ; ð19aÞ

sin θt
sin θi

=
Re k̃ 1

� �

Re k̃ 2

� � 1−tg αk1

� �
tg −ωt−αη1

+ αEi

� �

1−tg αk2

� �
tg −ωt−αη2

+ αEt

� � : ð19bÞ

According to the uniqueness theorem of domain decomposition
method for boundary problem of Helmholtz equation, Eq. (19a), is the
only solution.

It is seen from Eq. (19b) that, if all of ε̃ 1; ε̃ 2; μ̃ 1; μ̃ 2 are real
numbers, k1 sin θi=k2 sin θt, this is just the normal case and
consistent with usual Snell's law. In addition, the coefficients of
reflection and refraction expressed as Eqs. (14) and (15) are identical
to the usual Fresnel's laws too. However, generally, αk1≠αk2, αη1

≠αη2

and αEt≠αEi, propagation direction of the transmitted wave is a
function of time, i.e., the transmitted wave is composited by HHPWs
having different propagation directions. Alternation of refraction
angle with time leads the coefficients of refraction and reflection to be
also the functions of time. Physically, the time-dependent refracted
angle, coefficients of refraction and refraction correspond to the fact
that parameters of E

⇀
and H

⇀
of HHPWs in the two media closely near

the interface alter out of step. Further, the energy balance relation at
the interface may be demonstrated as

ΓEΓH + TETH
cos θt
cos θi

= 1: ð20Þ

Analogously, the laws of reflection and refraction of an obliquely
incident TE HHPW are obtained as follows

TH≡
Re H̃ t

� �

Re H̃ i

� � =
Aicosθr + Arcosθi
A0
tcosθr + Arcosθt

; ð21Þ

ΓH≡
Re H̃ r

� �

Re H̃ i

� � =
A0
tcosθi−Aicosθt

A0
tcosθr + Arcosθt

; ð22Þ
sinθi = sinθr ; ð23aÞ

sinθt
sinθi

=
Re k1ð Þ
Re k2ð Þ

1−tg αk1

� �
tg −ωt + αη1

+ αHi

� �

1−tg αk2

� �
tg −ωt + αη2

+ αHt

� � : ð23bÞ

Here Aξ = Re η̃ ξ

� �
−Im η̃ ξ

� �
Im H̃ς

� �
= Re H̃ς

� �
.

4. Properties of transmitted wave induced by media losses and
discussions

An experimental verification of the generalized laws can be
made under various circumstances. Here, we shall propose some
cases that could be realized in practice. We consider the case of
an obliquely incident HHPW traveling from a medium 1 ε̃ 1; μ̃ 1

� �
into free space. For TM wave, the time-dependent field of Eς(t) is
calculated by using Eqs. (14), (15) and (19a), hence Hς(t)=Eς(t)/Aξ.
And for TE wave, Hς(t) is obtained by adopting Eqs. (21)–(23a),
and then Eς(t)=Hς(t)Aξ. Once the fields of Eς(t) and Hς(t) are
determined, the time-dependent Poynting flow is given as

S
⇀

ς θt ; tð Þ≡ E
⇀

ς tð Þ × H
⇀

ς tð Þ: ð24Þ

Further, the time-averaged Poynting flow (TAPF) is obtained

b S
⇀

ς θtð Þ N ≡∑
t

S
⇀

ς θt ; tð ÞΔt = Tperiod: ð25Þ

Some typical results are shown in Figs. 4 and 5, respectively.
Firstly, we shall focus on the TAPF distribution of the transmitted
wave. Apparently, when parameters of ε1 and μ1 are real numbers,
direction relationships among incident, reflected and transmitted
wave obey the usual Snell's law, and the TAPF of the transmitted wave
concentrate in a single direction as shown in Figs. 4(a) and 5(a),
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respectively. Increasing value of either ε1" or μ1", effects of energy losses
on TAPF distribution of transmitted wave are presented in Figs. 4(b)–
(e) and 5(b)–(e) respectively. It is seen that the TAPF of transmitted
wave mainly distribute in a certain range of refraction angle. We note
that in some refraction experiments, the energy flow of transmitted
wavemay distribute in certain angle. Usually, the beamwidth is set by
diffraction at the exit of the incident channel [13,14]. Apparently,
here, we give another possible mechanism for the refraction power
distribution versus refraction angle when medium losses are not
negligible. Physically, this mechanism may be attributed to the fact
that parameters of E

⇀
and H

⇀
of HHPWs in the two media closely near

the interface alter out of step, which makes the propagation direction
of the transmitted wave to be a function of time, i.e., the transmitted
wave is composited by HHPWs having different propagation di-
rections. For simplicity, we term the angle corresponding to the peak
of the TAPF curve as the refraction angle θtpeak.

Then we present the properties of θtpeak. For oblique incident
TM wave, it is noted from Fig. 4(b), (c) that, increasing value of
ε1" only, θtpeak is smaller than the angle obtained from θt =

arcsin
Re k1ð Þ
Re k2ð Þ sin θi

� 

. Especially, when ε1" is large sufficiently, θtpeak

may become negative as shown in Fig. 4(c).We noted that the negative
refraction produced by heavily lossy wedge has been experimentally
demonstrated by Sanz et al. [20] and theoretically addressed by
Hansen using a somewhat imprecise approach very recently [21].
On the other hand, increasing value of μ1" only, θtpeak is contrarily

bigger than the angle obtained from θt = arcsin
Re k1ð Þ
Re k2ð Þ sin θi

� 

. In

addition, the amplitude of the line peak of Fig. 4(d), (e) is significantly
smaller then that of Fig. 4(b), (c), which indicates that the magnetic
losses may be more effective to decrease the TAPF of transmitted
wave than the dielectric losses. For obliquely incident TE HHPW,
it is seen from Fig. 5(b)–(e) that the dielectric losses lead θtpeak to
be bigger than angle derived from θt = arcsin
Re k1ð Þ
Re k2ð Þ sin θi

� 

; and the

magnetic losses lead θ t
peak to be smaller than that derived from

θt = arcsin
Re k1ð Þ
Re k2ð Þ sin θi

� 

, when μ1" is large sufficiently, θtpeak may

become negative as shown in Fig. 5(e). In addition, here, the dielectric
losses may be more effective to decrease the TAPF of transmitted wave
than the magnetic losses. Comparing Fig. 4 with Fig. 5, apparently, an
interesting conclusion may be obtained that, for a beam of obliquely
incident HHPW, the refraction angle of TE wave is generally different
from that of TMwave. Which have been noticed by L.G. Guimaraes and
E.E.S. Sampaio recently by a somewhat different theoretical way [12].

Finally, we shall address equivalence between our approach and
the previous way in which the generalized laws of reflection and
refraction are derived from the phase-matching condition and
complex valued boundary conditions. It is noted that there are several
traditional expressions for the laws of reflection and refraction, such
as the complex Snell's law [1], the Adler–Chu–Fano formulation [4]
and the Dupertuis–Proctor–Acklin formulation [7], etc. For the
coplanar cases, the three formulations are demonstrated to be
equivalent. Generally, the Adler–Chu–Fano formulation and the
Dupertuis–Proctor–Acklin formulation may predict that the reflected,
transmitted and incident waves are noncoplanar. However, the
noncoplanar cases can not be obtained by using the complex Snell's
law [7,9]. Here, we shall point out that, on the one hand, either
HHPWs or HIPWs may be used to compose the arbitrary electromag-
netic wave; on the other hand, either the real valued boundary
conditions or the phase-matching and complex valued boundary
conditions may satisfy the integral form of Maxwell's equations
associatedwith an interface. Therefore, in principle, our approachmay
be equivalent to the previous one. In addition, as mentioned above,
several similar phenomena may be predicted by the two ways.
However, mainly due to the complexity of the HIPWs, a strict
confirmation of the equivalence between the two approaches has not
been obtained yet. We have to leave it for a further study.

5. Conclusions

In summary, we have shown that, due to oblique propagation of
wave (corresponding to Gaussian surface or integrating loop), the

term(s) of
exp jk̃ ltgθ

� �
−1

jk̃ sinθ
must arise in the integral form of

Maxwell's equations, which impacts directly on phase-matching
condition and boundary conditions. It is proved that, at a lossy
interface, the real valued boundary conditions are valid universally for
both HHPWs and HIPWs. A new way is developed to derive laws of
reflection and refraction from real valued boundary conditions by
using HHPWs. The obtained results show that the usual Snell and
Fresnel laws are recovered only in the special case. Several novel
properties of transmitted wave induced by the energy losses are
predicted numerically. Generally, energy losses produce the TAPF of
transmitted wave mainly distribute in certain angle, which does not
seem to have been noticed before. In addition, the heavy losses may
produce negative refraction without negative index, and the refrac-
tion angle of TE wave is not identical to that of TM wave generally.

Our study provides a new angle of view to further understand
properties of electromagnetic fields in the lossy media. On the other
hand, several issues are required to be further study, such as the
equivalence between our approach and the previous one, the dynamical
process and physical meanings of the cases having |sin θt|N1 (which is
traditionally taken as the total reflection, however, leads the non-
physical transmitted angleθt), and so on. The predicted properties of
transmitted wave associated with energy losses may be applied to
experimentally test our theoretical analysis. Apparently, confirmations
about the expected properties should motivate further theoretical
progress.
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