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a b s t r a c t

In this paper, we design resonant reflection grating filters employing the second diffracted orders as the
leaky modes, then analyze the bandwidth of the reflection peak and the electric field distributions inside
the waveguide under resonance. The numeric calculation confirms that ultra-narrow resonant reflection
peaks can be observed in these structures. At the same time, strong electric field enhancement appears
under resonance. It provides a new approach to diversify the resonant reflection filters and may open
a new way to the realization of ultra-narrow bandwidth filters.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Resonant grating filters, also known as guided-mode resonance
(GMR) filters, are integrated optical structures consisting of a
waveguide in the presence of a periodic perturbation of the struc-
ture’s geometric and material properties [1,2]. Typical device con-
figurations include single-layer grating embedded structures and
double-layer surface-relief grating structures. When a diffracted
wave from the grating couples to a leaky mode supported by the
waveguide layer, it excites a guided-mode resonance that causes
sharp variations in the wavelength or angular spectra of the exter-
nally propagating fields, thus applying the guided-mode resonance
effect a variety of passive optical elements are realized. By incorpo-
rating a grating whose periodicity is such that only the 0th diffrac-
tion order propagates in the input and output regions, with all
other diffracted orders in these regions being evanescent, efficient
narrowband optical filters have been designed in both reflection
and transmission regimes [3,4]. A desirable response from a reso-
ll rights reserved.
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nant grating filter normally includes a minimal broadband reflec-
tion (transmission), a nearly 100% narrowband resonant spectral
reflection (transmission), and a broad angular acceptance at either
normal incidence [5] or an oblique angle of incidence [6]. A variety
of novel resonant grating filters have been proposed and realized in
experiment. Magnusson et al. [7] fabricated a high-efficiency
guided-mode resonance Brewster filter using the Brewster effect
to produce low-reflectance sidebands. Lemarchand et al. [8] used
the doubly periodic structures to increase the angular tolerance
without modifying the spectral bandwidth. Fehrembach et al. [9]
obtained a 0.5 nm bandpass polarization independent reflection
filter for telecom wavelength using a two direction periodic reso-
nant grating filter to remove the polarization dependence. Liu
and Magmusson [10] gave the concept of implementing optical fil-
ters by coupling evanescent waves from several diffracted orders
into multiple leaky waveguide modes. Yurista et al. [11] put a
low refractive index buffer layer, between the grating and wave-
guide layers, to get significant reduction of losses and weaker cou-
pling and achieved very narrow spectral bandwidths and high
contrast ratios. In realizing narrow bandwidth resonant grating fil-
ters experimentally, many restrictions have to be overcome in or-
der to achieve desirable performance. Imperfections in fabrication,
absorption losses, limited angular tolerance, finite size effects [12]
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Fig. 2. Determination of the resonant wavelength from the dispersion curves of the
waveguide mode and the diffracted wave. The parameters used here are nh = 1.46,
nl = 1.0, ns = 1.46, nc = 1.0, nw = 3.48, K = 700 nm, f = 0.75, hg = 200 nm, hw = 180 nm.
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and so on are all fatal to the performance of the resonant grating
filters. To achieve ultra-narrow bandwidth, the most common
meaning is to use the weakly modulated grating [13]. But to align
two different materials with small index difference to form a grat-
ing is often difficult in realization. In this letter, we use the second
diffracted orders to achieve ultra-narrow bandwidth resonant
reflection grating filters and the properties of the second diffracted
order resonant grating filters are explored. In the model we analyze
in this paper, although the modulation is quite strong, the band-
width is still very narrow. In the following, we first describe the de-
sign principle and then investigate their spectral properties and
electric field distributions under resonance. At the end we give
some reviews about the second order diffraction resonant filters,
especially about the advantage to other narrow bandwidth meth-
ods and the realizing problem. All the filters designed in this paper
work under normal TE wave incidence.

2. Analytical and design methods

A schematic diagram of a resonant grating filter is illustrated in
Fig. 1. We use hg, hw to present the depth of the grating and the
thickness of the waveguide layer; nh, nl, nw, ns, nc to present the
refractive indices of the ridge of the grating, the groove of the grat-
ing, the waveguide layer, the substrate and the cover respectively; f
to the fill factor (the width of the ridge to the period of the grating)
and K to the period of the grating. If we use the effective medium
theory to present the grating layer with the effective index ne, the
structure may be viewed as a equivalent four-layer waveguide. To
achieve a highly efficient resonance, the waveguide condition (i.e.
the index of the waveguide layer being higher than the effective in-
dex of the grating layer and the index of the substrate) and the sub-
wavelength grating condition (i.e. K < k) has to be satisfied. If we
want to have the resonance peak achieved using the mth diffracted
orders, these conditions give out that

m
2p=K
2p=k

¼ m
k
K
< nw ð1Þ

2p=K
2p=k

¼ k
K
> maxðne;nsÞ ð2Þ

To determine the modal properties and spatial distribution of
TE modes within the waveguides considered, the effective medium
theory [14,15] (EMT) and the transfer matrix theory of planar mul-
tilayer waveguides [16] are utilized. According to the EMT, a peri-
odic structure may be represented by an anisotropic homogeneous
medium if only the zero-order diffraction propagates and higher
diffraction orders are evanescent. For the grating layer shown in
Fig. 1, the effective index can be written as
Fig. 1. Schematic diagram of the resonant grating filter considered in this paper.
ne ¼ �eþ p2
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under TE wave incidence, where �e ¼ n2
hf þ n2

l ð1� f Þ and k is the
free-space wavelength. For TE polarization, using the transfer ma-
trix theory away from resonance, the waveguide eigenvalue can
be found from the root of the modal-dispersion function [16]

vMðbÞ ¼ ccm11 þ cccsm12 þm21 þ csm22 ¼ 0 ð4Þ

where b is the propagation constant of the certain diffracted waves,
m11,m12, m21, m22 are the elements of the transfer matrix for the
stack, cc, cs are the tilted optical admittance of the cover and the
substrate. Using Eqs. (3) and (4), the dispersion relation of any
waveguide mode (for example TE0 mode) of the equivalent wave-
guide can be plotted. If we want to let the first diffracted wave to
be resonant as the TE0 mode, the resonant wavelength can be found
from the crossing of the dispersion curves between TE0 mode and
the first diffracted order [17]. In this way, we may get the resonant
wavelength approximately and in principle the resonance may be
placed at any wavelength after carefully optimizing. Fig. 2 gives
an example to determine the resonance wavelength. All the param-
Fig. 3. Zero-order reflectance spectra under normal TE incidence. The geometry
parameters are specified as nh = 1.46, nl = 1.0, ns = 1.46, nc = 1.0, nw = 3.48,
K = 700 nm, f = 0.75, hg = 200 nm, hw = 180 nm.
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eters used are specified in the caption. The modal index is obtained
from the propagation constant of the guided mode by normalizing
with respect to the free-space wavenumber [17]. The crossing point
A is the approximate position at which the first diffracted order
serves as the TE1 leaky mode and form one resonance peak. The
crossing point B is the approximate position at which the second
diffracted order serves as the TE0 leaky mode and forms the other
resonance peak.

The 0th diffracted order reflection response from the system is
determined through a rigorous coupled-wave analysis (RCWA)
[18] formulation. The electric field distributions under resonance
are solved based on rigorous calculations by use of the Fourier
modal method [19].
ig. 4. Normalized amplitude of the electric field in two periods of the resonant
rating filter under resonance at k = 1044.36 nm as TE0 leaky mode (a) and
= 1032.49 nm as TE1 leaky mode (b) with the parameters of the structure specified
Fig. 3.

Fig. 5. Zero-order reflectance spectra under normal TE incidence. The geometry
parameters are specified as nh = 1.46, nl = 1.0, ns = 1.46, nc = 1.0, nw = 3.48,
K = 700 nm, f = 0.80, hg = 200 nm, hw = 475 nm.
3. Numerical analysis and simulation

We select the poly-silicon (n = 3.48) and silica (n = 1.46) as the
building materials to construct the resonant grating filter. The
parameters of the refractive indices are specified as nw = 3.48,
ns = 1.46, nh = 1.46, nl = 1.0, nc = 1.0. According to Eqs. (1) and (2),
if we let K = 700 nm, the wavelength range of our interest (i.e.
the second diffracted orders satisfying the waveguide condition
and the sub-wavelength grating condition and hence forming the
resonance) is

1022 < k < 1218 ð5Þ
The other geometry parameters (f,hg,hw) can be varied according to
the central wavelength of the filter.

For the first structure we consider here, one reflection peak
originates from the second diffracted order and the other from
the first one. We let f = 0.75, hg = 200 nm, hw = 180 nm, and the
0th order reflection spectra are shown in Fig. 3. From Fig. 3 we
know that, the second order diffracted order resonates at
1044.36 nm and the full-width half-maximum (FWHM) linewidth
is very narrow, almost 0.01 nm. The other peak originating from
the first diffracted order resonates at 1032.49 nm with the FWHM
linewidth 1.59 nm. In order to investigate the origin of the narrow
peak, we analyze their electric field distribution under resonance
which is shown in Fig. 4, where the amplitude magnitude |E| of
the electric field normalized with respect to the incident over
two grating periods is shown.

Fig. 4a shows the electric field enhancement associated with the
TE0 leaky mode originating form the second diffracted order. The
characters of no nodes along the vertical direction and four maxi-
mums along the waveguide direction in one period manifest the
origin of the peak evidently. The standing wave along the lateral
direction comes from the superposition of the two coupled identi-
cal but counter propagating second diffracted orders (i.e. +2 and
�2 orders). If we regard the electric field enhancement as coming
from the multiple interference of the energy coupled to the wave-
guide from every grating period, longer decay distance results in
stronger electric field enhancement inevitably. Narrow reflection
peak may be resulted from the little loss during the TE0 leaky mode
propagation. From this point, narrow peaks are accompanied by
strong electric field enhancement. In Fig. 4b, the electric field dis-
tribution associated with the TE1 leaky mode from the first dif-
fracted order shows weak enhancement, so the bandwidth is
quite wide inevitably.

According to the slab waveguide theory, if we change the grat-
ing period into half, the TE0 leaky mode from the second diffracted
order originally switches from the first diffracted order with al-
most the same propagation constant. But the FWHM linewidth be-
comes almost seven times bigger, that is 0.10 nm centered at
1043.18 nm. We may use Jacob’s theory about resonant grating fil-
ters incorporating antireflective layers to explain this phenomenon
F
g
k
in



Fig. 6. Normalized amplitude of the electric field in two periods of the resonant
grating filter under resonance at k = 1168.33 nm as TE0 leaky mode (a) and
k = 1045.77 nm as TE1 leaky mode (b) with the parameters of the structure specified
in Fig. 5.
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[12]. By Jacob’s theory, if we neglect the leakage of the equivalent
waveguide, the FWHM linewidth Dk may be expressed as

Dk
k
ffi

4 sin�1 g
2
ffiffiffiffiffiffiffi
1�g
p

� �
k
K k0j d/

db j þ 2hw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

wk2
0 � b2

q� � ð6Þ

where g is equal to the power coefficient diffracted into the leaky
mode, jd/=dbj is only related to the propagation constant b once
the structure fixed. When the leaky mode from the second dif-
fracted order switches from the first one, g becomes bigger evi-
dently. The bigger power coefficient makes the bandwidth wider
although the period K decreases which results in the denominator
becoming bigger also.

If we increase the waveguide thickness, there are more modes
supported by the equivalent waveguide. As any second diffracted
orders produced by the grating have the potential to be coupled
to a leaky mode at a proper wavelength, there may be more
resonant reflection peaks produced. The second structure we
considered here has the structure parameters as f = 0.80,
hg = 200 nm, hw = 475 nm. Within the wavelength range of our
interest, the cutoff mode of the equivalent waveguide is three
and the smallest modal index is bigger than two, so all of the
possible leaky modes are produced by the second diffracted
waves. The 0th order reflection spectra are shown in Fig. 5. From
Fig. 5 we know that, the second order diffracted wave resonance
peaks centered at 1168.33 nm from the TE0 leaky mode and at
1045.77 nm from the TE1 leaky mode are all very narrow and
the their FWHM linewidths are 0.013 nm and 0.016 nm respec-
tively. Their electric field distributions under resonance are
shown in Fig. 6. Strong electric field enhancement appears
evidently. Changing the period into half, we find the same
phenomenon with the above. The leaky modes from the second
diffracted orders originally switch from the first diffracted orders
with almost the same propagation constants but with almost
two times wider bandwidths.

4. Conclusions

Resonant reflection grating filters employing the second dif-
fracted orders as the leaky modes are designed and analyzed.
With the same modulation, the resonant peaks are much nar-
rower using the second diffracted orders than using the first ones.
It is calculated that the reflection peaks as narrow as 0.01 nm may
be achieved in these structures. In experiment, the structure we
propose is much easier to realize because the grating is all
the time an air (nl = 1.0) modulated grating. The narrower the
peaks become, the stronger the electric field enhancement under
resonance is. Although we can change the period into half to
achieve the same resonance wavelength from the first diffracted
orders, but the bandwidth increase evidently. Increasing the
thickness of the waveguide, we can get more resonance peaks
from the second diffracted orders. Likewise we may use the wave-
guide theory to fashion the guided mode to diversify the resonant
reflection filters.
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