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Abstract
We present the theory of thermal equivalence in the framework of the Peyrard–Bishop model
and some of its anharmonic variants. The thermal equivalence gives rise to a melting index τ

which maps closely the experimental DNA melting temperatures for short DNA sequences. We
show that the efficient calculation of the melting index can be used to analyse the parameters of
the Peyrard–Bishop model and propose an improved set of Morse potential parameters. With
this new set we are able to calculate some of the experimental melting temperatures to ±1.2 ◦C.
We review some of the concepts of sequencing probe design and show how to use the melting
index to explore the possibilities of gene coverage by tuning the model parameters.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The cost of identifying and determining genetic sequences
is rapidly coming down due to a wide range of intense
technological efforts [1, 2]. Many of the most widely used
methods for determining a DNA sequence use an approach
based on sequencing by hybridization (SBH) [3, 4]. This
family of techniques exploit the complementary nature of DNA
to indirectly read a sequence. The best known implementation
of this technology is in DNA microarrays where a library of
selected short oligonucleotide probes of specifically designed
sequence composition is immobilized on a substrate [5].
In some other technologies, such as the bead arrays from
Illumina [6], the position is not known but can be determined.
The probes are then brought into contact with a set of target
unknown sequences which has usually been fragmented and
labelled with a fluorescent dye. Successful hybridization of the
probes is then detected via fluorescence or some other signal.
As the identity and sequence of the probe in each position is
known, successful hybridization at a specific position indicates
the presence of the DNA sequence complementary to the probe
in the sample.

A key piece of information for the design of a library
of probes is the stability of the double helix formed when
each probe hybridizes to its complementary sequence [7].

The stability of this interaction will determine both whether
a signal is observed and its intensity. The most common
measure of DNA duplex stability is its melting temperature, the
temperature at which half of a sample of duplex DNA will have
de-hybridized. The melting temperature is strongly dependent
on the DNA sequence as well as being affected by common
solution conditions such as salt and DNA concentration.
Identifying probes that will melt within a narrow range of
temperatures is often essential to avoid both false positives
and false negatives in the SBH experiment. A false negative,
i.e., the apparent non-occurrence of a target which is in fact
present, may occur if the experimental conditions are such
that the temperature is higher than the melting temperature
of a correct probe–target duplex. On the other hand, false
positives may occur if the experimental conditions lead to a
non-complementary target hybridizing to a probe, e.g. if the
experiment is carried out below the melting temperature for
the formation of the correct duplex [8].

Currently, where probe design is influenced by melting
temperature analysis, researchers rely on empirical regression
models based on Gibbs free energies [9–12] for the prediction
of melting temperatures of unknown DNA sequences.
Alternative melting temperature analysis are available through
the use of the Poland–Scheraga method [13]. These models
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adjust a large number of parameters from experimental datasets
and are accurate for most applications. However, for these
empirical models the minimized parameters are not linked
to any specific aspect of the DNA structure or energetics.
This makes it difficult to adapt the parameters to experimental
conditions for which an empirical dataset has not yet been fully
determined. For this to be possible, one needs models where
the parameters representing the molecular interactions can be
changed at an intuitive level. In addition, to be useful from
a bioinformatics point of view, these models need to allow the
fast computation of melting temperatures for thousands or even
millions of probes.

One statistical physics model that in principle allows
such intuitive modelling is the Peyrard–Bishop model [14].
This model describes, in a simplified way, the hydrogen
bond and the stacking interaction in double stranded DNA
and was used successfully in numerous applications such as
transcription bubble analysis [15, 16], energy localization [17]
or to calculate solitonic speed [18]. Recently, we showed that
this model can also be used for fast calculation of melting
temperatures via the concept of thermal equivalence [19]. The
thermal equivalence may even be used in place of the melting
temperature. As a result, by changing the conditions of the
molecular interaction, say by reducing the strength of the
hydrogen bonds between paired bases, it is possible to gain
an insight into the behaviour of melting temperatures under
untested experimental conditions.

In this paper, we will show how to use the thermal equiv-
alence index for probe design under hybridization conditions
for which there are no available experimental data. For this
purpose we use as hypothetical experimental environments
changed salt concentrations and solvent conditions [20] and
show how this affects the probe coverage for a given gene. This
paper is organized as follows: in section 2 we will briefly re-
view the 1D Peyrard–Bishop model and some of its variants,
where we describe some of our recent contributions on solvent
interactions [20]. In section 3 we describe the partition func-
tion expansion for non-homogeneous DNA proposed by Zhang
et al [21] which is essential to the understanding of the ther-
mal equivalence outlined in section 4. In section 5 we discuss
the comparison of the thermal equivalence with experimental
melting temperatures and how to optimize the parameters of
the Peyrard–Bishop model. Also, in this section we present a
set of improved Morse potentials. The methods for probe de-
sign are discussed in section 6 and we draw our conclusions in
section 7.

2. The Peyrard–Bishop model

For Hamiltonians of the type proposed by Peyrard and
Bishop [14] to model the denaturation of a homogeneous DNA
double helix, the configurational part is written generically as,

U = w(yi , yi−1) + V (yi), (1)

where yi is the displacement of the i th base pair from
equilibrium, w is the stacking interaction of the nearest
neighbours i and i + 1, and V the interaction of the i th
base pair [14]. Therefore, this model mixes nearest-neighbour

interactions with base-pair interactions, in contrast for instance
to Gibbs free energy models which only consider nearest-
neighbour free energies [9, 10].

The interaction of the i th base pair is written as a Morse
potential of the form

VMorse(yi) = D(e−ayi − 1)2, (2)

and the nearest-neighbour stacking interaction as a harmonic
oscillator

wharm(yi , yi−1) = k

2
(yi − yi−1)

2. (3)

The advantage of this formalism, which we call the harmonic-
Morse (HM) model, is that it describes both the base-pair and
stacking interaction with just one variable y, and as such can be
calculated easily within the formalism of the transfer integral
method (for a detailed discussion see also [21] and [22]).

2.1. Sharp transitions

Unfortunately, in the form of equation (3) this model does
not give rise to a sharp first-order-like denaturation which are
observed experimentally. This issue was addressed later by
Dauxois, Peyrard and Bishop [23, 24] by the addition of an
anharmonic term to the stacking interaction

wan.(yi , yi−1) = [1 + ρe−α(yi +yi−1)]wharm(yi , yi−1), (4)

in this paper we call this important model the anharmonic-
Morse model (AM).

Similar anharmonic formulations have been put forth by
Joyeux and Buyukdagli [25] with the introduction of a finite
stacking potential

wfin.(yi , yi−1) = �H

2
[1−e−b(yi −yi−1)

2 ]+ Kb

2
(yi−yi−1)

2, (5)

where �H is a finite stacking energy and the harmonic
potential is used with a much smaller elastic constant Kb (about
three orders of magnitude smaller than k for the HM model).
Also, Saccomandi and Sgura [26] proposed the addition of a
nonlinear term to the stacking potential of polynomial form

wpol.(yi , yi−1) = wharm(yi , yi−1) + knl

4
(yi − yi−1)

4, (6)

to obtain the similar effect of sharpened transitions, where they
introduced the additional parameter knl.

The addition of anharmonic terms to the nearest-
neighbour interaction potential w is not the only form to obtain
a sharp DNA denaturation. We showed that the addition of a
solvent potential to the base-pair, interaction

V (yi) = VMorse(yi) − fs D[tanh(yi/λs) + 1], (7)

also causes such a sharp denaturation [20]. The second term
is a solvent interaction potential, adapted from Drukker et al
[27], which simulates the formation of hydrogen bonds with
the solvent once the base-pair hydrogen bonds are displaced
by more than λs from their equilibrium values. For yn > λs

the base pairs are pulled away from each other until the bond
with the solvent is established. Once the bases are bonded to
the freely moving solvent molecule they are no longer pushed
to any particular direction, a situation which is represented by
the potential plateau for yn > λs (see also figure 1 in [20]).
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2.2. Divergence of the partition function

A numerical divergence problem with the partition function
was analysed by Zhang et al [21]. Usually, this problem
is simply avoided by introducing a finite integration interval
for the partition function integral [21], which in practice is
equivalent to placing a potential barrier for sufficiently large
y. Another way to avoid this divergence was proposed by
Theodorakopoulos et al [28] who added a small stress term to
the base-pair interaction potential. The finite stacking potential
of equation (5) proposed by Joyeux and Buyukdagli [25] has a
similar effect but was added to the nearest-neighbour potential.
Similarly, we proposed an alternative form for the harmonic
potential [19, 20], rewriting equation (3)

wharm(yi , yi−1) = k

2
(y2

i − 2yi yi−1 cos θ + y2
i−1), (8)

where θ is the twist angle between neighbouring base pairs.
This is motivated by 3D helicoidal models such as proposed
by Barbi et al [29], as well as torsional potentials used in
molecular dynamics [27]. This formulation is particularly
convenient as it can be readily introduced in existing models,
such as the anharmonic-Morse model [23, 24], without
significantly modifying existing analytical calculations. For
an angle of θ = 0 the usual harmonic stacking interaction
term [14] is obtained and would represent the situation of
perfectly parallel neighbouring bonds. Evidently, the base
pairs can only denaturate when the double helix is largely
unwound and therefore we use a small, but non-zero, fixed
angle of θ = 0.01 rad for the calculations presented in this
work.

3. Partition function for inhomogeneous DNA

To apply the Peyrard–Bishop model to realistic DNA
sequences, i.e. DNA containing actual genomic information,
Zhang et al [21] proposed an expansion into orthonormal
functions for the integration of the partition function Z . In this
section we will describe parts of the method which are relevant
for the concept of thermal equivalence. First however, we will
introduce a few key aspects of the partition function calculation
for homogeneous sequences which will aid the understanding
of the calculation for non-homogeneous DNA.

3.1. Homogeneous DNA sequences

The partition function for homogeneous sequences can be
written as [14, 21]

Z y =
∫

dy1

∫
dy2 · · ·

∫
dyN K (y1, y2)K (y2, y3)

× · · · K (yN−1, yN )K (yN , y1), (9)

with the kernel function defined as

K (yi , yi+1) = exp

(
− 1

kT
{w(yi , yi+1)

+ 1
2 [V (yi) + V (yi+1)]}

)
, (10)

where k is the Boltzmann constant and T the thermodynamic
temperature. The partition function can be solved by
introducing the integral equation

∫
K (x, y)φ(y) dy = λφ(x), (11)

in which case it reduces to

Z =
∞∑

n=1

λN
n . (12)

For very long sequences the partition function can be further
simplified, leading to the remarkable result

Z ≈ λN
1 , (13)

since all eigenvalues are less than unity and λ1 is the largest
eigenvalue.

To calculate the eigenvalues λ and eigenfunctions φ we
discretize the integration in equation (11) for M points over an
interval [yi , y f ],

∫ y f

yi

K (x, y)φ(y) dy =
M∑

k=1

rk K (x, yk)φ(yk) = λφ(x),

(14)
where rk are integration weights given by the specific
quadrature chosen for this integration. We write equation (14)
for each point xl , over the same interval and number of points
as for yk , which results in a matrix equation,

KR	 = 
	, (15)

with the M × M matrix

K =
⎛
⎜⎝

K (x1, y1) . . . K (x1, yM )
...

. . .
...

K (xM , y1) . . . K (xM , yM)

⎞
⎟⎠ , (16)

and

	 =
⎛
⎜⎝

φ(x1)
...

φ(xM )

⎞
⎟⎠ , 
 =

⎛
⎜⎝

λ1 . . . 0
...

. . .
...

0 . . . λM

⎞
⎟⎠ . (17)

The integration quadrature is represented by the diagonal
matrix

R =
⎛
⎜⎝

r1 . . . 0
...

. . .
...

0 . . . rM

⎞
⎟⎠ . (18)

The matrix product KR is not symmetric but can be
symmetrized [30],

(R1/2KR−1/2)D = 
D, (19)

with D = R1/2	. The new matrix product R1/2KR−1/2 is
symmetric and results in real eigenvalues and eigenfunctions,
which can be evaluated by standard numerical eigenvalue
techniques [30]. In this work we use a Gauss–Legendre
quadrature with 400 points over an interval [−0.1, 20.0] nm.
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3.2. Inhomogeneous DNA

For non-homogeneous sequences the model parameter may
change from site to site, therefore an additional index repre-
senting the nearest neighbours needs to be added to the kernel
function K in the partition function of equation (9) [21]

Z y =
∫

dy1

∫
dy2 · · ·

∫
dyN K (1,2)(y1, y2)K (2,3)(y2, y3)

× · · · K (N−1),N (yN−1, yN )K (N,1)(yN , y1), (20)

the kernel function K from equation (10) now takes the form

K (i,i+1)(yi , yi+1) = exp

(
− 1

kT
{w(i,i+1)(yi , yi+1)

+ 1
2 [V (i)(yi) + V (i+1)(yi+1)]}

)
, (21)

where w and V may have different model parameters from site
to site.

Zhang et al [21] proposed the use of a site-independent
set of orthonormal functions φ to expand the function
K (i,i+1)(yi , yi+1),

K (i,i+1)(x, y) =
P∑

n,m=1

C (i,i+1)
nm φn(x)φm(y), (22)

which is truncated to P terms and the coefficients C (i,i+1)
nm are

calculated from

C (i,i+1)
nm =

∫ ∫
K (i,i+1)(x, y)φn(x)φm(y) dx dy. (23)

Note that for homogeneous DNA sequences the matrix Cnm

reduces to a diagonal matrix with eigenvalues Cnn = λn as in
equation (11). The partition function equation (20) is written
as successive multiplications of P × P square matrices,

Z = Tr (C(1,2)C(2,3) · · · C(N,1)), (24)

where each of the matrices C(i,i+1) = [C (i,i+1)
nm ] represents

the interaction between neighbouring base pairs i and i +
1, and Tr is the matrix trace. The last matrix, C(N,1),
represents the boundary condition which links the first and
the last base pair. The boundary conditions can either be
periodic, where the DNA sequence is considered as a ring, or
open ended where the stacking interaction is neglected, i.e.,
w(N,1) = 0. From a numerical point of view, this partition
function is advantageous. After selecting the parameters it
is sufficient to calculate the matrices C(a,b) for each type of
nearest neighbours (a, b) just once, then for any arbitrary DNA
sequence the calculation of equation (24) is a simple matter
of rearranging the matrix multiplication. As a consequence,
for periodic boundary conditions, a circular permutation of
the base pairs leaves the partition function unchanged. The
numerical efficiency of the matrix multiplication is defined
by the dimension of the matrices C. In this work, matrices
of size P = 30 are sufficiently accurate for our purposes.
For longer sequences the matrix multiplication may become
numerically intensive. However, in this case one may still
achieve sufficient numerical accuracy with smaller matrices
since the first few matrix elements may dominate the final value

of the partition function as shown for homogeneous sequences
(see section 3.1).

The central problem of this method is to find a suitable set
of orthonormal functions φ. Zhang et al [21] tested several sets
and concluded that the one that works best is a set of functions
obtained for a homogeneous DNA sequence. For instance, we
may choose a DNA duplex formed only of CG base pairs such
that the matrix C(CG,CG) is simply

C(CG,CG) = 
(CG,CG) (25)

where 
(CG,CG) is calculated from equation (19). Using this
set of functions, the non-homogeneous matrices C(AT,AT) and
C(CG,AT) are then readily calculated from equation (23).

4. Thermal equivalence

The Hamiltonian in equation (1) contains all terms of the
molecular interaction for a particular model and the partition
function from equation (24) contains all information regarding
the composition of the DNA sequence through the ordering
of the matrix multiplication. Therefore, the Hamiltonian and
the order of the matrix multiplication completely define the
outcome of any subsequent calculation such as the average
base-pair displacement 〈y〉. The main idea of the thermal
equivalence concept is to calculate an intermediate physical
quantity which would allow mapping it to measured melting
temperatures. This physical quantity could then act as an
melting index which to be effective should not be dependent,
or at least not strongly dependent, on the temperature for which
the calculation is carried out.

4.1. Rewriting the partition function

For the remaining part of this paper we assume that the
expansion of the partition function uses as a basis set a
homogeneous CG-sequence, equation (25). Therefore, the
matrices in the partition function of equation (24) are diagonal
if they represent CG–CG nearest neighbours, and non-diagonal
otherwise. We can now define a non-diagonal matrix �(a,b)

such that

C(a,b) = 
 + �(a,b), 
 = C(CG,CG) (26)

where �(a,b) represents the difference of the interaction
between neighbours of type (a, b) and neighbours of type (CG,
CG). The partition function is then rewritten as,

Z = Tr [(
 + �(1,2))(
 + �(2,3)) . . . (
 + �(N,1))]. (27)

Carrying out the matrix multiplication and using common
properties of the trace we obtain

Z =
N∑

ω=0

Zω(
) =
N∑

ω=0

Tr[M(
ω)], (28)

where M(
ω) are all terms containing ω multiplications of
the matrix 
. Unfortunately, factorizing each term in 


analytically is not possible due the non-commutativity of
the matrix multiplication. Lower orders of 
 are obtained

4
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Figure 1. Partition function Zω as a function of the order ω of the
diagonal matrix 
 for several short sequences with similar
CG-content. The continuous line is the Gaussian interpolation F(ω).

depending on the amount of non-null � matrices. Therefore
the weight of each order of 
ω represents a measure of
sequence composition as well as the relative importance of the
base-pair and the stacking interaction.

To evaluate all terms as an order of 
ω, we track
numerically the number of matrices 
 for each term in the
matrix multiplication of equation (27). In figure 1 we show
the contribution of each order 
ω to the partition function.
We notice a distinctive Gaussian shape for Zω(
) and the
curves are Gaussian interpolation F(ω) through the calculated
values Zω(
). The Gaussian or normal distribution is indeed
characteristic of the algebraic binomial expansion, and in
the limit of long sequences the Gaussian regression F(ω)

is Zω(
) itself, i.e. limN→∞ Zω(
) = F(ω). Evidently,
the partition function has a strong temperature dependence,
and using it to compare different sequences would not be
practical. However, unlike the partition function, the maxima
ωmax of the interpolated Gaussian function F(ω) has no such
strong temperature dependence, and its change with sequence
composition is well behaved as shown in figure 2.

One should note that for very long sequences calculating
the maximal order of 
 by numerically tracking the matrix
multiplication becomes impractical. However, it is possible
to speed up the calculation by reducing the dimension of the
matrices for equation (28) while giving up some numerical
accuracy. For the extreme case of keeping only the first element
of the matrices it is even possible to obtain an analytical result
for the partition function as we will show in section 4.2.

4.2. Approximate thermal equivalence

If we use only the first elements of the matrices in
equation (27), the partition function in equation (28) simplifies
to

Z =
∏

a,b=CG,AT

(λ1 + δa,b)
Na,b , (29)

where δa,b = [�(a,b)]1,1, and Na,b is the number of
nearest neighbours of type (a, b). For homogeneous stacking

Figure 2. Maximal ordering parameter ωmax versus temperature.
Several example sequences of length 16 bp were considered.

parameters we can use δCG,AT = δAT,CG and obtain

Z = λ
NCG,CG

1 (λ1 + δAT,AT)NAT,AT

× (λ1 + δCG,AT)NAT,CG+NAT,CG . (30)

Using the binomial expansion of (p + q)N and the property
that the maximum of the binomial distribution

(
N

n

)
pnq N−n, (31)

is given by

nmax ≈ N

1 + q/p
, (32)

we can write an approximate thermal equivalence

ωmax ≈ NCG,CG + NAT,AT

1 + δAT,AT/λ1
+ NCG,AT + NAT,CG

1 + δCG,AT/λ1
.

(33)

If the parameters of the stacking interactions (equations (4),
(5) and (8)) for different nearest neighbours of type a, b are
known, i.e., for non-homogeneous stacking interactions, the
approximate thermal equivalence can be generalized to

ωmax ≈
∑
a,b

Na,b

1 + δa,b/λ1
=

∑
a,b

λ1 Na,b

Ca,b
1,1

. (34)

We tested this approximation numerically varying the
sequence lengths and verified that the difference between the
approximate and exact ωmax (calculated from the single matrix
element partition function of equation (29)) is less than 1%
for sequences longer than 9 bp. This difference drops to less
than 0.2% for sequences longer than 60 bp for any amount of
CG-content. Therefore, for the sequence lengths considered in
this work the approximate ωmax from equation (33) yields the
same results as calculating the partition function with matrices
of size P = 1 in equations (28) or (29). However, they do not
become more accurate for longer sequences when compared
to calculations with larger matrix dimension (P � 2) since
important off-diagonal elements are absent.

5
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Figure 3. Experimental melting temperatures Tm as a function of the melting index τ . Experimental data are from [12]. Salt concentrations
are [Na+] are (a) 0.069 mol l−1 and (b) 1.020 mol l−1 [12]. Straight lines are linear regressions through the data points for each group of same
size, except for the two data points of size 11 bp, and with average temperature deviation 〈�T 〉 of (a) 2.2, 1.2, 1.7, 0.9, 1.0 ◦C and (b) 1.7, 1.1,
1.4, 0.9, 1.1 ◦C, for increasing sequence length. Values in parenthesis are the linear correlation coefficients R2. Melting indexes were
calculated with the AM4 model (table 1).

Table 1. Summary of the model parameters studied in this paper for the harmonic-Morse model (HM), the anharmonic-Morse model (AM),
the harmonic-Morse-solvent model (HMS) and the Finite Stacking model (FS). DAT and DCG are given in meV. Except for the FS model we
used θ = 0.01 rad throughout. χ2 and 〈�T 〉 are the merit function and average temperature deviation defined in section 5.3. The values in
parenthesis are χ2 and 〈�T 〉 calculated for the approximate thermal equivalence of equation (33).

Model (Eqs) DAT DCG DCG/DAT Remaining parameters χ2 (K2) 〈�T 〉 (K)

Harmonic models with optimized Morse potentials

HM ((2) + (8)) 39 80 2.05 λAT = 0.0333 nm
λCG = 0.0125 nm
k = 2.5 eV nm−2

1062 (1429) 1.18 (1.38)

HMS1 ((7) + (8)) 45 98 2.18 As in HM and
λs = 0.1 nm fs = 0.1

1057 (1374) 1.17 (1.36)

HMS2 ((7) + (8)) 39 80 2.05 As in HM and λs = 1 nm
fs = 0.1

1062 (1482) 1.18 (1.41)

HMS3 ((7) + (8)) 27.7 74.5 2.69 As in HMS1
λAT = 0.0666 nm
λCG = 0.0250 nm

— —

Anharmonic models

AM1 ((2) + (4)) 38 42 1.105 As in [21] figure 10 50 236 9.0
AM2 ((2) + (4)) 50 75 1.5 As in [31] 1938 (1117) 1.6 (1.21)
AM3 ((2) + (4)) 50 80 1.6 As in [19] 1445 1.4

Anharmonic models with optimized Morse potentials

AM4 ((2) + (4)) 39 77 1.97 As in [19] 1066 (1097) 1.18 (1.20)
FS ((2) + (5)) 9.7 48 4.94 As in [25] 1058 (2111) 1.18 (1.74)

5. Comparison with experimental melting
temperatures

In this section we describe the comparison with experimental
melting temperatures. A summary of the various models and
parameters which will be discussed in the following sections
are shown in table 1.

5.1. Mapping the equivalence index to Tm

Owczarzy et al [12] reported on a carefully measured
set of melting temperatures for sequence lengths between
10 and 30 bp and various salt concentrations. Figure 3

shows these experimental melting temperatures for two salt
concentrations [12] ordered as a function of the calculated
ω

1/2
max = τ for each DNA sequence. It is immediately clear from

figure 3 that the square root of ωmax represents a convenient
quantity for comparing DNA sequences, i.e., sequences with
close ω

1/2
max should have similar melting temperatures. Based

on this observation we call ωmax the thermal equivalence
and introduce the melting index τ = ω

1/2
max. The data

points show a clear linear dependence with τ , and linear
regressions through each group of same sequence size provide
a linear fit with standard deviation between 0.9 and 2.2 ◦C.
The linear correlation coefficient varies from R2 = 0.94
to 0.98 representing an excellent fit to a straight line. The

6
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Figure 4. Experimental melting temperatures Tm as a function of the melting index τ for very short DNA sequences. Experimental data are
from (a) SantaLucia [32] and (b) Wu et al [33]. Straight lines are linear regressions through the complete set of data points and linear
correlation coefficients R2 are shown on the graph. Melting indexes were calculated with the AM4 model (table 1).

results presented in figure 3 are for the two extremes of salt
concentration reported in [12]. Similar results are obtained for
the remaining salt concentrations reported by Owczarzy et al
[12] (data not shown).

For short sequences of 10 bp the fit is less optimal with
the poorest linear correlation coefficient and largest average
temperature difference of up to 2.2 ◦C, as shown in figure 3
(see also figure caption). This is also observed for even shorter
sequences from other sources [32, 33]. In figure 4 we show
the melting index τ for very short sequences mapped against
the experimental melting temperatures from SantaLucia [32]
and Wu et al [33]. Unlike the data for longer sequences,
we have not separated the melting temperatures into groups of
same length. Instead, we performed the linear regression for
the whole set of melting temperatures for which we obtained
linear regression coefficients between R2 = 0.82 and 0.90.
One likely source for the poorer correlation coefficient for
short sequences may be the end effects such as fraying at the
open ends of the DNA duplex which are not yet considered by
Peyrard–Bishop models.

5.2. Calculating the melting temperature from the
melting index

In the previous section we showed that for the experimental
melting temperatures measured by Owczarzy et al [12] each
group of sequences of the same length N could be fitted to a
straight line as a function of the melting index τ (figure 3).
Once we know the linear coefficients we may predict the
melting temperature Tp for an unknown sequence with a
calculated melting index τ ,

Tp = a0(N, [Na+]) + a1(N, [Na+])τ, (35)

where a0,1 are the linear regression coefficients calculated
as function of the sequence length N and salt concentration
[Na+]. Fortunately, for the melting temperatures reported by
Owczarzy et al [12] we found that the linear coefficients a0,1

are also linear functions of N1/2

ak(N, [Na+]) = b0,k([Na+]) + b1,k([Na+])N1/2, (36)

which allows us to calculate the melting temperature Tp

for sequences with lengths different from those of the
experimental dataset. To calculate the melting temperatures
for unknown salt concentrations one may also calculate the
coefficients b j,k as linear regressions as a function of the
logarithm of the salt concentration

b j,k([Na+]) = c0, j,k + c1, j,k log[Na+]. (37)

One of the key aspects of using the melting index τ

as a predictor for melting temperatures is that the DNA
sequence melts over a very narrow range of temperatures,
i.e. that its melting can be described as a two-state helix-coil
denaturation. This is generally true for the short sequences
used in this work [12, 32, 33] but not for long sequences. Also,
for long sequences calculating the melting index τ becomes
numerically intensive as discussed in section 4.2. Therefore,
the method for calculating melting temperatures described in
this work is generally restricted to short sequences.

5.3. Improving the model parameters

Despite the popularity of the Peyrard–Bishop model, only few
attempts were made to improve on the model parameters.
Campa and Giansanti [31] carried out complete partition
function calculation to investigate the parameters for the AM
model by comparing them with experimental melting profiles.
To date, these parameters by Campa and Giansanti [31]
are the most widely used, including for applications where
the precise knowledge of these parameters is of crucial
importance [34–38]. Here we describe the optimization
of these parameter by comparing the predicted melting
temperatures them to large sets of measured DNA melting
data [12].

The use of the melting index τ allows temperatures
to be calculated several orders of magnitude faster than a
complete temperature calculation with Peyrard–Bishop-type
models [21]. Therefore, we are now in position to address
the question of optimizing the model parameters to provide a

7
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better fit with large sets of experimental data. First, we define
the merit functions

χ2 =
∑

(Tp − Tm)2, 〈�T 〉 = N−1
∑

|Tp − Tm| (38)

where Tm are the experimental melting temperatures and Tp

the predicted temperatures from equations (35)–(37). We then
minimize χ2 as a function of the two Morse potentials DCG and
DAT. In table 1 we summarize the optimized Morse potentials
for the models discussed in this paper. Typically we are able to
reduce χ2 from 1445 K2 to less than 1070 K2 and 〈�T 〉 from
1.4 to 1.18 ◦C. However, for the various models considered
there is yet no clear indication which one would be the best to
use. This may come from the fact that all models which try to
improve over the simpler HM model aim at producing sharp
melting transitions. These sharp first-order-like transitions
occur mainly for longer sequences, while the experimental
data [12, 32, 33] are generally for very short sequences of 30 bp
or less. In figure 5 we show a map of the merit function χ2 as a
function of the two Morse potential DCG and DAT for the AM
model. Within a χ2 � 1080 K2 there is a region corresponding
to a ratio DCG/DAT ≈ 2. Along this region any combination
of Morse potentials with this ratio yield an acceptably low χ2.
This finding may be of importance to reconcile the order of
magnitude of the Morse potentials to those used molecular
dynamics [27].

At present, optimizing only the Morse potentials DCG and
DAT, which alone takes about 5 h of computation on a standard
2 GHz processor, does not allow us to favour one specific
Peyrard–Bishop variant over the other. This would at least
require the optimization of the complete set of parameters for
any given model. However this is no simple undertaking, even
for the simplest HM model we would need to optimize 14
parameters requiring considerable computational effort even
within the simplified scheme of the thermal equivalence. We
are currently working on this important problem and hope to
report on its progress in the near future.

Table 1 also shows the values for the merit function
χ2 and 〈�T 〉 calculated for the approximate equivalence
index of equation (33). For the AM4 parameters the
average temperature deviation calculated with the approximate
thermal equivalence is practically as good as for the complete
calculation. The accuracy of the approximate melting index
is mainly determined by how dominant the first eigenvalue
of the matrix equation (23) is. Generally, we found that the
approximate melting index is closest to the exact melting index
for the anharmonic models (AM).

6. Probe design

Probe library design is the selection of probes to be used
in sequencing by hybridization (SBH) techniques [39]. The
design depends on numerous factors such as the amount of
probes that can be placed onto a microarray as well as on its
intended application. Most of these applications depend on
previously acquired knowledge of the target sequence [40],
especially if it is to be applied to single nucleotide
polymorphism (SNAP) genotyping [41–43] and resequencing
or tracking the evolution of a target sequence [44]. Therefore,

Figure 5. Map of the merit function χ2 as a function of the Morse
potentials DCG and DAT. The black circle shows the best value for
χ2, corresponding to AM4, while the white box shows the position
of the Morse parameters AM2 which are currently used in the
literature. The dark blue region shows merit function values higher
than 2000 K2 which, at some points, reach values up to 1011 K2.

the pre-existing target sequences need to be analysed, e.g. for
their genetic variability. A set of probes of fixed length,
simply called ‘the library,’ is generated from this combinatorial
analysis which then needs to be further refined especially for
melting temperatures. Ideally, all the probes in a library should
hybridize within a narrow range of temperatures [7]. If some
of the probes can only hybridize with the target at temperatures
above the library average, presumably the temperature for
which the experiment is carried out, these probes may never
detect the target resulting in false negatives. Conversely, if the
probe hybridizes at lower temperatures, there is an increased
probability of cross-hybridization, i.e., the hybridization to
targets that are not entirely complementary to the probe. In this
case the probe ‘detects’ a target whose sequence composition
does not really correspond to that of the probe and this results
in false positives [8].

Restrictions of the microarray fabrication process usually
require all probes to be of the same length. The length of
the probe set can be varied for the library as a whole but not
generally from probe to probe. Therefore, one aspect that
probe design needs to take into account is the optimal probe
length for a sequencing library. Recently, we analysed libraries
for highly varying genes [45] and found no general rule for
the optimal probe length of a library. For each specific target
the library needs to be entirely redesigned and new optimal
probe lengths need to be established. One main reason for
this is precisely the probe melting temperatures: probes of
different lengths result in completely different distributions of
hybridization temperatures which in turn affect how much of a
gene can be covered by the library.

It is beyond the scope of this paper to describe the intricate
details of the combinatorial analysis for probe design, these can
be found in [45] and references therein. Instead, we base our
discussion on an example set of 2434 probes of length 20 nt
generated to sequence the Influenza np5 gene of size 1588 that
was reported in [45]. Multiple probes are used to cover highly
variable regions of the gene and this is one of the reasons why
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0

Figure 6. Distribution of probes along a section of a specific variant
of the np5 gene and their respective melting index τ which was
calculated using the HMS1 model parameters (see table 1). To the
right the frequency distribution of the probes N(τ) is shown. Short
up and down dashes represent the beginning and the end of each
probe. (Online only) Probes are colour coded according to their
distance to the most frequent melting index � = |τ − τf|: blue for
� < 0.1; red for � < 0.2; green for � < 0.3 and magenta
otherwise.

there are more probes than sequence positions. In figure 6
we show how these probes would cover a section of the np5
variant (AX350192.1) as a function of the melting index τ . An
isothermic library is generated by removing all probes within
a narrow interval of the melting index τ . From the analysis of
figure 6 it is clear that, regardless of the choice of the melting
index range, most of the probes will be removed from the
library. Also, for those highly variable sites for which there are
large number of probes covering the same region, their number
will be severely reduced therefore leaving important parts of
the gene uncovered. This leads to the following question: can
we change the number of probes that are likely to be removed
due to isothermal requirements by changing the hybridization
conditions?

Salt concentration changes the melting temperature of
DNA strands and therefore has significant effects over
the hybridization condition [12]. One key effect of the
salt concentration is to change the elastic properties of
DNA [46, 47] as well as other structural properties such as the
torsional writhe of circular DNA [48]. Generally, DNA stiffens
with increasing salt concentration [49] which means that its
effect could be simulated by increasing the elastic constant k of
the Peyrard–Bishop Hamiltonian [50]. In figure 7 we show the
results of increasing the elastic constant k of the HMS1 data set
by 20% which simulates an increasing stiffness due to higher
salt concentrations. This indicates that a possible outcome of
increasing the salt concentration for this particular set of probes
would be to concentrate the largest number of probes at lower
melting indexes when compared to figure 6.

Another way to change the hybridization conditions would
be to change the solvent. Generally, nonaqueous solvents
lower the temperature of the DNA hybridization [51, 52]. For
instance for glycerol the relative optical absorbance at 260 nm
shows a sharper melting transition and at lower temperatures

Figure 7. Distribution of probes along a section of a specific variant
of the np5 gene and their respective melting index τ which was
calculated using the HMS1 model parameters with modified elastic
constant k = 3 eV nm−2 (see table 1). To the right the frequency
distribution of the probes N(τ) is shown. (Online only) Colour
coding of the probes follows the same rule as in figure 6.

Figure 8. Distribution of probes along a section of the np5 gene and
their respective melting index τ which was calculated using the
HMS3 model with DAT = 27.7 meV and DCG = 74.5 meV,
corresponding to a reduction of 20% and 10% respectively to the
values for HMS1 (table 1). Values of λAT = 0.0666 nm and
λCG = 0.0250 nm are twice the value for HMS1. Short up and down
dashes represent the beginning and end of each probe. (Online only)
Colour coding of the probes follows the same rule as in figure 6.

than in aqueous solutions [51]. Similarly, aqueous solutions
of diethylsulfoxide also lower the melting temperature with
the additional property of an increased DNA denaturation
rate [53]. Experimental melting temperatures for these solvents
are scarce and do not allow us at present to make an analysis
similar to that presented in section 5. We may consider
that under certain solvent conditions the hydrogen bonding
is decreased. An increase of the interstrand distance has
also been observed for mixed solvents by Hammouda and
Worcester [52]. To test how different solvent conditions may
affect the thermal distribution of the probes we modify the
conditions of the hydrogen bond Morse potential. In figure 8
we show the dependence with melting index for the same
probe library as in figure 6 by changing some of the model
parameters: we reduced the Morse potentials to DAT =
27.7 meV and DCG = 74.5 meV, a reduction of 20% and
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Figure 9. Histogram showing the fraction of the np5 gene which is covered by isothermal probes for (a) the HMS1, (b) HMS1 with modified
elastic constant k = 3 eV nm−2 and (c) HMS3 data sets. The curve shows the fraction of the original probe library that remains after thermal
filtering. The histogram interval is �τ = 0.06 and for part (a) this corresponds to temperature intervals between 1.35 ◦C for 0.069 mol l−1 and
1.1 ◦C for 1.020 mol l−1 [12]. (Online only) Colour coding corresponds to figure 6 for part (a) and figure 7 for part (b) and figure 8 for
part (c).

10% respectively, and doubled the characteristic length λAT =
0.0666 nm and λCG = 0.0250 nm (HMS3 in table 1). These
are relatively minor changes as can be seen by comparing them
to other parameter sets in table 1 and corresponds to reducing
the melting temperature, since the hydrogen bond are now
considerably weaker. Also, we allow for a larger interstrand
distance by increasing the Morse potential width λ. As a
result, the probes now present a quite different melting index
distribution. The difference between the HMS1 and HMS3
parameter set can be better appreciated in figure 9 where we
show the fraction of the gene that is covered by the isothermal
library. For instance, for the HMS3 parameters there is a much
better coverage for the probes with higher melting index. This
would provide some cover for the highly variable gene position
at 300 of the np5 gene (see figure 6).

7. Conclusions

We presented the theory of the thermal equivalence in the
framework of the Peyrard–Bishop model. The thermal
equivalence gives rise to a melting index τ which maps
closely the experimental DNA melting temperatures for short
DNA sequences. We used the efficient calculation of the
melting index to analyse the Hamiltonian parameters of
the Peyrard–Bishop model and propose an improved set of
Morse parameters which predicts the experimental melting
temperatures within ±1.2 ◦C. We showed how the melting
index τ can be used as an prospective tool to explore alternative
hybridization conditions. By changing these conditions
alternative isothermal probe libraries can be designed which
open the possibility of new technological pathways for
methods based on the sequencing-by-hybridization concept.
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