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In this paper, we study the role of correlations in the energy landscape of a finite random heteropolymer by
developing the mapping onto the generalized random energy n@&&M) proposed by Derrida and Gardner
[J. Phys. C19, 2253(1986] in the context of spin glasses. After obtaining the joint distribution for energies of
pairs of configurations, and by calculating the entropy of the polymer subject to weak and strong topological
constraints, the model yields thermodynamic quantities such as ground-state energy, entropy per thermody-
namic basin, and glass transition temperature as functions of the polymer length and packing density. These are
found to be very close to the uncorrelated landscape or random energy (Réd) estimates. A tricritical
point is obtained where behavior of the order parametehanges from first order with a discrete jump at the
transition, to second-order continuous. While the thermodynamic quantities obtained from the free energy are
close to the REM values, the Levinthal entropy describing the number of basins which must be searched at the
glass transition is significantly modified by correlatiof81063-651%96)02406-3

PACS numbdps): 61.41+e, 64.70.Pf, 05.96:m, 87.10+¢

I. INTRODUCTION random energy model, it is clear that correlations in the en-
ergy landscape can play a role in determining quantities such
The statistical characterization of the energy landscape ds the glass transition temperature, as well as the character-
random and designed heteropolymers has been a major coristics of the basins of attraction into which the system freezes
ponent of the newer theoretical approaches to biological probelow the glass transition.
tein folding[1-6]. Completely random heteropolymers have  Nevertheless, the convenience of the random energy
rugged energy landscapes due to the frustration inherent imodel has made it useful for quantitatively treating the phase
conflicting interactions between different monomers that ardransitions of random heteropolymers. Its very simplicity al-
covalently linked in the polymer chain. For appropriatelows it to be used as an approximation for models with
choices for the interactions in native proteifs8|, or the  elaborate interaction potentials and complex stereochemical
appropriate sequences of artificially designed polymergonstraints that can mimic proteinf8]. It also allows the
[9,10], the effects of frustration can be minimized, leading toinclusion of various kinds of partial order in collapsed het-
a funneled energy landscafgg with driving forces toward a eropolymers, such as liquid crystalline ordering and second-
well-defined native structure, in addition to the generic rug-ary structure formatior15,16. The more elegant replica
gedness of random heteropolymers. Much of our understandarethods, while partially taking into account the correlations
ing of the dynamics on these energy landscapes has beeiithe energy landscape, are considerably more cumbersome
derived from the study of the most rugged energy landscapéo use for models with these realistic levels of molecular
the so-called random energy modREM) originally studied  complexity.
by Derrida[11]. This model is very simple because it is  The approach we take in this paper to the correlated en-
characterized by a single energy scale giving the overall energy landscape is simpler than the replica method. It is based
ergetic randomness, and a configurational entropy. For biosn the use of the generalized random energy m@@gEM)
logical proteins, the funnel aspect of the landscape gives af Derrida[17]. In this model, one takes into account the
new energy scale, the stability gap, which determines thenergy correlations of a pair of states on the energy land-
average trend of the energy as the protein molecule becomssape as a function of the similarity of the two configura-
more similar to its ground-state configuration. In this papertions. The model then visualizes the characterization of the
we wish to address quantitatively the role of correlations inlandscape by describing its properties upon the resulting
the energy landscape of random heteropolymers. The effe€triangulation” on the energy surface. The input to the
of minimal frustration and the corresponding stability gap onmodel consists of two quantitie$l) the number of states
an already correlated energy landscape will be treated in within a certain distance of a given molecular configuration,
later paper. and (2) the expected degree of correlation of their energies
The uncorrelated energy landscape, or random energwith the given molecular configuration. The model reduces
model, possesses a glass transition that arises from an et the uncorrelated landscape in the obvious way, but also
tropy crisis. This phase transition is representative of a widallows a more quantitative approximation of the glass tran-
universality class of phase transitions in spin glasses thatition temperatures when the pair correlations are knawn
lack special symmetrie§l3]. Replica methods from spin priori. Derrida and Gardndrl7] have shown how the gen-
glass theory have been applied to the random heteropolymeralized random energy model can be thought of as the be-
and confirm that the glass transition of random heteropolyginning of a systematic set of approximations to the thermo-
mers is also in this universality clagk4]. While the random dynamics of any random system by taking further
heteropolymer glass transition is of the same type as theorrelations in energy levels. They have also described how
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it can be used to approximate the glass transition temperaiso obtained. The GREM results are compared with those of

tures of many standard spin glass models. the uncorrelated energy landscgffee REM), and the issues
The application of the generalized random energy modedf thermodynamic basins of attraction are discussed. In Sec.

to random heteropolymers raises some interesting questiodd we discuss the results and conclude with some remarks.

in polymer physics. Just as for the random energy model,

conventional phase transitions in ordering of the heteropoly- Il. BASIC ISSUES

mer that are analogous to those of a homopolyiieeg., h ) _ hat the th q
collapse, or secondary structure formajican be taken into It was Snown In a previous papga2] that the thermody-
namic glass transition temperatufg of a polymer should

account in a straightforward way, as in homopolymer phys- | be | than it I } e F
ics. The present questions revolve around the counting dfways be less than ItS collapse lemperatiige -or our
structures with a given degree of similarity to other ones PUrPOSES then, '2 we defm_e the packing fraction of the poly-
When the underlying energy surface is made up by pair in™er: 7: by No/Rgywherea is the volume per monomer, and
g Is the radius of gyration of the polymer, it is sufficient to

teractions, this counting exercise is very similar to the theor i : )
of a rubber vulcanizatiofl8]. Indeed, rubber vulcanization consider only configurations of the polymer that have values
1/2. In considering these collapsed or semicollapsed

has already been addressed by the replica methods used9h 7= i
spin glass theory19,20. As far as the entropic issues are states, we negle_ct fluc_tuajuons apout the mean number of
concerned, however, these theories have, in the main, repr6ontacts (off-chain pair interactions Nz(N)7, where
duced the results of the much older analysis of Flory. WeZ(N) 7 is then the mean number of contacts per monomer for
adopt an analysis in this Flory style here, because we believ@ collapsed walk of packing fraction.

it lends itself straightforwardly to generalization by taking L€t us consider the most collapsed walk to haye1,

into account more molecular details. We find that it is nec-wherez(N) is then the number of bonds made per monomer
essary, however, to go beyond the Flory analysis when oné @ Hamiltonian(densg walk of N steps, a quantity studied
must count states that correspond to highly cross-linke@xtensively by Douglas and Ishinab23]. The dependence

structures. To this end we undertake an analysis of the coRf Z(N) uponN is clearly due to the fact that monomers on
lective process of melting out of local structure in a randomthe surface have less contacts than in the bulk. For three-

heteropolymer. dimensional(3D) systemsgz;(N) is given approximately by

With these polymer issues under control, it is possible to
evaluate the statistical thermodynamics of random het-
eropolymers within the generalized random energy model
approximation. We present results for these thermodynamic
properties for mesoscopic random heteropolymers; that isyhere Inf] means the integer part. For 27-mer collapsed
we study the finite size effects that are quite important forcube structures with 28/27 actual contacts per mer (Ed)
heteropolymers in the size range relevant for protein foldinggives 29/27. On the other hand, the effect of the surface on
We present transition temperatures for three-dimensional lathe number of contacts is quite important even for large mac-
tice systems as a function of polymer size. We show that theomolecules, ag;(N) approaches its bulk value of two con-
generalized random energy approximation and the randofacts per monomer rather slowly, as2— 3N,
energy model give closely similar results for the transition For a dense walk ofy=1, the total number of states is
temperature. On the other hand, the correlations in the eftetermined by the connectivity constant, which to second
ergy landscape do modify the size of the basins of attractiogrder is given byf24]
and the effective number of basins that need to be searched
through as the glass transition is approached. In a later paper 1
we will show how the information in the correlated energy Inp~Inu™"+ 62 (2.2
landscape can also be used to address kinetic issues such as

barrier height distributions, but here we limit our discussion . . . .
to the proglem of the number of basins, i.e., the LevinthaIWhere“(mf) is the mean field connectivity constant alds

the coordination number of a monomer in a polymer clidin
entropy[21]. f | bic lattide so that to within~0.01
The organization in this paper is as follows: In Sec. Il we or a polymer on a cubic fatige so that to within=1.

discuss the general issues related to the correlated energzcuracy, we can rely on the mean field result-# states

landscape, and obtain a formula for the energy correlation r.monomel(neglectmg the-InN translational entropy as- .
between states with a given similarigy In Secs. Ill and IV sociated with the number of places the polymer can start its

we calculate the configurational entropy of a polymer givenwalk from), where is the number of states per monomer in

the existence of weak and strong topological constrdihts an ideal chain on ad=3 cubic latticg.

log of the total number of states consistent with the con- If th? polymer IS r_10t complete!y collapsedy 1) the
straints imposexd In Sec. V this entropy and the energy-pair mean field connectivity constant increasesaslecreases
correlations are applied to the GREM model to obtain therpz]
modynamic quantities such as entropy and energy for the
finite random heteropolymer. The glass transition tempera- mM(mf):mZ_(l_ 7
ture of partial and total freezing, as well as the ground-state e n
energy and entropy at the glass transition, are obtained for

various size polymers and packing fractions. The probabilitywhich just reflects the fact that partly collapsed walks have
distribution for overlapsy below the glass temperature is more sterically allowed states than fully collapsed ones.

z (N)~E|nt[2N—3(N+1)2’3+3] (2.2
3 N ’ .

In(1— 1), 2.3
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R —. tance of=3.6 A givesA 7//3=5.3, in rough agreement with
‘myhemrthrn.dac" " the lattice value.
"myoglob.dat" -+~ . .
"rnase.dac’ 0" Since the total energy of the polymer is a sum of random
o variables, it is a Gaussian random variable with probability
distribution

L (Tot. (i;)ntacts) =212n

- 1 E?
P(E|N1Rg):(27TAE2)12eXF<_m)’ (26)

N w &0, (=21 ~ @ <
T T
1

Mz | i | where the variance in energyE?=Nz(N) »(R,)e?, where
or'!?’/ o Je? is the width of the effective Gaussian energy distribu-
5 55 6 /)65 7 75 8 85 9 tion of a single bond, which is the roughness energy scale as
n=(ar®  Cutoff Distance (A) in the random energy modgl1].

If we pick two different states of the polymer, both col-
FIG. 1. Plot of the X (total number of contactsss the cutoff  lapsed withNzz total contacts, and ask what the probability
distance of a contact for three real proteins of mean sequence lengéh Of the states having energikg andE,, respectively, our
130. Using the number of expected contacts for a dense walk on @nswer will depend not only on the two energies we have
cubic lattice gives a bond radius over Kuhn length1(7) reason- picked, but on how similar the statesandb were to begin
ably consistent with the cubic lattice value-(.6). with. This similarity can be represented by a single param-
o eterq defined as
If the average energy per contactss the total average _ o
energy is then B (number of contacts identical in the two states

_ d (total number of contacts
(E(N,Rg))=Nz(N) n(Ry)e, 2.9 2.7

which we will set to zero as our zero point of energy. In The “overlap parameter’t] varies from O to 1. If we define
using formulas like(2.4), we are neglecting the coupling of u as the number of identical contacts in the two different
density () with topology (bonds formed, or overlag).  states, it is clear that

This is a “van der Waals” picture appropriate well below

the collapse temperature. It is straightforward to simulta- _ (@ (b) — (a.b)

neously include this coupling in obtaining a complete phase K .§<:, i _2 Si 28
diagram as obtained earlier {i8] (albeit without correla-

tions), but this is saved for another paper. =Nqzz, (2.9

For a random heteropolymer, a pair of interacting mono-
mers{ij} has an interaction energy; that can be taken to Wheresi(ja'b)zl if i andj are in contact in both states and
be a random variable. The energy for a given total con- 0 otherwise. To find the pair energy distribution mentioned
figuration is given by above, we can follow the procedure used by Derrida in the
generalized random energy mod@2b]. This is done in Ap-
pendix A. The result is

HZZ Sijo-ij! (25)
i<j 1
, Pap(Ea,Ep)= consXexg — ——
whereg;;=1 when there is a contact made between mono- an(Ea Eo) F{ 4Nzye

mers{ij} in the chain, andr;;=0 otherwise. Here contact E4+E)2 (E.—E.)2
means that the two monomefg} are within a small dis- (EatEp)”  (Ea—Ep) ”
tance (bond radiug of each other, or we can equivalently 1+q 1-q '
speak of the volume around mononievhich another mono- (2.10
mer must be inside for a bond to be preseatXr). To
specify dimensionless quantities such as the entropy iwhereq is againu/(Nzz) . Note that asg—0 the states
Boltzmann units, another distance scale must enter into thshare no common bonds, and the pair energy distribution
problem, which is the Kuhn length of the polymer. For a factors into the product of two singl@ncorrelateyl energy
flexible polymer on a 3D cubic latticg® is the volume one  distributions, P(E, ,E,)— P(E,)P(Ey). As q—1 we are
lattice site occupies, and 7 is the volume of four lattice looking at states very similar to each other, and
sites. P(E,.Ep)— 8(E;—Ep). If we integrateP(E, ,E,) over one

It is worthwhile to note that the ratia 7//3=4 for cubic  of the energies, we obtain the single energy distribution for
lattices is roughly that obtained in real proteins by findingthe remaining energy, as expected.
what the bond radius would have to be for the protein to If interactions of a more collective nature than pair inter-
have a number of contacts equal #@3(N), where =1 actions are present in the Hamiltonian describing the system,
[25] andzg(N) is the contacts per monomer for a dense walkas, for example, must be present in the interactions facilitat-
of N steps on a cubic lattice. Taking three typical proteins ofing ligand binding when there are cofactors, the interactions
mean sequence length 130, and usiizg(130)=1.4 gives a involved in side-chain packing, or as results from averaging
bond radius of=6.3 A (see Fig. 1 Using aC,—C, dis- over the solvent degrees of freedom, then theséody
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Now that we have specified the parameter that determines
the roughness of the energy landscape as a function of simi-
larity, a(q), the only remaining quantity needed to describe
the thermodynamicéas described in Appendix)Bs essen-
tially the rate of decrease in the number of states as we move
towards a given state by increasing the similaity This
quantity is calculated in the next two sections. Those who
wish to take the entropy results as given may skip to Sec. V
on thermodynamics.

Ill. ENTROPY OF A WEAKLY CONSTRAINED
POLYMER

The remaining quantity needed to apply the GREM is the
number of states that have an overtapith a given state, or
equivalently the entropys(q) of a polymer that has
m=Nqzzn bonds in common with a given state. This entropy
is given by the sum of several terrfsee Eq(3.9)], the first
of which is simply the total entropy before any constraints
are imposedhere and throughout the text, unless explicitly
stated otherwise, all entropies are in units of Boltzmann’'s
constank

FIG. 2. Qualitative picture of the energy landscape, pictured SO=NIn,u(mf),
here as a two-dimensional projection of the multidimensional con-
figuration space. We can speak of a distance radigs—q) from . y )
any given state, which determines how similar or correlated thd-€-» that of a collapsed random walk, wherg (" is defined
energies of states at that radius are. The correlations smooth out tHé Eq.(2.3. . )
energy landscape, which affects the nature of the glass transiton FOr low values ofg, the polymer is weakly constrained,
and somewhat lowers the temperature at which it occurs. and the entropy formula is essentially one of entropy reduc-

tion due to bond formation, i.e., configurational entropy is

terms can give rise to @"~ ! dependence of the pair energy lost due to the constraints imposed by the bonds. We should
correlation on the overlag, defined as above with a suitable distinguish here between the bonds which are decreasing the
decomposition law for eacl;..., into pair interaction total entropy, i.e., those which contribute to the overtgp
termso; oy - - -, such as in the superposition approximationand the totaNz» bonds which are present in all states of the
in the theory of fluid§27]. Whether such explicit coopera- collapsed heteropolym¢28]. These other bonds do not fur-
tive effects which enhance the first-order-like folding transi-ther constrain the polymer, as their effect has already been
tion behavior are necessary to fully describe proteins is at@ken into account by assigning the collapsed entr§py
open issue. For states that are mostly collapsed, a REM-lik&he polymer can always explore itg{"?)N states of a col-
cooperative glass transition is still seen in the present GRENapsed walk, all of which havidz» bonds. We are looking at
analysis which uses only pair interactions, in that there is dhe fraction of these states consistent with a particular set of
finite jump in the order parametey, signifying the sudden gNzy bonds being formedHowever, as mentioned below
onset of freezing at discretely different values of overlapthere is a set oNz7(1—q) bonds whichcannotbe formed
[however, the glass transition is still second order, with an addition to the set o§Nz» bonds that must be formed.
thermally averaged overlap that is continuoud gt(see the  This causes a further reduction in the entrgpy.
comments in Sec. M. In calculating the decrease in conformational entropy of

The pair energy distribution we have obtained has thghe chain segments due to the formation of a bond, we want
same form as in the generalized random energy middg@]  to find the probability that the given bond will be formed,
with the parameter simply equal toq, soa(q)=1 (see Wwhich is equal to the fraction of the total number of states
Appendix B for a brief review of the GREM The overlap  without the bond that are equivalent in configuration to the
g smoothes out the energy landscape by making states theend present, assuming effectively a microcanonical search
are similar to a given state (i.e., states with g, close to  through the possible states. Since the polymer is collapsed,
1) more likely to have an energy close gy (see Fig. 2  for small g (weakly constrainedany given piece of it be-
More precisely, given that we have picked statef energy haves as if it were in a melt, i.e., as an ideal chain. This

E, the probability for another stateto have energy, is means we can neglect excluded volume effects in our calcu-
lations, e.g., the probability distribution of end-to-end dis-
Pab (Ep—qE,)? tances of a piece of polymer chain has no “hole” at small
P_a_ const<exp — 2Nzye’(1—q%) )" (2.1 values(as in a self-avoiding walk

To calculate the bond formation entropy loss we use the
Note theg-dependent mean and variance of the distributionapproach of Flory’s older work on the formation of cross
and the appropriate limits ag—0 andq— 1. links in polymer chaing18]. The reduction in configura-
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tional entropy from the unconstrained polymer due to thedefines a critical number of bongds.~ (NY33%%)/2 [30], be-
addition of Nz cross links was found by Flory to be low which random walks “see” the boundary of the globule.
So the number of the chains’ allowable configurations must
1 3 be reduced, and their distributions modified from the usual
NASbO”"(qW’ = qun[lnc_lanZ”]’ 3. Gaussian behavior assumed so far, for values of overlap less

than
where
1
B 3 (AT 2/3 g.~ W (36)
=11 5% (3.2

Note that confinement effects become less importanh as

For details concerning the derivation of E§.1) see Appen- and 7 increase.(The effect of localization induced by the

dix C. C is a constant of order 1, and contains the ratio offresence of cross links has also been investigated recently by

length scales discussed above in the fadtetb®. It should ~ Bryngelson and ThirumaldB1].)

be mentioned that the entropy term due to bond formation A straightforward way to introduce the effect of a bound-

has also been more recently reproduced by replica calcul@'y on the configurations of the polymer is to consider it

tions [29]. confined to a box of Iength=(N/77)1’3b by introducing an
Specifying the overlag introduces an additional entropy €xternal potentiall=0 inside the box, antl.== outside.

reduction due to the fact thdlzp—qNzy contacts of the The details of the calculation are in Appendix E; a result is

reference state musbtbe formed. This “antibond” entropy that for u<pu.

reduction is largest for small overlaps, and goes to zero as

C ; o 1 3
g—1. It is given by(see Appendix D for a derivation NASSOHL(CIW, 7)= quri(lnC’ —1+Inqzy), (3.7

on
1 1 (Czp
—ASAB(q|N7;)=—f dxin(1—x%?), (3.3 where
N C Cazy
,_12(AT)2’3

whereC is given by Eq.(3.2). = (3.8

Another term in the entropy is due to the many ways an

overlap ofu bonds can be realized, because these differenty /N) ASE?,',}L has the same form 48.1), the only difference

tional search of the polymer, there being nothing essential tgyeat.

from any others. Neglecting the fact that some overlaps argng their sum vs for the 27-mer; the total lowg entropy is

impossible due to steric constraints, the entropy “of mixing” an interpolation between the confined and unconfined ex-

(per monomerassociated with choosingzNz bonds from  pressiongsee Appendix E

zN7 total is Figure 4a) is a comparison of the weakly-constrained-
polymer theory, where

™

1
N Smix(@IN, 7)=—2(N) 7 [qIng+(1-q)in(1-q) ]. 1 1
(3.4 N Sror(@) = 5 [So+ ASsond A) + ASas(d) + Smin(A) ],

The Flory approaclisee Appendix Cof considering the 39
formation of a cross link from four chains defined by the with a lattice simulation o5(q)/N for the 27-cubg32]. The
cross link’s four neighboring bonds breaks down ismall-  theory and simulations of the 27-cube are relevant for col-
N-dependentregion of very weak constraint, where the en- lapsed, proteinlike heteropolymers of sequence lengé®
tropy loss due to the formation of the cross link is morewith ~65% helicity and liquid crystalline orderif@,15]. In
accurately accounted for by considering the formation ofthis sense the molten globule state of the polymer can pos-
loopsin a nearly unconstrained chain. Furthermore, as desess secondary structure, but this structure is renormalized
scribed below, the loops that define a bond or cross link iraway in coarse-graining the description of the individual mo-
this nearly unconstrained regime are confined inside a regionomeric units.
of the linear size of the polymer, which reduces the rate at One detail that must be accounted for is t8¢d) consid-
which entropy is lost, i.e., the confinement to configurationsered in the simulation is relative to the collapsed cube state,
of the polymer consistent with a collapsed walk inside aand thereforey varies as a function ofi from about 0.7 to
molten globule imposes a restriction on the size of a random. To compensate for this effect in our constantheory, we
walk of a section of the polymer chain, which makes it morehave used an initial unconstrained entrdgyfor that of a
likely for a loop to be formed. The rms length of a walk of partially collapsedy=0.7 polymer, but to obtain accurate
the size of the average chain lengtb= N/2u b cannot be  values for higher values af, the fully collapsedp=1 val-
larger than the linear size of the globug=(N/7)*®, so  ues for the other entropy terms were used. Later, when we

12 3 will interpolate between the We_akly constrained and strongly
N N ﬂ 3.5 constrained entropies to obtain the glass temperature and
2uc]  \p @ other quantities, we will hold; constant in all expressions.




6276 STEVEN S. PLOTKIN, JIN WANG, AND PETER G. WOLYNES 53

o5 =" N T~
- ~
g smixing S o
7 ~
S ., < \
N ‘_—T‘
05 \\\ As Antibond
\. \
’ low
-1 ™~ \ ASTOT
N
~
15 AS bond — N
~
—
S—
2 —
0 0.2 0.4 0.6 0.8 1

q

FIG. 3. Entropy contributiongdivided byN) to the total lowq entropy forN=27, =1 (all entropies here and throughout are in units
of Boltzmann’s constankg.): Long-dashed line: Entropy loss due to the formation of bofits (3.1)]. Short-dashed line: Entropy
associated with the complexions consistent with the characterizatj&y. (3.4)]. Thin solid line: Entropy loss due to forbidden configu-
rations which would cause the overlap to excepdThis “antibond” term becomes larger for more compact polymers and for longer
polymers[Eq. (3.3)] Thick solid line: Total entropy loss for the weakly constrained polymer. Addigdo this gives formula(3.9).
Confinement effects add further modifications to the theory for small valugs(edée Sec. I\

One important feature of th8;o1(q) curve is the exist-
ence of a maximum in the entropy(nu™?) at a small but
nonzero value ofj=q.,,, Which indicates the statistically
most likely value of the overlap &— o<, for two states both
with Nzz bonds. This ‘“statistical overlap” signifies the
most uncorrelated two states can get as a consequence of the
finiteness of the polyme(its corresponding freezing tem-
perature is thereforec, as we shall see belgwand as
N— 2, qmin—0.

Note that there is a value of less than 1¢,, at which

a.) 1.25

ASror(q,)=0, (3.10

where q,~1/(z(N) ), i.e., atq, there is~1 bond per
monomer. For 27-merg,~1, but for larger polymers this
problem can become more serid®8]. Forg>q,, there is
more than one bond on average per monomer, and configu-
rations with finite entropy are highly inhomogeneous, i.e.,
segments of the polymer which are correctly configured are
clustered together, and only a few loops or dangling ends are
free and contribute to the configurational entropy. An appro-
priate formula for highg based on the combinatorics of dis-
crete sections of the polymer chain “melting out” of the
“frozen” constrained medium, rather than a “gas” of a few
individual formed contacts as in the logvtreatment, is ob-
tained in the next section.

FIG. 4. (a) Theoretical entropy curve for a weakly constrained IV. ENTROPY OF A STRONGLY CONSTRAINED
polymer compared with molecular dynamics simulations for the POLYMER

27-mer.(b) Interpolated entropy using the weakly constrained for-

mula with »=0.7 and the strongly constrained formula with ~ In the highq limit, we start from a reference state in
n=1. The small correction fo values abovey,. is a linear ~ Which all the bonds are formed, and the polymer is “fro-

interpolation betwees(qa,) = (2Inw™)/N ands(q=1)=0. The  ze€n.” By switching from the contact representation used at
analytical curves are also qualitatively similar to the 2D simulationslow g to an atomic representation, we can study how certain
carried out by Chan and Di[l56)]. parts of the “frozen” polymer are “melted out” by keeping
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lengths each have their own internal partition function given
by (4.1) and(4.2) (the frozen pieces do not have any internal
entropy in our mode| so the total number of states is given

by [35]
N
(Nf)!I?
Qro1= R /= (/=10
T {nE/} 1y n, ! Tym,! /H/C(M )
{m/}
{pd
N 1 2p,

" EC

where Nf=N;,,; is the total number of melted pieces,

b.) w=wuM) and the sum is over all possible distributions of

* {n/}, {m,}, and{p,} (see Appendix G for arguments lead-

ing to this expression, specifically the partition function for

tion of the reference state & 1). (b) For large values of the simi- the ends Express_lons of this form for j[he n_umber_of states
larity parameterg, the entropy can be considered to come from havg been used in models of the. helix-coil transiti@d],
melted out strands along the sequence which are not in their corre@tnd in models of polymer adsorption onto a surff@,37.

geometrical position&dark lines, and their combinatorics with the Maximizing the log of the largest term if#.3) subject to
rest of the frozen medium. constraints(see Appendix K gives the usual negative bino-

mial distributions for{n}, {m,}, and{p}:

a.)

FIG. 5. (a) Diagram of a polymer in the geometrical configura-

track of which residues are still in their correct geometrical

v
positions relative to the three-dimensional structure of the n/ f( f ¢

reference state. The melted pieces each carry a certain Nror r
amount of entropy, and there is also a mixing entropy asso- .
m, f ( f) /-1

ciated with the different places that the given melted pieces

can occur along the sequence of the polymer. The process of NTOT:a - a
melting physically involves the collective freeing up of sev-
eral monomers at once, i.e., at least some critical number
/' of monomers must be free for the melted strand to have
any entropy. Each melted piece of segment lengttarries  whereN;or=Nf, and
with it an entropy

p,=s(1—s)’ ~"Ec, (4.4

B 1
e (Lecm 1)
In addition, the ends are allowed to be freed up in the same (4.5

fashion, but we expect them to be easier to free up, With &y, ting the distributionét.4) back into 1w [Eq. (H1);

gorrtispon?mglyf sma]ller valge for crlt’|c_a| collective length. see Appendix Higives the entropy as a function of the mac-
o the entropy for a free end of lengthis roscopic parameters, f, and/;

S()=Inu™[/—(/.—1)]. (4.1) r=1-q—f(/c—1)—2/gIN, s

S()=Inp ™[/~ (/e D], (4.2

Na.f.” ):lnu(mf){l—q—f(/ —1)_M}
where /gc</. typically. See Appendix F for arguments N~ = " c N

giving these two results.

We wish now to express the total number of states of an
entire polymer composed of melted and frozen pieces, along
with melted or frozen endgsee Fig. % and concurrently
estimateq. We can characterize a state microscopically by
the number distribution of melted pieces of length{n },
the number distribution of frozen pieces of length
{m/}, and of the probability distribution that an end has
length 7, {p,}. As a consequence of specifying the total
number of states in terms of the given distributidms},
{m,}, and{p,}, there must be a combinatorial factor present
associated with the permutation degeneracy given the above
distributions. There is also a mixing term pertaining to the
end length distributions, which is necessary for the end
lengths to have a probability distribution rather than just their
mean value. The melted pieces, frozen pieces, and end

+qlng—(g—f)In(q—f)—2fInf

+

/e
1-q- (/=1 -2

XIn

, /e
1-g- (/= 1) =2

e ‘e
—|1=g-f/ =2 [in| 1-a— 1/ -2

le=(/ec— 1) e~ (Zecm 1)
+2( N )'”( N )

</E_/EC) (/E_/EC>
-2 In

2™ 46
N N - Nt ( ')

N




6278 STEVEN S. PLOTKIN, JIN WANG, AND PETER G. WOLYNES 53

6(a)]. Putting both /g(q) and f(q) into Eq. (4.6) for
Nf(a) 5 S(q,f,7/g) gives the entropy for a strongly constrained poly-
mer solely as a function af [see Fig. €c)]. If the polymer is
not completely collapsed7(< 1), then there is still entropy

3 at g=1, and the entropy curve is then interpreted as the
a.) entropy relative to that of thgq=1 state.

Note thatf(q) shows that there are melted pieces in the
! interior — it is maximum for moderate values gfbecause

0 q at smallg the ends eventually unwind and leave less se-

0.2 0.4 X . . )
0 o o8 k guence space for melted piecegz(q=0)=N/2, and
o /’e(q) drops faster than linearly as it must for there to be
that there is a maximum value of less than 1 where the
entropy essentially runs out as a result of the collectivity of
--------------- mers must be melted at once means that the overtzgmnot
& 53 53 G o5 3 get infinitesimally close to 1, but has a maximum value at a
S(q) °° also obtain the average length of a typical melted piece, or
06 frozen “train,” as a function ofg:

30
Lengths

20

b.)

10

1
[ ! interior melted pieces. The mixing term causes there to be a
fozen | maximum in the entropy for a nonzero valuegpfNote also
\/
’ the melting procesghe total entropy af],ay is just that of
two free monomers, 2pd™), i.e., the fact that’, mono-
q finite distance from 1. If 2'2c</¢ ,Omax=1— 2/ /N, oth-
erwise gmax=1—7"¢/N. From the above solutions we can
=N /n _
0.2 /SN2 1-q 276(q)
/ = = - , 4.9
< melte({Q» Z/Ncn/ f(q) Nf(q) ( )

o 02 04 06 s /1 9

Amax

FIG. 6. (a) Plot of the number of internal melted pieces versus E’I'/m/
similarity parameteq, Nf(qg), (with mean length per piece as in (7 trozed Q) = W: f(_): (4.10
(b) in a 64-mer withnp=1, /,=3, and/gc=1.5. (b) Plots of the 17 q
average free end sequence lengt(q) (solid line), the mean in-
ternal melted strand lengty” e @)) (dashegl and the mean in-
ternal frozen train lengtk/ 0,6 q)) (dot-dasheplas a function of
the similarity parameteq, for a 64-mer withp=1, /=3, and
/ec=1.5[Eqgs.( 4.8), (4.9 and( 4.10]. (c) Entropy of a strongly
constrained polymer as a function of similarity parametefor a
64-mer withnp=1, /.=3, and/gc=1.5.

which are plotted in Fig. @) for the 64-mer.

Note that in our analysis of the polymer entropy we have
considered only states associated with different configura-
tions of the backbone and have neglected other contributions
to the entropy such as side chain configurations, and entropy
due to the solvent.

Finding the most probable end lengths and total number From the calculation of the entrop§(q) we can now
of melted pieces for a given overlap involves maximizing €asily obtain the entropic quantityd(g)=—dJ(g)/dg, which

S(q,f,/g) with respect to/g and f, which gives the equa- along with the roughness paramesgn) is sufficient to cal-
tions culate thermodynamic quantities associated with the corre-

lated energy landscape.
, 1-g—2/¢/N The entropy calculated in the preceding two sections does
f(a,/e)= oA ek (4.7 not consider the energetic dependence of an allowable state’s
c probability of occupation through a Boltzmann factor, and in
and this respecs(q) is a “microcanonical” entropy which just
counts the total number of states of all energies with overlap
g. The transformation to a canonical entropy and thermody-
namic free energy is described in the next section.
Lastly, the entropy theories of the preceding two sections
230 3 3 can be easily modified to describe a polymer in dimension
_<1_q_zﬁ)(/E_/E0+ 1/ tu/e=0. (48 4 (e.g., d=2). The analysis of the often studiedd Zase
parallels the three-dimensional treatment, but the effects of
Equation(4.8) determines the end length solely in terms of confinement are considerably less. We will not discuss these
g. For values of/ ;=3 the solution/z(q) is numeric[see results in detail here, but mention that the GREM result for
Fig. 6(b) for Z/g(q) with /=3 and/gc=1.5]. Putting the  2d does not reproduce the replica symmetry breaking found
solution Zg(q) into (4.7) gives f(q), whereNf(q) is the by variational calculations that include vibrational chain en-
number of melted internal pieces as a functiomdbee Fig. tropy [38].

(/e=/Ed"* q(/c+/E_/EC)+q_1+2WE




53 CORRELATED ENERGY LANDSCAPE MODEL FOR FINITE, ... 6279

V. THERMODYNAMICS OF THE MODEL q(x)

To get a better feel for the GREM results such as freezing ; .,
temperature and free energy, it is helpful to compare them

Imez

with those obtained for an uncorrelated landscape, i.e., in the P
REM [11]. In general, the mean number of states with ener- a
gies in the interval E,E+ dE) is just — Qrem R (g )/
E2 0.6 // 7?= 0.7
_ o, (mHN - _ /
(N(E))=(p"™)"P(E) eer(so m) (5.1 )

with P(E) given by Eq.(2.6), u(™? given by Eq.(2.3), and !
So=Inu™. If E>Ey=— (2Ns,AE?) Y2 the average number .2 |

of states is very large for even fairly lardé (we will con- min _i4-

sider only the thermodynamically significant negative energy | = ,

states here If the energy landscape is uncorrelated, these o 0.2 0% \“ 0.8 1.0
states are all statistically independent, and so the relative 7 x T

fluctuations in the number of states at enerdy, T T,

V([n(E)—(n(E))15/(n(E)), are~(n(E)) Y?and are thus
negligible. Son(E)~(n(E)) for E>E4, and the microca-

nonical entropyS(E) is then FIG. 7. The order parametey(x) for a 27-mer. Light-dashed

line: The REM q(x) has a jump fromqu, t0 Onax at

E2 Xrem=T/Tiem=(0.74/0.81){T/Tg)=0.46 [using Eq. (5.4 and
——2}. (5.2 Tg/e=0.74. Solid line: For the completely collapsed polymer

2NAE (n=1), there is a discrete jump in the order parameter fog to

: . o atx=T/T. (= 0.5 herg. Here[f << T)] the in-
On the other hand, iE<E,, the entropy vanisheghe \?egrsae )(;f g ( erg. Here[for Qg=q<Qma,{(T)] the in

number of states at these low energies is thermodynamically
zerg, and the system is frozen into one energy stake
energy Eg). Using dSdE=1T=-E/AE? and
AE?=Nzye?=NJ? whereJ=¢\/z7 is a convenient energy
scale, we can find the free energyT) —TYT):

S(E)=Inn(E)=N|s,

T T ( ds(g)/dq )1’2
X T 2| asQgydg
is used[see Eg.(5.12]. One can then show this corresponds to
T/3=0.36 and thaf§=0.73]=0.74 (see Fig. 18 Heavy-dashed
line: The partially collapsed polymem=0.7) has continuous-type
Ts,+ J2/2T, T>Trem GREM behavior with a more gradual freezing transition. The in-
_ E _ (5.3 verse of Eq(5.26) is used, withT/J=0.36. As the packing density
N . ' 7 is increased, the transition from a continuous to a discontinuous
Eg/N=1J \/2_50’ T<Trem. order parameter occurs g=0.85.
where the freezing temperatuf.r, is given by entropy which must be lost to be localized to one state. The
AE?2\ 112 rem i process can be visualized as a localization to one branch of a
rem= (g) or 7 —(2%) 7% (54  one-level GREM ultrametric tree wite"® branches(Only
© one level of the Parisi hierarchical replica-symmetry-

whereS,=Ns,. The entropy as a function of temperature breaking scheme is necessary to obtain the correct free en-

—dF(T)/dT, is ergy in the REM) Replica calculationg§12] of the order
' parameteq(x) also show a discrete junjg0] from 0 to 1 at
S(T) So—J212T%,  T>Tiem X=T/Tem (se€ Fig. T:
N 0 T<T 59 T T
rem q(X) = min® —X|+0|x— . (5.7
Trem Trem

Note that the thermodynamic entropy is always less than
So. the reduction being due to the fact that higher energyrhe g(x) curve determines the probabili(q) of seeing a
states are less likely to be occupied, with a correspondinglgimilarity q between two states through

small —p,Inp, contribution to the entrop§39]. The energy

as a function of temperature, usifig= — T2 9/JT (F/T), is dx(q) T

given by P(Q)=d—q=(-|-rem) o(g—min) +

1 ! )5( 1)
Trem q (5 8)

E(T) JT, T>Tiem 5 6 ’

NI V2s,, T<Tiem: 5.6 (see inset of Fig. B wherex(q) is the inverse ofj(x). For

temperatures below ., there is a nonzero probability

where —NJy/2s, is the ground-state energy. (1-T/T,en) Of seeing the polymer localized in one state
The magnitude of the freezing temperatdig,, is deter-  with a “self-overlap” of g=1. However, this probability is

mined by the competition between the roughness of the erninfinitesimal atT =T, SO that the freezing transition is sec-

ergy landscape of statggharacterized byAE?), and the ond order in the thermodynamic sense, even though the order



6280 STEVEN S. PLOTKIN, JIN WANG, AND PETER G. WOLYNES 53

P(q)
20 A‘
17.51 7 1 b FIG. 8. Probability distribution of similarity
I 0.8 parameterg. Inset: for a REM heteropolymer
15} { , 1 with T=0.46T;. Solid line: The completely col-
0.6
-1 P(q) r I_TE Iapsed' r=1) heteropolymer(here atT=%Tg)
2.5+ ¢ 0.4 T, ¢ essentially retains & function atq,;,, but the
;] REM spike atgna.y IS spread to a continuum
10 ] 0-2 1 group of states with overlapq>Qg, the total
:I - weight of which is slightly less than the REM
7-5¢ 4 min 0.2 0.4 q 0.6 0.8 fmer f 1 weight of 1-T/T,m. Dashed line: In the par-
o . tially collapsed @=0.7) heteropolymer with
St If T/J=0.36, there is a finite probability of inter-
'l i mediateq values occurringmore spreadingthan
2.5¢1 ' \\ I in the discretep=1 GREM polymer.
: 1
o H N e e e e — — I i
0 mor
g 0.2 0.4 0.6 Qrem 0.8 ¢ 1
TR, q

parameterq(x) itself undergoes a discrete jurfifine entropy 5 duv(q)
(5.5 and energy5.6) are continuous af,e,] [41]. AE qu,
The derivation of the free energy in the GREM involves

essentially the same concepts as in the REM, but with thg 4 the loss in entropy for the same incremeqt
modification that instead of th#otal energies of different

=(AE?)

rem

states being uncorrelated, the contributions to the energies ds
!® on the branches of the ultrametric tree atitthelevel are AS=S,| =- d_qdq’
uncorrelatedsee Fig. 9. A freezing temperature associated rem

with each leveli involves the same competition between sg thatT,,,, in (5.4) is replaced by
roughness and entropy loss as before, but now the competi-

tion is between the decrease in roughness as we move to- 5 dv(q) 12
wards a given state an incremet, (AE®) dg
dq

It was shown in Sec. Il that in our theory(q)=q, so

To(9) 2( . ds(a)) i
J dq ’
whereds/dq is obtained, numerically if necessary, from the
theories of Secs. Il and IV.

Take, for example, a fully collapsedy& 1) polymer of
lengthN=27. Using a simple interpolation formula

Slot(q):(l_Q)SIow(q)+qu1igh(Q) (5.11

between the lowg or weakly constrained and the highor
strongly constrained entropy formulas of Secs. Il and IV, we
obtain an entropy curve as in Fig. 10 an@igq) curve as in
Fig. 11. The interpolated entropy formula incidentally gives
a crude way to introduce the coupling of collapse and bond
formation by considering the weakly constrained polymer to
be partially collapsedsay »=0.7), and the strongly con-
strained polymer to be completely collapseg=(1)— see
Fig. 10b). Notice there is a maximum in tr&q) plot indi-
cating a most probable overlap,;, for two globule states,
FIG. 9. The ultrametric tree used in GREM — the parameterswhich corresponds to a freezing temperatlig€dmn) =,

ai.al, a, ande® are described in Appendix B. i.e., forq<qm, States are actuallgnticorrelated and so this

(5.10
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| Ent N
(interpolated Entropy/N)vs q Glass Temperature vs q

0.7
max

1.2

|-

0.6

0.4

0.2

0

0 ('1 ' 0.2 0.4 08 % G FIG. 11.T4(q) curves fory=0.7 andy=1 [Eq. (5.10], for the
" a 27-mer. QY is the similarity parameter where freezing begins at
Tg. The temperatures Ty,=J/V2(— ds(Qmay/dq), with
FIG. 10. Interpolated entropies fop=0.7 and =1 [Eq. J=\/zne, where freezing is complefe= qpax and S=0 for the
(5.11)], for the 27-mer. The shape of thg=0.7 entropy curve at 7=1 curve,q=0max and S=S(0mna for the »=0.7 curvd, are
Omax. indicating a discontinuity in the freezing temperature theregiven for both cases.
from T(gmay to T=0, means that a finite temperatyré(qmay ]

will localize the polymer to exf(dn.,) States, but there are no lower (O, 0<g<dmin
glass temperatures for the system ufiti# O (the vertical part of the
entropy curve T/Tg, Amin<q<Qq
x(q) = § (5.12
region cannot be analyzed by the GRE(ih its present TITy(), Qg<d<dmaT)
form). This situation is analogous to considerimgpin mod-
els only for the regiort=1/2 in the pair correlation param- (1, Omax(T)<q<1.

eterv=(2t—1) [17], or for a GREM applied to a spin [see Fig. 12 for the inverse functiar(x)], whereT,(q) is
system in a magnetic fielt2], where two states must both Eq. (5.10 in our application, and),,,(T) is defined by
have a magnetizatiom, and thus have an overlap with

the all-spins-up state, and then by ultrametricity have an 1= T
overlap greater tham with each othefthey are on the same Tg(AmaxdT))

branch of the tree Since any branch of the GREM is still [ ; ; ; ;
) . . JmaxdT) here is approximatelfbut not identically g,.x @S
itself a GREM, we can use the analysis of Appendix B 0 gefined earlier in describing the entropy CUY}IGQS (=07

obtain the free energy, but we consider only states that havg. e collapsed 27-mgiis defined througtisee Appendix
an overlap of at leasi,,;, with each othefwhich is equiva- B)

lent to obtaining the free energy at fixddand » since these

(5.13

parameters determingmin (Qmin=dc~ 7" **N~23)] [43]. _ ds(Qy) _ Smax™ s(Qg) 5.14
Notice also that th@ 4(q) plot has, in addition to the diver- dq Qg Umin '
gence afy,;, associated with the statistical overlap between h _ q
uncorrelated states, a single maximum freezing temperaturé €reSmax=S(0min), an
atq*~1/2. So if we were to cool the system down from high TS T4(Q9 Q2 Qi 172

T T . Jg_ "o\~g) _ g~ Hmin (5.15
temperatures, the implication is that as the temperature is 3 3 [ Smar— S(Qg)] . .

lowered, the system will undergo a REM-like transition with
a discrete jump in the order parametgifrom i, to Qg Comparinng/J with T,erm/J in Eg. (5.4), we can see that
(defined below and in Appendix)Bi.e., this is adiscrete- the decrease in roughness due to correlations IoW@rs
type GREM. The glass transition in this case is such that thésincng—qmm<1—qmm], but the decrease in the amount
polymer is frozen into basins in the energy landscape whiclof entropy lost at freezing sinc@g<1 tends to makeTg
contain collections of states that are all similar at least to théyigher (sinces, 5x— s(Qg) <Smax)- These two competing ef-
degreeQyg. fects nearly cancel one another to ledj¢e=0.74 close to

It was found by Derridé42] that the Parisi ansatz applied the REM value ofT o ,,/£=0.78, for the 27-mer. The GREM
to the GREM reproduced the correct free energy, and théeezing temperatures increase with essentially because of
functionx(q) which maximizedthe equilibrium free energy the increase in roughness associated &{td). Also Tg ap-
tends to a maximum in the lign,on(n—1) negative dimen- proachesT,., asN increases, since the increaseQﬁ with
sionality replica spadehe replica-derived expression for the N makes the transition more REM-like for largr(see Fig.
free energy in thaliscrete-typeGREM was 13).
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a') Entropy at T, . a-) Glass temp.vs N
-~ —~—
0.8 ~ -
Te—-a 0.75
0.6 s (Qg) 0.7
0.65
04
0.6
o2l | T T e —— e __ S thermal 0.55
\ _
0.5F —
0 . Pd
0.75 0.8 0.85 0.9 0.95 1 0.75 0.8 0.85 0.9 3,05 3
b.) n n
Entropies at Tg b-) Glass Temperatures
1
0.3
0.95
0.25 09
o
0.2 S (@y) 0.85
0.15 0.8
0.75
01
0.7
0.05 Slhermal
0.65
0 L 06 L L ]
30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100
N N

FIG. 12. Entropy of a single basin over total entropy at the FIG. 13. The temperatumg at the onset of freezinsolid ling),
freezing temperature, and thermodynamic entropy over total enplotted with the REM freezing temperatufe., (dashed ling as a
tropy at the freezing temp, plotted here vs packing densitior function of packing density; and sequence length. The dashed
N=27, and vs sequence lendthfor 5= 1. Sincng increases with  continuation of theTg curve is the extension below the tricritical
N, the basin size decreasesNMsncreases, hence the decrease inP0iNnt 77c as described in Sec. V. Temperatures are in units dte
entropy.(This is to be compared with the Levinthal entropy for the temperatureT ¢, where total freezing occurs is lower than both
REM model, which iSSpay; Sthermal fOr the REM is zero. Trem @and Ty (not plotted herg

Below 7., there is no solutiong to Eq. (5.14), but the
function T4(q) still has a(weakly peakefimaximum atg*
qugEq* at »=7.), and we can still compute all the ther-
Jgodynamic quantities by using this characteristic vatue
which signals the onset of overlaps of appreciable probabil-
ity in P(q). However belown=3/4 the freezing tempera-

In addition to the order parametg(x) for the REM, Fig.
12 showsq(x) for collapse values ofp=1 and =0.7,
where the order parameter is discontinuous and continuo
respectively. One can then see there must be a critical val
of » where the discontinuity im(x) disappearganalogous

to the GREM tricritical point on the de AImeida—ThouIesst T tonically d : ; d there i
line). This tricritical behavior occurs af.=0.85 forN=27 uresTy(q) are monotonically decreasing withand there is

[one can extend this analysis to obtain a tricritical line"© 'OT‘ger any characteristic valu_eapito describe REM'“ke.
7(N) 1. freezing. Throughout these regimes though, the functions

g(x) andP(q), as well as thermodynamic quantities, are not
significantly different.

The structure ofx(q) implies that the order parameter
g(x) [the inverse ok(q)] has a plateau ai,;,(N)>0, and
a discrete jump at=T/Tg from gp;n=0.04 t0Qy=0.7 in-
z7(Q3—Gpmin) |2 dicatingP(q) =0 in this region. It is fruitful to compare our
m function g(x) with the GREM analogue applied to a spin

glass in a magnetic fieltkee Ref[42] and Fig. 7.
All of the thermodynamics obtained above is for a poly-

As 7 increases, the decrease in entropy losTgf the in-  mer in equilibrium on the time scdl® during which it is
creasingly REM-like behavior of the order parameter chartrapped within a single basin. However, there may be ways
acterized by a Iargeibg [Figs. 7 and 14 and the fact that the to escape from a basin kinetically, which leads to an inves-
roughness of the landscape increask&{~ 7) all cooper- tigation of the search time for the polymer to explore all of
ate to give aTg that increases withy (see Fig. 13 The its stable basins of attraction. Since p@(@g)] is the average
behavior closely follows the REM behavior of Eg.4), with number of states in a given basin, tf@nfigurationgl en-
a crossover point a=0.88. tropy associated with the total number of basins., the

Down to the tricritical pointy, we can look at the pack-
ing density dependence of the REM-like freezing tempera:
ture

To_

]
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Q5 ()

FIG. 14. (8 The minimum similarity Qg
within a frozen basin beIovﬂ'g is an increasing
0.7 ] function of the sequence length of the polymer
N, for the completely collapsed polymer

(n=1). (b) Qg is an increasing function of col-

0.651 N 1 lapse parameter for the 27-mer, plotted above
the tricritical point 73,=0.852. Below 73, the
0.6 . . . . . . . . nature of the transition changes to continuous
30 40 50 60 70 80 90 100 freezing, but we can still obtain an approximate
0.7 , i i , i , i i Qg value by equatingg with the broad maxi-
mum of theTy(q) curve (dotted line in inset
0.65 The increasing roughness in the landscap&as
and n increase leads to more REM-like behavior,
0.6l with the similarity at freezing getting closer to
1, and the corresponding basin size getting
0.55 smaller(see Fig. 12 This implies that in the fold-
ing model which includes an energy gap, where
o.s | 7 is an increasing function of the overlap,
with the native stateQq (and hencerg) will be
0.45 an increasing function of native similaritQ, ;.
0.4 ¢
0.35

Levinthal entropy[21]) iS Sieyintha™ Smax— S(Q). A value Using a Kirkwood superposition approximation as men-
of Q< Qpay indicates a reduction in the number of basinstioned in Sec. I, and using simplifying assumptions such as
from the REM valueS,,,,, to be searched through at the the probability to form a bo_nd to.monompns Markovian,
glass transitiorTg (every state in the uncorrelated landscapePVerlaps ofm-body interactions, in terms of the two-body

is itself a basii This reduction in basin size on the energy -

single-bond overlagy, go as~q™ 1. To see the effect of
landscape, relevant for a kinetic search berﬁg\g is quite thesem-body forces, we can consider them as the sole con-
significant for a typical collapsed polymer. For example, a

tributors to the energy, and modify the pair energy distribu-
heteropolymer wittN= 100 and 60% helicity has an entropy t'%rll(z'lq by replgcmg the twq-body correlation with
2 70kg [3,15]. Using the interpolated(q) theory with g™ ". This results in a GREM with
n=0.7 for low q and »=1 for high q (see Fig. 4 me1
Smax=1.3 (see Fig. 1D gives an equivalent collapsed cubic v(d)=4
lattice polymer of lengtiN=54, and a REM Levinthal num-

ber of basing”~10%. Using the configurational entropy at Which has arm-dependent freezing temperature
T, for a mostly collapsed 54-mefconsistent withQg) of

and a(q)=(m-1)g™ 2,

7=0.9, the Levinthal entropy, eyintha=(2/3)Smax= 46K , To (m=1)(Qgy)™? Q™ = (Gmin)™*
and on a correlated landscape the system must search 3 — ds(Q°% 2[Sma—S(QP)
through ~ 10%° basins at the glass transition. Note that the —Zsc(j—gg [Smax—s(Qg)]

Levinthal entropy increases asincreases, so it is important
for the conformational search as to how collapsed the poly-

mer is when it undergoes its glass transtion. and a Levinthal entropy
If m-body forces dominate the interaction energies be- .
tween monomers, we expect that in the limit—o we Stevintha™= Smax— S(Qg). (5.16

should recover the REM results such &3°— Omax.
To—Trem=J(25ma 2 SLevinthaﬁSmaszlnM?mf), etc.  whereQyj is the solution to
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Levinthal Entropy (per monomer) q(D
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0.75
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FIG. 16.q(T), defined as the inverse 8f(q) (see Fig. 11 for
the 27-mer atp=0.9, for the REM and GREM, the REM being
defined here with a lineas(q) from S,,,x at gmin 10 0 atgyax- All

FIG. 15. Levinthal entropy per monomer in units kyf, as a
function of m where the Hamiltonian describing the energetics of

the system hasn-body interactions. The dotted line is the REM . . . omax = ;
y y temperatures are in units ef This is similar to the functiom(x)

result, the integer values of the solid line are thebody results. (Fig. 7) but here we can see there exists a plateau below
Real proteins may contain both two-body and higher-body interac;l_z_i_ Note the t t i1 the GREM wh the ;
tions. For these cases, the interpolated values of the Levinthal en- . froz: ol the e/mpera ure in e where the freezing
tropy can give some crude idea of the magnitude of many-bod)peg'ns is higher thafirer, but the GREMT=T 4o, is much lower.

effects on the search problem.

dx(q)
P(a)=—7g
Q)" (Um)™ "t (M-D)QQ™
SmacS(Q)  dsQ) o, A< Cin
~dqg spike of weightT/TS,  g=0min
_ 0, Qmin<q<Q8 (5.18)
0 ; : : ; TT,(q)( d?s(q)
Qg can be shown to be a monotonlcqlly increasing function 92q (_ g , Q8<Q<Qmax(T)
of m, and aboven=4, there is no solution to E¢5.17), and J dq
in this regionQg=qmax [42]. The increasing value o Lo, Omad T)<q<1.

gives the order parametar(x) a larger discontinuity at

x=T/T8, consistent with the REM descriptidsee Fig. 7. As mentioned in Appendix B, a monotonically increasing
If Qmax=1, in the REM limit m—oo, Tg approaches the Ty(q) curve will give a.RE!\/I-Iike freezing with a jump in
REM value ofJ(2s,,) Y2 Sincng increases witm, the ~ order parameteq(x) as in Fig. 7. A REMx(q) dependence

configurational entropy per bas®(Q9) decreases, and the ca:ln be O_Prt]ainid fromxa Iinfearlz deRcErle\z/laiB(g) (Fig. 17) as
Levinthal entropy, measuring the number of thermodynamin{0 ows. The shape ok(q) for the as two steps, one

. ; rom O to T/T,em at dmin and another fronT/T, ., to 1 at
basins to be searched below thg glass temperatglreln— Grmax, With horizontal pieces from O taj,, at x=0 and
creases t®,,, abovem=4 (see Fig. 15

_ Umin t0 Omax @t X=T/T,enn. Since each state in the REM is
The general shape @j(x) as well asP(q)=dx(0)/dd el one basinS,eyinma= Smax at Trem, and therefore in the

can be seen to be “smoothed out” versions of the REMgRrgMm |anguag@8|rem=%ax- So there is no second re-

results[gee Eq(5.18] an_d Fig. 8. P(q) has aé function at gion betweerQ® andq,,..in x(q) in Eq. (5.12, and there is
Omin @s in the REM, but instead of pure stategat, having only one freezigng temperature, which by E§.15 is

a finite WeighthEaPizl—T/Tg below Tg as in the
REM, the weight is spread out among a group of similar
ergodically confined states with high overlag>Qyg). Trem  Tg(Umax) (%ax—Qmm 12
(There is also some spreading ngaf, which increases with 3 3 = ) '
decreasing n.) There will be a plateau, however, if

T<T f0;= T(Omax), Wheres(T)=0. This can be seen from \njch is just Eq.(5.4) whengma=1 andq;,=0. It also

the Ty(q) curve[Fig. 11], which drops vertically atinax,  follows that the bilineaftwo-slope approximation fors(q)
meaning thak(q) has a vertical step @fnaxandq(x) has a  whenN is large(Fig. 17) has two freezing temperatures, and
plateau in this regiofisee also the inverse functi@i{T) in by the above arguments can be seen to be equivalent to a
Fig. 16]. The finite weight of a pure state faf<T,, is  two-tier GREM[26].

consistent with the vanishing entropy in this region of tem- For N=27 andn=1, the glass temperature curV¥g(q)
perature. The form oP(q) is given by and the order parametey(x) justify that the free energy is

Zsmax
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FIG. 17. Interpolated entropies fod= 27 and
N=125[Eq. (5.11)]. The entropy curve imitates
a bilinear form for largeMN. The small discrep-
ancy betweers,,,, for the curves is due to the
N-dependent confinement theorg;, 5— Inu™?

as N approaches the bulk limit. The range dn
where confinement is importanrt:0 asN— o,
while gpax (Wheres=0) —1 asN—o. Note
that qnay increases withiN approximately in the
manner described by the highformula; the de-
creasing value ofj, where the entropy crisis oc-
curs in the lowq formula only affects the slope
of the interpolated entropy for smail

0.2 0.4

0.6

obtained by applying to the polymer a discrete-type GREMperature derivative of either the high temperature or partially
in a “magnetic field” of strengthg,,;,, with the result

F(T) J?
Tsmax+ E(qmax_ qmin)v

N

F(T) J?
TS(C](T))+ E[qmax_ Q(T)]

TN
ds(q))1/2
~dq

am
+ \/EJJ dq(
Qq

2
+ =5(Qg = Umin),
Tg g min

=
N

1/2
wfed 45
9

dq

2
+ =5(Qg = Umin),
Tg g min

where q(T) is the inverse ofT4(q), s(q)=3S(g)/N is the

0
T>Tg,

T 10, <T<Tjg,

T<Tfroz,

(5.19

specific entropy(per monomeras in Fig. 10,0,ax is theq
value wheres(qman) =0, T troz= T(Amay), andJ?>=zzne? (J
is defined slightly differently in Appendix B

Below the temperatur@g, overlaps with values oQg
and greater begin to be seen with finite weight, illustrating

that the system begins to be confined within basins in the
energy landscape containing configurations at least as similar

as Qg (see Fig. 14 Sincng<qmaX, there are still many

states within these basins, and a corresponding finite entropy

left over below the glass transition temperatlife Since the
glass transition is thermodynamically second order as it was

in the REM, we can obtain the thermodynamic entropy leftwhich

over at the freezing temperatum(,Tg), by taking the tem-

S(TY)
N

frozen phase and evaluating'ég:
F o 1[J)2 o
N TOZS(QQ)—E T3 (dmax—Qg),
9

J
- ﬁ(
(5.20

which has a reduction from the raw configurational entropy
per basinsbasmzs(Qg). The thermodynamic entropy de-
pends orN and » mostly throughQg, T, and thez(N) and
7 dependence af (see Fig. 13 So a feature of the GREM
is that there is now a nonzero entropy below the glass tem-
peratureT, where a collective transition takes place to lo-
calize states to within similar values, but not immediately to
one pure state.

We can also find the energy in the ponmerT@tthrough

e

and the ground-state energy

E(Tg) J?

5=

1 9 -
N 9(1/T) TO__T_g(qmax_Qmin)
]

(5.2)

EGS_I. FT) 0
N N T

ZTS(Smax_ S(Qg))

Umax ds 12
ene
Qg

dq (5.22

is above the REM

Ecs/N=—2T enSmax (Fig. 18.

ground-state  energy
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From the free energ¥(T) in the free, partially frozen,
Energies as a function of 1 and completely frozen regimes, we can obtain the thermody-
a0l = ' namic entropy and energy as functions of temperature.
Above the freezing temperatu?% the results are as in the
REM, with overlapq=q,,i, andS(T) andE(T) in the high
temperature phase. So that the high temperature results
agree, we have modified the REM analysis by maldfa) a
linearly decreasing function af from s, to O on the in-
terval{Qmin.Omax instead of0,1}. This increases the slope
ds/dq and thus lowerd ., below T°, so we will call the
REM transition temperatur@/,, here In the example in
Figs. 19 and 20N=27 and »=0.9; the freezing begins
aboveT/,,, and there is a gradual transition down g,
below which the system is completely frozen into one state.
In the partly frozen regime betweﬁg andT 4, all tem-
peraturesT are freezing temperaturd€q) [Eq. (5.10] :

3
[ ds(q)’

as the overlag monotonically increases the freezing tem-
peratures monotonically decrease, afd) in Eq. (5.19 is
understood as the inverse Bfq) above(Eqg. (5.23 see Fig.
18). Below T 107, =0Umax: S(T)=0, andE(T)=Egs. The
form of the entropy as a function df is

T(aq)= (5.23

FIG. 18. Ground-state energy for the GREM and REM, as wellg T J2
as the energy at the glass transition, vs packing derifitythe N Smax— ﬁ(qmax—qmin), T>Tg,

27-me), and sequence lengflfior a densely packeds(=1) poly-

mer]. All energies are per monomer and in unitssof The mini-

mum atn somewhat less than 1 is due to the competition betweer§(T)
the increase in ground-state energy as the polymer becomes m =s[q(T)]- Ez[Qmax_Q(T)], Tfroz<T<T3,
dilute (because the width of the Gaussian random energy distribu-

tion becomes narrower as the number of bonds decrgas®s the

decrease in ground-state energy as the total number of states whi€{ T)
must be frozen out at the glass transition incredséth decreasing N

2

T<T froz (5-24)

and the energy v§ is

FIG. 19. Entropy per monomer, in units of
Boltzmann's constant, of a GREM heteropolymer
(N=27, »=0.9) plotted vs I, where tempera-
tures are in units of. In the GREM the polymer
is more gradually localized to one state at a lower
temperature than in the REM. This is because the
energy correlations between states smooth the en-
ergy landscape in the vicinity of a state, making
glassy localization to that state happen at lower
temperatures than in the uncorrelated landscape.

081
0.6 -
0.4

0.2

S(Q%) 4
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Energy
0.4
08 FIG. 20. Energy per monomer, in units of
of a GREM heteropolymeN=27, =0.9) plot-
-0.8 ted vs 1T (T also in units ofe). In the GREM,
the polymer approaches its ground-state energy
more gradually than in the REM, because in the
-1t correlated landscape the polymer is not yet
trapped to its ground-state at temperatures below
EQY) T/em, the smoothness of the energy landscape al-
8/ 12 lowing the polymer to still explore many states at
Egp —T-""""" colder temperatures.
#::::::::::::: ————————————————————
-1.4 0 4
E%
E(T) J perature phase sindg(dqmin) =, and the free energyela-

NI f(qmax— Omin),  T>Tg, tive to that of the fully constrained statén the remaining
two phasedgpartly frozen and completely frozegiven by

B g AT~ 2 (Q G F(T) i
N3 T Amax 70! R Gmin - = TaMI+ S5 ldmax—a(T)]
a(m) ds(q))l’2
- 2 d - T - ’ T T Z<T<TO' ™ —d 1/2
fog q( dq fro g +ﬁquq_ dq(— Z((?)) !
E J Amax dS(Q) 12
N_J:_T_S(Qg_qmin)_\/zf(gg dq(——dq ) ) Tg(Qmax)<T<Tg(Qmin),
T<T , 52 F Umax dS(CI) V2

froz ( 5) — N = \/EJ s dq( - d—q) ’ T<TQ(QmaX)1 (527)

whereT f0,= Tg(Umax) -

We can also apply the GREM to a partially collapsed
27-mer with, say,»=0.7, and obtain the corresponding
guantities as above. The interpolated configurational entropy
curve of Eq.(5.11) (see Fig. 1Dcorresponds to a larger total
number of states since the polymer is less compact, and also VI. CONCLUSION
has a minimum overlag,;,=0.04 where the entropy is a
maximum .= Inu™"=1.31). The corresponding freez-
ing temperature curv@ y(q) is indicative of acontinuous-
type GREMwith the exception that there is a diverging glass
temperaturel 4(qmin) = (see Fig. 11, which we deal with
as before by considering this the finite-size analogue of
spin system in a magnetic field. This is seen most clearly b
investigating the order paramete(x) (see Fig. 7, defined
as the inverse of

whereq(T), s(0), Qmax andJ are defined as before.

We have analyzed the thermodynamics of a mesoscopic
random heteropolymer by combining the generalized random
energy model of a correlated energy landscape with the ap-
propriate polymer physics of a simple collapsed polymer.
(J;or higher collapse density the glass transition is a first-

rder-like random phase transitigwith respect to the order
arameterlike the transition exhibited by the random energy
model. A feature is the emergence of a tricritical point at
lower packing density, where the transition becomes con-
0, 0<q<dmin tinuous. The physical observables such as the probability dis-
tribution of the order parametd?(q) are not dramatically
- << different quantitatively on either side of the transition. The
x(a) T Gmin << AmaxT) (526 transition temperaturﬁg for the first-order REM-like transi-

1, Omaxd T)<q<1, tion is within about 5% of the REM valu&,.,,, which is
reassuring for the previous thermodynamic description of
whereqnax is as defined before, arit,(q) is Eq. (5.10. real proteins by the REM. In fact, even when the transition is

In the random heteropolymer witii=27 andn=0.7, the  continuous the large values &f(q) occur near the REMS
monotonically decreasingy(q) curve (Fig. 11 indicates a  functions. The continuous REM transition coupled with col-
continuous-type GREM, with no completely free high tem-lapse may be related to the unusual non-self-averaging be-
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havior manifest in the sensitivity of collapse to single-siteproblem which we hope to return to in the future.

mutations in staphylococcal nuclease observed by Engleman

and co-workerg44]. We must also bear in mind that their

system is a natural protein and thus is minimally frustrated, ACKNOWLEDGMENTS

which gives an another reason why the collapse would be ] . )
non-self-averaging. We wish to thank B. Derrida, J. Onuchic, J. Saven, and N.

While the thermodynamic transition temperature is not>0cci for helpful discussions. This work was supported by
very different from the REM value, the properties of the N!H Grant No. IRO1 GM44557 and NSF Grant No. DMR-

basins of attraction are quantitatively modified. The 89-20538.
Levinthal number, measuring the number of basins to be
searched at the glass transition, is significantly redubgd
factor of about 1/3 on a logarithmic scale for collapsed APPENDIX A
protein-sized molecul@sThis means it may be possible to . .
get thermodynamically proteinlike behavior for a larger frac- Con_5|der two different gtates of the polyr_ner th_at hawe
tion of considerably longer random chains than would havé).Orlds In common. ASS“”?'”Q t'hat theengrgles O‘f‘ |nte.ra(3’-
been expected. Experiments on sampling random polypeﬂ'-on corresponding to thg identical bonds in l_)oth copies
tides and studying their thermodynamjd®,46 have indeed of the Po'ym‘?f are the sar.ne,.let us define a parameter
given many more sequences with a first-order-like transition> ~ =i Si which is the contribution to the total energy that
than naively anticipated. According to the GREM, however,'S the same for both .states. Next, !Eta=<1>+¢a and
it is likely that the basins into which the polypeptide freezesEb=P @b, Whereg, , is the contribution to the total en-
at the transition still have considerable conformational free€r9Y from the remainindizz— u bonds. The probability of
dom, as manifest by the large entropy left over after theStatesa andb having energieg, andE, is then
transition. For the 27-mer in low density assemblies
(n=0.75), the residual entropy of a single basin is :j J f
=0.8,.,, while at high density f=1) this entropy is Pan(Ea.Eo)= | dda | déy | dPP(S)P(So)PIP)
=0.35,ax- Similarly, we expect the correlations to consider- _ _
ably reduce the size of the barriers between basins, an issue X (Eq— (P + ¢a))0(Ep— (P + ),
we shall investigate quantitatively within the GREM in a (A1)
future paper.

One technical point regarding the GREM analysis relategvhereP(®) andP(¢, ;) are Gaussian probability distribu-
to the fact that we have analyzed polymers of finite sizetions with variance®?)=ue? and(¢2 )= (zNn— u)&?.
(N). Because of the significant surface to volume ratio oflntegrating out¢, and ¢, using thes functions,

biopolymers, thermodynamic properties within the analysis (E,— D)2
depend moderately updd. There can be other specific ef- Pab(Ea,Ep) = constx f d@ex;{ — a—2
fects due the finite size that will act to round the transitions, ' 2(Nznp—pu)e
which will come from the introduction of defects in the fro- (E,— D)2 B2
zen order. Some of these effects may be correctly handled by - 5 — >
the highQ analysis, but higher order correlations, reflecting 2(Nzp—p)e® 2pe
the possibility of a type of freezing into different low energy 1
reference structures for the melted regions, would have to be = consiX exp{ AN 5
taken into accountthis effect requires at least triplet corre- Zne
lations between the energy levelsVe should also note that (E,+Ep)?  (Ey—Ep)?
the highQ analysis may be useful in describing hydrogen 17q 1-q ” (A2)
exchange experiments on proteins with low denaturant con-
centrationd47].
The GREM analysis is only approximate, but it also al-
lows us to address important questions. An especially impor- APPENDIX B

tant issue is the approximate treatment of barriers between
local minima, above the glass transitip48]. It is also pos-
sible to use it to estimate the fraction of sequences which ar
sufficiently minimally frustrated to fold kinetically, and to ] o 4
discuss the shape of the free energy surfaces and foldirf@SSociates three quantities, a;, andq;. Two configura-
funnels of minimally frustrated random heteropolymers. Thellonsa andb have an overlag,,=q; , whereq is the level
quantitative application of the theory to natural proteins als@®" the tree where the branches coming fram and
raises additional questions concerning partial order in protei® 10in. d; is an increasing function ofi with
molten globuleg15,16. Not only do such states exhibit lo- 0=01<0z---<0n+1=1. At theith level one branch di-
cal secondary structur@ncreasing the rigidity of the back- Vides into of branches, so at leveli there are
bone, but also liquid crystallinity{15,16 and microphase (aia,--- ;)" branches, andd;a,- - - an)N= (MMM,
separatiorf49]. We believe each of these effects can be ac- On each branch of the tree at levelone chooses a ran-
commodated within the GREM formalism by modifying the dom variables(") according to a distributiop;(¢{®) whose
Flory-style analysis of the configurational entrofyq), a  width isa;:

In the GREM, one can consider the{"")N states of a
olymer as the end points of an ultrametric treendkvels
?see Fig. 9[50]. To each level (1<i<n) of the tree one
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1 (8§b>)2 is if T(q) is monotonically increasing or constant — in this
pi(eP)= AN " an ) (B1)  case we just retrieve the REM resufisl]].
1 1

] o ) Continuous-type GREM
The energy of each configuratidmis then given by
If the freezing(glasg temperature as a function af,

n
- (b) defined by
Ep 21 & (B2) 12
dv(q)

1/2 AN
where thee(® are the energies associated with the (q)= J(a) ) I _da (B10)
branches that connect each state to the top of the tree. States 2\Ina(q) 2| ds(q)
a andb with overlapq,,=q; haves@=¢{ for j<i—1 dq

ande{®#¢&{® for j=i. The model is defined once the two
sequences; anda; are given for &i=<n. If we choose the
normalization

is a monotonically decreasing function of the overtpghen
the freezing occurs from the top of the ultrametric tree down-
ward (most dissimilar states freeze out firsand the thermo-

n
dynamic free energy is given by
i=1, B3
Zl "’ = F =T ” T>T(0
N TSt T >T(0),

. o N

then the energieg,, of the (u(M")N states are distributed as

Gaussian random variables: E
N

1 (Eq? B
Pa( Ea) = (7TNJ2)1/2eX - NJZ .

The probability distributiorP,,(E, ,E;) that two configura-

JZ
=Ts@(T)+ z5[v(1) —v(a(T)]

(B4)

dg dq

1/2
+qumdq< ds(q) dv(q)) |

tional statesa andb have energie&, andE, is T(1)<T=T(q),
1 F 1 ds(q) dv(q)
Pab(Ea,Ep)= consix ex;{ " INT N =Jf0 dg(— “dq d—q)l’z, T<T(1), (B11)
2 2
(EatEp)®  (Ea—Ep) ) (B5) Where q(T) is the inverse ofT(q), s,=Inu™, and
1+v,p 1-va /| s(q)=S(q)/N is the specific entropyper monomer ob-

) o tained from the theories in Secs. Il and IV. At the highest
wherev,;, is @ measure of the correlation in energy betweenemperatures [i.e., those higher than T(q=0) if

two configurations with overlap; : T(q=0)<x] the system can freely explore all of its states
i—1 regardless of dissimilarity. At lower temperatures there is a
Vap=Ui= Z a;. (B6) continuous freezing which gradually causes states to be more
=1 localized.

Given a configurationd), the number of configurations Discrete-type GREM
that have an overlap af; with (a) is ] ) )
NS N_ _ N The functionT(q) has a single maximum, say, @t. We
Q=€ =(ai—D)(aisy - -an) B7)  would expect based on the comments in Sec. V that there
will be a REM transition with a discreet jump in the order
parameterq, and then a gradual freezing as in the

continuous-type GREM above. Defim@ such that

This is the number of states to which formul@$) and(B6)
apply. In the thermodynamic limitN— ), the entropy at
leveli is

N dv o
si=2, Inaj. (B8) v(a9-v(0) _ dq'%
j=i

S0)- () (B12

(o]
We assume this equation holds approximately for fairly large dqg (dg)
N. For N fairly large there is almost a continuous range of . ) )
possible overlaps (8g<1) which means the number of Ug IS @lways greater thag®. Now define what will be a
levels in the ultrametric tree is larg&1]. Sos; andv; may REM-like transition temperature, where the freezing will
be treated as continuous quantitie®]) and v(q), which ~ have a sudden onsetay:
means d 1/2

v
——(qg) o 12
ds(q) du(q) Y BT B TICH IR
ne@= Ty aA@T g B9 Tog| T =
— 554
dgq 9

The GREM free energy and its derived quantities are dis- (B13)
cussed in the section on thermodynamics. In brief, there are
two cases where the GREM has been soleethird scenario  Then the thermodynamic free energy is
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F J? o and z components of to obtain wpA7 as the product of
N N_TS°+ AT’ T>T4 X, Y, andZ factors which look like
F J2 2. n2\( @2 @2y 112 2 2y \2
- S =TS@T)+ 3= lv(D)=v(@(T)] o | PLYRR BT Ba) F{_ (Bt FoXa)
[ w(BLt Byt B3t BI) Bit B
1/2
+Jf“”dq(—9§91dg“)) (B3t B2Xa)? co
o T T2 52 |»
% a a B3+t B
0y _ _ o 1/2
+3{[v(dg) —v(0)][s(0) —s(ag) I} whereX; is the x component oR;, and
T(H)<T<T?, (B14) 3 3
12 2_ =
_E:{Fd(_ii@dﬂw) =37 " i (C5)
a dg dq
In the (isotropig reference state, the position ¥f is ran-
+J{[u(qg)—v(O)][s(O)—S(qg)]}m, T<T(1). domly distributed over a Gaussian distribution of values
If there is a limitg,,;, as to how uncorrelated two states can ,Biz .
be, e.g., an SK spin glass in a magnetic field or a finite P(Xi)=\ —exp(— BiX7). (C6)

polymer, the above formulas are only slightly modified by
effectively replacing the lower limits of O withy,. Thisis  Averagingw,  over theX coordinates of th€;’s, we obtain

described in Sec. V. the mean value of the probability to form a cross linkAat
APPENDIX C (on) (BI+B3)(B5+B2) 1’2(1) -
WA x)= =.
M m(Bi B+ BE+ B |2

Consider the region of a cross linked polymer around a
given cross link about to be formédee Fig. 21 Each cross
link and its two associated monomdis2] has four neigh-
boring cross linksC,,C,,C3,C,. We seek the fraction of

To a good approximation, we can replace m,% by their
average values, so that

allowable states that are consistent with the formation of a ? 12
specific cross link afA, wpA7. We assume that if the spe- WA X:(_) , (C8)
cific monomers tha# joins are within a volume\ = of each 4

other then a cross link is formed. If we consider the system
to be composed of four separate chaimgAr equals the
probability that all four chains meet iA7, divided by the
probability that the chains meet in pairgstoring the allow-
able configurations in the unbonded initial strucjulé the
chains are Gaussian, the propagator from the origin to posi-
tion r; for a polymer chain ohf; statistical segments is

3 \* 3r2
coi-gom) ooz

with (r?)=n;b?, whereb is the length of one segment. So
the probability of forming a cross link is then given by

JA7G1(r1)Go(r,)Gsa(r3)Ga(ra)
JAd7G1(r1)Gy(r) fd7G5(r3)Gy(ry)’

whereG;(r;) is a Gaussian function extending from position
C;, andr; is the vector from the position @; to the volume
elementAr. The integrations extend over all space — to
perform them set up an origi® at the most probable posi-
tion of the junctionA, defined such that fror®

wpAAT=AT (C2

Ri Re Ry Ry
(RD) (R (R3) (Ry)

0, (C3

whereR; goes fromO to C;. Letr be a vector fromO to FIG. 21. Allowable configurations of polymer stran@ before
A7, and using the fact that=r—R; in (C2), and separating and (b) after bond formation. Each pair of bonded mers has four
into Cartesian coordinates, we can integrate overxthg, nearest cross-linked neighbors.
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where

3

P €9

B2=

wheren is the average number of statistical segments be-
tween cross links given that there aiecross links present.

To calculaten, note that the probabilityp,, that a given

monomer is cross linked is equal to the number of cross-

linked monomers over the total number of monomers

2u
The probabilityP, , of having a chain of lengtm with
bonds present is just the negative binomial distribution

Pn,,u: p,u,(l_ p,u,)nila (Cll)
so that the average chain length is
2nP 1 N
n=5t= (C12

5P, P, 24

Thus we obtain for the average probability to form bakd

2\ 3/2
— . B
OpAAT=wp 0 yop = | AT

i (C13

or

o(p)Ar= (C14

312
) AT,

47Nb?

which is the fraction of states permissible as a result of form
ing one more cross linkage witlhe cross links already

present. We can now consider adding one cross link at
time, using formulaC14) in a mean field sense, to obtain the
total fraction of states permissible as a result of forming

gNzz bonds[53]:

Qq qNzy AT gNzp 3 ;qNZn o

" === — I

0, AL @lwar (b3> (%N) [(aNzp)!]*2
(C1H

Thus the reduction in entropy (per monomex

—(So—Sy)/N, associated with the formation ofjNzzn

bonds, is

AS(q) 3

_l| QQ_
NN, 2977

2/3
InE<b—> -1+ Inqzn}.
(C16

APPENDIX D

Given a polymer withu cross links present, the probabil-

ity of not forming one more cross link is

Prol( ) =1—w(u)AT.

The probability of not formingNzz(1—q) more cross links
is

(D1)

6291
Nzn
Pro N7 =TI prods) (D2)
n=0qNzp
and the antibond entropy reduction is then
Nzn
ASag(alNp)=In ] [1-w(u)A7]
#=0qNzn
Nzzn
=" duii1-(8)*, 03
qNzy
where
3 (A7\?B
BZM(F) (04

Letting x=Bu, Eq. (3.3 follows. The upper limit in the
integral in(3.3) cannot be greater than 1, which sets a limit
as to how largeN can be for the antibond term in the entropy
to be valid. SettingCzzn=1, using the lattice value of
A7/b®=4, and usingn=1 gives z(Npa0= (7/3)4® or
Nmax= 710, which is much higher than the typical size of the
polymers we are concerned witN,,,, is higher for smaller
values of .

APPENDIX E

To find the probability of bond formation and its associ-
ated entropy loss for a polymer in a box, we must seek the
Green’s function solution to the differential equation

d  b%_, Ugr)
————=Vi+——|G(r,r',N)=48(r—r")5(N)

N 6 T E

with the boundary condition&J,=0 inside the box and
U= outside. The solution, obtained by an expansion in
8igenfunction$54], is

G(r,r',N)=G,(x,x",N)G(y,y",N)G,(z,2",N) (E2
with

2 & K, X k,mx’
Gx(x,x’,N)=E2 sin(xT)sin( XL )

X

k2m?Nb?
Xex —T.

(E3)

Given this propagator, there are several approaches of vary-
ing complexity one can use to find the probability of bond
formation. We can start by considering the probability of
forming a loop of lengtm=N/2u, and then average over
the position of the starting point:

. 1 r'=r+Ar , —
0" (W) AT= 3 dr dr'G(r,r’,n). (E4
\Y r'=r

Splitting the integrations over Cartesian coordinates gives

WM () A =0l () 0y () 03" ()

(E9)

with
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03" =—2 ek (E6) C(3N)
where *
4 7%2(%)2/3. € 5
So "
@M ) A= 7](?)3) E AN+ S (Eg) '
ki ky kg \\
We can (without necessarily assuming ground-state domi- i ) N¢ ’ ’ v

nance approximate the sums by integrals to obtain
FIG. 22. Riemann zeta functio._f(%,NC) as a function olN,.

n AT\ [= = N,\3
W (w)AT= ( bs)( fo dke Pz ) (E9  that a bonded loop will be formed. So the probability to form
a new bond giveru bonds present is now

Ar(12 u)%? 3
_?(_ _> ’ (E10 312 f(E,Nc)
conf
wnase={ 53] ] ’
which preserves the®? dependence in the Flory thedrsee b*/\ 27 l—(N ~1)
Eq. (C14)], but gives a probability~10? times higher to 2u ¢
form a bond. (E19

One can obtain comparable values to those fi@h0)
with a more detailed calculation which takes a flat average of!Nich gives probabilities comparable {&10 for No~1.
(However, the averaging over loop lengths results in a linear

E8) over loop sizesn’ from a minimum loop sizeN
t(onlzNIZ,u: P P ¢ u dependence, instead of the mean figltf’ dependencg.

The formula for entropy loss due to bond formation for
Ar 1 n B n<puc is then obtained as in Appendix CThis was the
(_) Z — Z efﬁn’kz, entropy formula used in the comparison with the lattice
b® i & ke =N+ I =, simulations in Fig. 4.
(E1) The critical value ofu. divides the entropy formulas up
into two regions. Foju< u., confinement effects are impor-

where k?=k;+kj+kZ. Carrying out the geometric SUM tant, and (1N)AS,,.«(q) and (LN)ASxs(q) have the
onn’ and apprOX|mat|ng the sums &rby a volume integral  form:

in k space gives

0®" (N A 7=

zZls

1
‘ A7y 1 4= NAShond @) = Eq. (3.7,
COn
(A= (bs) A—N.+1 8
1 1 C'a 3/2
o e_Bch NASAB(Q):F d xIn(1—x>'%)
xf k’dk———. (E12 C'azy
0 1—e Ak
1 (Czy 3
Changing variables te= 8k?, the integral becomes te qundxln(l—x ?).

(E15

T (= e Nee
mﬁf dffl/zﬁ WZ f deelf2e™(Netm=1e For u> u., the bonds have essentially confined the polymer
0 within its collapsed radius, and (MJAS,,,4(q) and
( - )3/2 * (1/N)AS,g(q) have the form:

_ _1y-32
48 le(NC+m D qNzy

1 1 conf
_ )3,2 4 Svond @) = AT Ae) + —Inﬂ_ﬂq ,, @A
=\ 75 ¢GNo), (E13 ‘
i C 3 ezl + o (INC—1+1Inqzy)
= 50cznin—=* 5qzn(InC— nqzn),
where{(3/2 N,) is the generalized Riemann zeta function, 277 C 2
plotted vsN; in Fig. 22. We can see from the figure that

increasing the number of segments needed to make a loop, EA - E
N, (i.e., making the chain stiff¢r decreases the probability Sa(@)= Eq.(3.3.

(E16
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The first term in the bond formation entropy of H&16) is
a finite size effect~-N~%3 and vanishes i€’ =C, where-

Smelled12 //
upon (1N) AS,,nd(q) becomes Eq(3.1). o 7
APPENDIX F s I
Consider the entropy of one of the melted pieces in a e //
strongly constrained polymer. The average probability for a 4 //’
melted piece ofm segments to propagate from positiarto Pid
positionB is (assuming an ideal chain Green’s funcion z -
32 T
<G(rA,rB|m))Ar’= 27Tmb2) 2 4 6 8 10 12 14

Sequence Length
3((ra=—rg)?) ,
xXexpg — TomE A7’ FIG. 23. Entropy of a melted strand or loop along the sequence
of the polymer. Dashed line: linear approximation used in the high
(F1) g analysis. Solid line: formuléF3) with 7»=0.85. Both curves dis-
play a cutoff sequence length for a melted loop, and are comparable
where A7" is the volume each of the end points must befor the length values of typical loops in a polymer.
localized within, which is=b%, and where((r,—rg)?) is
obtained by samplingri—rg)? for a melted piece oin  24(b)]. Neglectingthe wall, the total number of paths from
segments starting & and ending aB for all the different O to the wallM in n steps is just
end-to-end distances it would have if the melted piece were
“slid” along the length of the polymer structure, i.e., the Q n!
average square end-to-end distance of the melted piece over free(N,My) = n+m, |(n_mz)|
N——/

(F4)

all its possible locations along the polymer. Assuming that
the frozen globule is essentially a collapsed random walk
(we are not considering any secondary structure formation or
other order parameters besideq in this papey,
{(ra—rg)?>)=mb?. So the average number of states the
melted piece has is

2

Q= Qror(M)(G(rp,rg|m))Ar’

mom| 3 %1 (AT
LM el B e ol (F2

whereA 7'/b3~1, andu(™= v/e if the walk is completely
collapsed ¢y=1). So the average entropy of a melted piece
of m segments is

b.
—3| ( > )+ Inw (™" 3| F3 !
S(m)—znz—we (Inw )m—znm (F3) M

which is plotted vam in Fig. 23. Note that the shape of the - . N
curve vs sequence length roughly obeys a linear behavior c .
with a cutoff sequence length, of ~5 [Eq.(4.1)], i.e., each MR .
monomer freed after the fourth has an entropy @if?, but 3 g
at least four segments must be melted for the piece to be free n ) *
enough to have any entropy. ; . .

We suspect that the ends of the polymer should follow the | al
same behavior but with a smaller critical length. To model an ' o
end, consider the entropy of a chain confined to a half-plane
[see Fig. 24a)]. This problem can be solved by the same

. . 0 m,

method as used much earlier for the adsorption of molecules z S
onto a surface by Chandrasekh&b]. We wish to find the b
number of random walks af steps that can start anywhere, |G, 24. (a) Polymer end confined to lie on the surface of the
but must not touch the wall until theth step(if it touches  giobule. (b) The polymer end can be modeled as a random chain
before it may be considered a melted piece as above, but Gdnfined to, and attached to the surface of, a half-plane, which can
the surfack Let a walk start atO, and let the wall be be solved by considering a random walk of a particle near an ad-
m,=z/b steps away(if n is odd,m, must be odil[see Fig. sorbing wall[55].

o
.

c!
|

3
]’~ .~
N
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We must subtract from this number all the walks that eithemith entropy
crossed or touched before. If the walk goesntg in the

nth step, it must have come from eith@,—1 orm,+1 in o1 (mf)\ 1
the (n— 1)th step, but the S(7)=3In| 57|+ (™ /=357, (F10
(n=1)! F5 which has the same form as E@?3) (but with the connec-

tivity constant probably only about 1 or 2 for smal), so
we are led to use the same linear entropy formula #4.1,
but with a different critical lengttiformula (4.2)].

2 2

]

walks tom,+1 cannot be counted. Any walk that went to

m,+1 must have crossed the barrier at some péing., APPENDIX G
D’ in walk OABD'E’, or A’ in walk OA’'B'D'E'). Con- )
sider the segments of these walks after they first touched or W€ can calculate the total number of states in terms of the
crossed the wall—each of these walks must haeigue distributions{n,},{m,}, and{p,} from the fundamental for-
reflection about the wall into a walk that went to Mula

(n—1m,—1), but that either touched and/or crossed before

(e.g.,OABD'E or OA’BD’E). These walksboth equal in S=-2>, p,np,

number are all the walks that we want to subtract from a

Q4ee- SO the true number of walks fro®@ to M without

touching or crossing the wall earlier is by considering the ensembles of melted internal pieces and
ends in the polyme(Fig. 5. For example, letr be the total
(n—1)! state of both endsj. Since the states of each of the ends are
Quan(n,my)=Qee(n,my) —2 nim,| [n-m, T independent,
2 2 )
S| =-=2,/pipInpip; G1
m, n! Jtot %‘4 plpj plpj ( )
[ p— E
n (n+mg) (n—m,
2 '\ 2 ) is the entropy at fixed total end length, wheXé is con-
strained so that';+/;=/¢". Here
m, |2 2
~on_*% _e—mZIZn (F6)
n n 1
pi=p| —|, (G2
Yz

using Stirling’s approximation. So, lettirm=m.,b, the prob-
ability a walk goes withindz of a wall at positionz in n
steps without hitting the wall first, or equivalently, the prob-
ability that the free end of a one-dimensional polymer ofand Y7
length n fastened to a wall atO is in the interval length/;:
(z,z+d2) is

where [ is the probability for an end to have length,
is the number of configurational states for a chain of

Y= (um) T Veed, G3)

dz\ z /2 z?
W(z,n)dz= (%) oV ﬁex;{ - —an2>- (F7) Using={=X/ , v, 7, andallowing all possible total end
lengths, the entropy of the ends is
The factordz/2b is the number of states in the interndt,
since d is the distance between allowable states for a given P, P, P, P,
n (if n is even,m, must be even Sg= > > "y, 1z — 2 In—+In—
Stot !

The fraction of free Gaussian states that remain to the ‘il Y5 v YooY
outside of the wall is this probability integrated over all
P/ P/
: 1 T2 |y
fend_ fo W(z,n)dz— W (F8) uncoh:sfr{alined E !
This is the reduction in the total number of states due to the = —22 p/ln%_ (G4
7 %

fact that the polymer chain must be outside the globule. Us-
ing the fact that 1/3 of the steps of a three-dimensional walk o
would be in thez direction, the total number of states of a SO the total number of states has a mixing component, and a

N .
polymer end of length” is v component:

/=7 \Br

N 2
1 1\2p/
Qend(/):ereefendzm(ﬂ(mﬂ)n (F9) QE=eSE= H ( ) [(M(mf))/%/ECil)]Zp/-
(2”§ (G5)
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A similar derivation for the internal melted pieces is equiva- N
lent to simply replacing INW=2NfInNf+Inu>, [/ —(/.—1)In,
/C
n, N N
)~ ec—/c, 2—Nqor, (Go6) :
b/ Ntor FeTe Tor +2In,u/2 [/’—(/Ec—l)]p/—/z n, Inn,
” EC “c

where n, is the number of melted pieces of length
Ntor=Nf is the total number of melted pieces, afidis the
critical length for internal melted pieces to have entropy. So
making the replacements gives

N N
- m/nm,—22 p,Inp,, (H1)
1 7EC

which when maximized subject to the constraints

- [Npor|™
Qo= [1 ( ) [(u(M0) = emtns . .

= n, afi/z n/:Nf,Bf:; /n/:N(l_q)_Z/E,
_ Nror! H (mH\/—(/s—1)7n N N
[(u™7) 1" (G7)
HN n At ag: >, m,=Nf B.:> /m,=Nqg,
T T
For the internal  frozen  pieces u(™M)=1, N N
Ntot(frozen)=Nq(free) thermodynamically, and’.=1, aE:E p,=1 3532 /0,=0 ¢ (H2)
SO e T e
NTOT gives the thermodynamic entropy. The constraiitg) are
Q frozer= m, 1 (G8)  straightforward to derive, for example,
N
where m, is the number of frozen pieces or “trains” of > /m,=Nq
length/". So the total number of staté4.3) is just the prod- 1 '

f all th f rs. .
uct of all these factors omes from the fact that if there aMy: frozen monomers,

Note that in our analysis we have treated the entropies o Ne f bonds. Equating this withiN
the melted strands as independent units, and they will remai ere arezzmNg Irozen bonds. quating this wi aNzy .
onds giveN-=Ngq. The other constraints follow from this

energetically independent in calculating the free energy fro Upe of reasoning. Introducing the constraints iAlaW=0
this entropy (and landscape roughngsssing the GREM
! Py ( P ughngsssing with the Lagrange multipliers listed i(H2) gives the usual

analysis. More realistic models would include some interac- )
tion between melted pieces depending on their proximity. exponential dependence for the most probable distributions:
n/:Cfe_Bf' , m/:CCe_Bc , p/:CEe_BE/,
(H3)

whereC,=e~ %1, Substituting the distributiongH3) back
The log of the maximum term which dominates the suminto the constraint§H2) gives the negative binomial distri-
in Eq. (4.3 is butions in Eq.(4.4).
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