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Synopsis 

The matrix method of statistical mechanics is used to calculate equilibria for the 
binding of small molecules to polymers. When there is only one kind of binding site the 
problem is simple; some examples are given for illustrative purposes. If, however, the 
binding sites are not all equivalent and the bound moleciiles interact or interfere with 
each other, the problem is no longer trivial, being formally analogous with calculation 
of the helix-coil transition equilibrium in a heterogeneous polypeptide. Particular 
difficulties arise when the sequence of binding sites is aperiodic; most naturally occurring 
materials fall in this class. The purpose of this paper is to point out that problems of 
this type are readily solved with good accuracy by use of random-number methods on a 
high-speed digital computer. The 
methods developed are applicable to such systems as the binding of actinomycin, Hg++, 
and acridine dyes to IIPI'A. 

One such calculation is presented for illustration. 

Introduction 

The binding of small molecules such as dyes, antibiotics, and transition 
metal ions to nucleic acids is a commonly observed phenomenon.' In many 
such cases there seems to be a preference for binding to one or another of the 
bases or base pairs. For example, it is well established that actinomycin 
is highly selective for dG,2-5 whereas the acridine dyes seem to bind more 
strongly to AT-rich than to  GC-rich DSA.637 Similarly, Hg++ binds more 
strongly to dAT than to guanine-containing nucleic acids.* If the binding 
sites are completely independent, this heterogeneity in their affinity for 
the small molecule presents no special problems of analysis, since i t  is 
described by two independent chemical equilibria with different equilibrium 
constants. On the other hand, if the bound molecules interfere with each 
other or interact in any way, the problem of calculating the adsorption equi- 
librium is greatly complicated. The model for this latter case is formally 
:uialogous to  that ericountered in calculating helix-coil transition curves 
for heterogeneous polymers, where the stability of the helical form depends 
on the mature of the residue present a t  each position. For such systems 
involving a heterogeneous lattice, analytical solutions are readily obtained 
if the arrangement of residues is pe r i~d ic .~  I n  the most interesting case, 
which includes naturally occurring nucleic acids, the sequence is not peri- 
odic, and the only information concerning i t  is statistical. This problem has 
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been the object of considerable attention,1°-16 but a fully satisfactory 
general solution, easily applicable to the kinds of binding equilibria com- 
monly encountered, is still lacking. 

Any thorough study of the adsorption of a small molecule by a polymer 
includes a study of the binding equilibrium. These binding curves contain 
considerable potential information concerning the nature and size of the 
binding site and the magnitude of the intrinsic binding constant, but i t  is 
difficult to extract this information without a theory for calculating the 
curves expected for various models of the binding site. This paper is 
concerned with the pragmatic aim of calculating accurate binding isotherms 
for the adsorption of small molecules by heterogeneous polymers. The 
method involves the use of random-number techniques rvith the expendi- 
ture of quite modest amounts of computation time on a high-speed 
digital computer. The curves calculated for a given model are accurate 
within statistical limits which are subject to rigorous analysis. Analytic 
solutions are given only when they can be written without questionable 
approximations. 

Description of the Model 

Consider a very long polymer (DNA) niolecule to which small molecules 
The chemical potential p of the monomer in can bind a t  specific sites. 

solution is given by 

p = N O  4- R T l n m  (1) 

where j i o  is the chemical potential a t  unit activity, and in is the concentra- 
tion of the small molecule free in solution. (Solutions are assumed to be 
ideal.) Let pa' be the chemical potential of the monomer when bound to  
a site of kind a but isolated from other bound monomers. (The index a 
is used to  distinguish the binding to AT pairs from binding to GC pairs, 
for example.) Thus the free energy change AG, accompanying the binding 
of a single monomer to a specific site on the polymer is 

AG, = pa' - /I 

( 2 )  - - pa' - po - R T  In na 

= AG," - R T  l n m  

where AG," is the standard free energy change for this process. 
a familiar thermodynamic relation, there results 

Utilizing 

K ,  = exp (-AG:/RTj (3) 

whereby we define K ,  to be the intrinsic binding constant for site a. 
The affinity of a given binding site for monomer may depend on the 

presence of other bound monomers in the vicinity. It will be assumed 
that the free energy of binding close to other monomers depends only on the 
distance away of the nearest neighbors on each side. Consider the process 
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of binding a nionomer a distance of n lattice sites away from another 
monomer on its Icft, n ith no neighbor ithin a finite distance on the right 
side. J.et AG'(n), the free energy change for this process, be cxpressed as 

AG(n) = AG: - R T  In m + AGo(n) (4) 

where the terms m hich depend on the presence of the neighbor have been 
included in AGo(n). (For simplicity i t  will be assumed that this term 
does not depend on a.) Let T ( n )  be defined by an equation analogous to  
eq. (3): 

T(n) = exp ( - A G o ( n ) / K T )  (*7 
The heterogeneous lattice, which for illustrative purposes may be 

thought of as a certain sequence of base pairs, can be represented by a 
sequence of indices a, specifying the nature of the lattice unit a t  each site j .  
If the lattice contains a total of N units, t h e n j  varies from 1 to A'. In  
addition, let the symbol 1 represent a lattice site to  which a monomer is 
bound, and 0 an empty site. Let a particular configuration of the system 
be defined as a specific sequence of zeroes and ones, written in register 
with the sequence of indices C Y ~ ,  by which the state of each residue in the 
lattice is specified. 

The probability P ,  that the system takes on configuration i is given by 
the basic equation 

where 
P ,  = exp { - G , / R T J / Q  

Q = c exp { - G z / R T J  

(6) 

(7 1 
2 

is the configurational partition function for the system, and G, is the free 
energy of forming configuration i from some reference state. The average 
( a )  of a quantity which has a value a, in configuration z. is then readily 
seen to be 

(S) 

A convenient reference state for calculating free energies is the polymer 
The term exp { - G,/RTJ can then be 

( a )  = c UP,  = c a, exp { - G , / R T J / Q  
I a 

to which no monomer is adsorbed. 
generated as a product of the form 

M 

exp { - G , / R T }  = exp { -G, /RT}  (9) 
3'1 

where G, is the free energy change when the j t h  monomer, out of a total of 
ill, is bound to  the polymer. Taking note of eqs. [ 2 ) - ( 5 ) ,  i t  is apparent 
that exp f - G , / R T J  can be generated by multiplying together factors 
K,m for each monomer bound alone with factors K,mr(n) for each mono- 
mer bound n lattice units away from its left-hand neighbor. These 
factors will be referred to as "statistical weighting factors" in what follows. 
The partition function Q is obtained by summing such products for all 
possible configurationsi. 
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Matrix Method for Some Simple Cases 
One of the common t,cchniqucs for solving Iiroblcms in  lattice statistics 

is the matrix method, :tpplicd, for cx:i,inpIc, to t<he helix-coil transition 
problem by Zimni and Hragg.I7 The method involves operations on a 
“statistical weight vector” by a matrix operator to  form the partition 
function. Suppose 6 units in the lattice must be considered in order to 
take account of the range of interactions in the system. A group of 6 
units can have up to 2’ possible states, since each unit can, in principle, be 
in one of the forms 0 and 1. These states will be referred to as the “joint 
configurations” of the lattice units k - 6 + 1 through k. The statistical 
weight vector ak has one component for each possible joint configuration. 
Each such component is a sum of the product of statistical weighting 
factors corresponding to all configurations of the lattice sites 1 through k 
which are consistent with the particular joint configuration. The vector 
ak+* is generated from a k  by use of the matrix operator M: 

ak+l+ = Mak+ (10) 

where the superscript dagger (t) indicates the transposed or column vector. 
The element A l , ,  of the matrix M is the appropriate statistical weighting 
factor when the ( k  + 1)th segment is added, thereby producing joint 
configuration i for the units k - 6 + 2 through k + 1 from joint configura- 
t i o n j  for the units k - 6 + 1 through k.  If the lattice contains N units, 
the partition function is the sum of the elements of aN. or 

where e is a unit vector. 
inspection. 
be approximated by 

Q = Amax 

when N is large, where A,,, is the largest eigenvalue of the matrix M. 
The average quantity of interest, the fraction T of lattice sites occupied by 
monomers is 

T = N-l b In Q / b  In m 
= b In A,,,/b In m 

The vector a, can usually be written down by 
For reasons discussed thoroughly by other authors,l7 Q may 

(12) N 

(13) 

This formalism will be clarified by the examples which follow. 
Consider first the simple case in which binding at  each site is independent 

of its neighbors, with a single intrinsic binding constant K.  Suppose that 
there are l /Bo base pairs per binding site, and that N is associated with 
the number of base pairs in the lattice. In  this case 6 is I, and the two 
joint configurations are 1 and 0. The initial vector al is (1, Km),  and the 
matrix M is 



BINDING ISOTHERMS 579 

The cigenvalucs of M are 0 and K m  + 1, so that 

Q = (A-m + 1)""u 

T = KmBo/(Km + 1) 

r / m  = K(Bo  - T )  

(15) 

(16) 

(17) 

13quation (13)  gives 

which can be rearranged to  

Equation (17) is the form appropriate to a Scatchardls plot of the binding 
isotherm, in which T/m is plotted against r,  with slope K and intercept Bo on 
the r axis. Values of equilibrium constants determined in this way will be 
referred to as apparent binding constants K,,, with a similar convention 
for Bap. It is clear that in this case K,, is identical with the intrinsic 
binding constant K ,  and that B,, is the same as Bo, the number of binding 
sites per base pair. 1Iore complicated cases will not show the same 
identity. 

Suppose now that there are two classes of binding sites with intrinsic 
binding constants K1 and Kt,  but that binding at  each site is still inde- 
pendent of neighboring sites. The niatrix M a  
associated with binding sites of class a is 

For simplicity, let Bo = 1.  

The vector al is either ( l ,Klm) or (l ,Knm), depending on whether the 
first lattice site is of kind 1 or 2 .  The partition function Q is 

N 
Q = e TI M a j  a! 

j=2  

Inspection reveals that the matrix operator Ma simply multiplies both 
components of a by (1 + K,m), and that Q is therefore independent of 
the order of the matrix multiplications in eq. (19). Letting N ,  be the 
number of units of type a, with N , / N  = D,, 

(20) Q = (1 + Klm)."l(l + K2m)"2 

From which there results 

r , / m  = Ka(Dm - ra> 

consistent with the independence of the binding sites. 
The simple cases treated so far are characterized by independent 

binding sites, expressed in the formalism described above by setting 
~ ( n )  = 1 for all values of n 2 1. If the binding sites are not independent, 
analytic results can be easily derived if there is only one kind of binding 
site. Consider the situation in which binding of a small molecule to a 
given base pair prevents binding of another monomer closer than n' base 
pairs from the first, leaving n' - 1 empty potential binding sites between 
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the two monomers. (The difference between this and the first case 
considered is that then there were Bu-l base pairs per binding site, and 
the mononicr was ussumcd to bind in  only one way to the binding site. 
In the present case, any base pair can serve as a binding site, thereby 
excluding binding at adjacent pairs.) As an example, let n’ = 2. Then 
~ ( n )  = 0 for n = 1, and ~ ( n )  = 1 for n 2 2. 6 is 2, and the permitted 
joint configurations are 00, 01, and 10. The initial vector az is (1, Km, Km), 
and the matrix operator M is 

M =  c K m  0 ::) Km ( W  

It may readily be verified that for arbitrary n’, the characteristic equation 
is 

(23) 

For this purpose it is 

(24) 

K m  = An’ - An’-1 

from which 1’ may be calculated by using eq. (13). 
convenient to use a parametric representation; eqs. (13) and (23) give 

r = (X - l)/(n’X - n’ + 1) 

Insertion of a suitable set of values of X(X > 1) into eqs. (23) and (24) 
yields 1’ as a function of K m  without the necessity for solving the nth 
order eq. (23). 

Computational Method for Heterogeneous Polymers 

In  the general case of monomer binding to a heterogeneous polymer with 
binding sites ail the partition function Q is given by 

N 

Q = e n  Majas (25) 
j=a+l  

Only in special circumstances, such as independent binding sites as dis- 
cussed above, can the matrix product in eq. (25) be evaluated in simple 
terms. The matrices Mej usually do not commute with each other, so the 
value of Q depends on the sequence in which the binding sites are arranged. 
Approximate methods developed by ourselves and others to deal with this 
kind of problem require substantial amounts of computation, and suffer 
from the additional disadvantage that rapid convergence to the correct 
solution is not necessarily assured. The central point of this communi- 
cation is to observe that with present-day coniputers, direct calculations of 
Q from eq. (25)  are easily made for most cases of interest. In the unlikely 
event that the sequence of binding sites (aj) is known, the computer can 
be given this information. Otherwise, the most appropriate model is 
usually a random sequence of binding sites. The machine can readily 
generate such a sequence of arbitrary length, containing close to preselected 
compositions of the various kinds of sites. Repeated multiplication of the 
vector ak by the matrix A!!= a total of N - 6 times, followed by summation 
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of the elements of 8 N ,  generates &. Differentiation of Q to obtain 1’ [eq. 
(13)] can be done numerically by calculating Q for two values of m which 
diff er by a small quantity am. Satisfactory statistics for binding isotherms 
of the kind reported here arid in a forthcoming paperIY were obtained with 
computation times varying from a few seconds up l o  about a minute (IBhl 
7094) for the complete binding isotherm. 

As a specific example, consider a problem of the kind encountered in the 
binding of actinomycin analogs to DNA. Suppose that the small molecule 
is able to insertz0 between two neighboring base pairs if one of the pairs 
is GC, but that there must be a t  least two base pairs between adjacent 
bound monomers. (The intercalation model of binding is taken purely 
for illustrative purposes and does not influence any of the general con- 
clusions which follow. Conversely, it is not possible to distinguish be- 
tween intercalation and external binding on the basis of the shape of 
binding isotherms.) The binding sites may be identified with planes 
between the base pairs, which means, in the language of the final example 
of the proceding section, that there must be a t  least one empty site be- 
tween adjacent monomers and n’ is therefore 2. Again, ~ ( n )  = 0 for 
n = 1, and ~ ( n )  = 1 for n 2 2. The computer, using a random number 
generator, can store a sequence of symbols representing AT and GC pairs. 
‘I here are two kinds of sites, specifically, the space between two AT pairs, 
which does not bind the monomer, and the spaces between all other nearest 
neighbor combinations, which bind with intrinsic binding constant K .  If 
the first two base pairs in the sequence are AT, then az is (1, 0, 0 ) ;  other- 
wise i t  is (1, Km, Km). For each successive lattice point the computer 
ascertains the nature of the site and then multiplies the vector a by one of 
the two matrices Ma. For a GC-type site, MI is as given by eq. ( 2 2 ) ,  and 
for a nonbonding site MZ is 

M, = k) (26) 

The large number of zeroes in Ma greatly facilitates the iterative procedure. 
1’ is determined by numerical differentiation as described above. N = 5000 
was found a convenient lattice size for most problems, a value that per- 
mits advance specification of the base composition of the random sequence 
within roughly 2%. Statistical fluctuations in calculated binding isotherms 
for the same base composition were around 2%, which is better than iso- 
therms can usually be measured experimentally. 

Results and Discussion 

Results are of interest primarily in connection with specific cases, for 
which our study of the binding of actinomycin and analogous compounds 
to DNAl9 may be taken as an example. This discussion will be restricted 
to a single case study, from which some general observations can be made 
concerning the meaning of K,, and B., determined from Scatchard plots. 
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Fig. 1. Binding isotherms for a model in which a small molecule intercalates between 
two base pairs when at least one of them is GC. In addition, there must be a t  least four 
base pairs between adjacent bound monomers ( r / K m  vs. T) where K is the intrinsic 
binding constant, r the ratio of bound mononiew to base pairs, and m the concentration of 
monomers free in the solution. The curves are for different base compositions: The 
fractional GC contents are (1) 1 .0;  (2) 0.505; (3) 0.257. The base sequence is assumed 
to be random. Curve 1 was calculated from eqs. (23) and (24), and curves 2 and 3 
from eq. ( 2 5 )  by the random-number method described in the text. 

Figure 1 shows binding isotherms calculated for an intercalation model in 
which a small molecule can insert between any nearest neighbor pair of 
which a t  least one member is GC, but there must be a t  least four base pairs 
between adjacent bound monomers (n’ = 4). Curves are shown for 
various values of GC content. 

The first general observation which can be made is that the binding 
isotherms are not linear, even when there is only a single class of binding 
sites. The small slope of the isotherm at  large values of r ,  impIying a 
smaller apparent binding constant, results from the large reduction in the 
number of ways of achieving a given degree of binding as saturation is 
approached. 

Secondly, the slope of the first part of the isotherm, which is nearly 
linear, is not closely related to  the intrinsic binding constant K.  (Curves 
are normallized by plotting r/Km; if K were equal to K,,, the slope of this 
plot would be 1.) For the present case, K,, (the slope of the isotherm) 
exceeds K by a factor of about 6. 

If the initial nearly linear region of the isotherm is extrapolated through 
the r axis, the intercept is B,,. For the pure GC polymer B,, is about 0.16, 
whereas the polymer can actually bind up to 1 monomer per four base 
pairs. It is clear that B,, 
has no firm physical significance. 

On the other hand, the intercept on the r/m axis of a binding isotherm is 
well defined. In  the limit as r approaches zero the binding can be de- 
scribed by a simple equilibrium since bound monomers no longer interfere 
with each other. Equation (17) is therefore valid in this limit, and one 
can write 

Hence in this case r a t  saturation is 0.25. 

limr/m r-0 = KRo (27) 
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where K is the intrinsic binding constant and Bo is the riumbcr of potential 
binding siks per base pair. In the present example, Bo is thc fraction of' 
nearest neighbor pairs which contain at  least one GC, or 

BO = 2BGC - p2GC 

where /3cc is the fractional GC content. If K is truly independent of GC 
content, eqs. ( 2 7 )  and ( 2 8 )  give (again for the specific example at hand) 

( 2 8 )  

1;s r/m = K ( 2 P G C  - P G C )  (2% 

A plot of the limiting value of r/m, determined for a variety of DNA's, 
versus a specific expression for Bo in terms of GC content could be of 
general utility in testing different models for the nature of the binding site. 
If there are several kinds of binding sites a, eq. ( 2 7 )  is modified to read 

A relation like eq. (30) is discussed in connection with independent binding 
sites by Edsal and Wyman.21 

Recently, in a paper which appeared after the work reported here had 
been completed, Vedenov et used a method related to that described 
here to perform calculations on an analogous problem, that of the helix-coil 
transition in heterogeneous polymers. 

This research was supported by grant GB 4083 from the National Science Founda- 
tion. 
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