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In this paper, we study the role of correlations in the energy landscape of a finite random heteropolymer by
developing the mapping onto the generalized random energy model~GREM! proposed by Derrida and Gardner
@J. Phys. C19, 2253~1986!# in the context of spin glasses. After obtaining the joint distribution for energies of
pairs of configurations, and by calculating the entropy of the polymer subject to weak and strong topological
constraints, the model yields thermodynamic quantities such as ground-state energy, entropy per thermody-
namic basin, and glass transition temperature as functions of the polymer length and packing density. These are
found to be very close to the uncorrelated landscape or random energy model~REM! estimates. A tricritical
point is obtained where behavior of the order parameterq changes from first order with a discrete jump at the
transition, to second-order continuous. While the thermodynamic quantities obtained from the free energy are
close to the REM values, the Levinthal entropy describing the number of basins which must be searched at the
glass transition is significantly modified by correlations.@S1063-651X~96!02406-3#

PACS number~s!: 61.41.1e, 64.70.Pf, 05.90.1m, 87.10.1e

I. INTRODUCTION

The statistical characterization of the energy landscape of
random and designed heteropolymers has been a major com-
ponent of the newer theoretical approaches to biological pro-
tein folding @1–6#. Completely random heteropolymers have
rugged energy landscapes due to the frustration inherent in
conflicting interactions between different monomers that are
covalently linked in the polymer chain. For appropriate
choices for the interactions in native proteins@7,8#, or the
appropriate sequences of artificially designed polymers
@9,10#, the effects of frustration can be minimized, leading to
a funneled energy landscape@1# with driving forces toward a
well-defined native structure, in addition to the generic rug-
gedness of random heteropolymers. Much of our understand-
ing of the dynamics on these energy landscapes has been
derived from the study of the most rugged energy landscape,
the so-called random energy model~REM! originally studied
by Derrida @11#. This model is very simple because it is
characterized by a single energy scale giving the overall en-
ergetic randomness, and a configurational entropy. For bio-
logical proteins, the funnel aspect of the landscape gives a
new energy scale, the stability gap, which determines the
average trend of the energy as the protein molecule becomes
more similar to its ground-state configuration. In this paper,
we wish to address quantitatively the role of correlations in
the energy landscape of random heteropolymers. The effect
of minimal frustration and the corresponding stability gap on
an already correlated energy landscape will be treated in a
later paper.

The uncorrelated energy landscape, or random energy
model, possesses a glass transition that arises from an en-
tropy crisis. This phase transition is representative of a wide
universality class of phase transitions in spin glasses that
lack special symmetries@13#. Replica methods from spin
glass theory have been applied to the random heteropolymer
and confirm that the glass transition of random heteropoly-
mers is also in this universality class@14#. While the random
heteropolymer glass transition is of the same type as the

random energy model, it is clear that correlations in the en-
ergy landscape can play a role in determining quantities such
as the glass transition temperature, as well as the character-
istics of the basins of attraction into which the system freezes
below the glass transition.

Nevertheless, the convenience of the random energy
model has made it useful for quantitatively treating the phase
transitions of random heteropolymers. Its very simplicity al-
lows it to be used as an approximation for models with
elaborate interaction potentials and complex stereochemical
constraints that can mimic proteins@9#. It also allows the
inclusion of various kinds of partial order in collapsed het-
eropolymers, such as liquid crystalline ordering and second-
ary structure formation@15,16#. The more elegant replica
methods, while partially taking into account the correlations
of the energy landscape, are considerably more cumbersome
to use for models with these realistic levels of molecular
complexity.

The approach we take in this paper to the correlated en-
ergy landscape is simpler than the replica method. It is based
on the use of the generalized random energy model~GREM!
of Derrida @17#. In this model, one takes into account the
energy correlations of a pair of states on the energy land-
scape as a function of the similarity of the two configura-
tions. The model then visualizes the characterization of the
landscape by describing its properties upon the resulting
‘‘triangulation’’ on the energy surface. The input to the
model consists of two quantities:~1! the number of states
within a certain distance of a given molecular configuration,
and ~2! the expected degree of correlation of their energies
with the given molecular configuration. The model reduces
to the uncorrelated landscape in the obvious way, but also
allows a more quantitative approximation of the glass tran-
sition temperatures when the pair correlations are knowna
priori . Derrida and Gardner@17# have shown how the gen-
eralized random energy model can be thought of as the be-
ginning of a systematic set of approximations to the thermo-
dynamics of any random system by taking further
correlations in energy levels. They have also described how
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it can be used to approximate the glass transition tempera-
tures of many standard spin glass models.

The application of the generalized random energy model
to random heteropolymers raises some interesting questions
in polymer physics. Just as for the random energy model,
conventional phase transitions in ordering of the heteropoly-
mer that are analogous to those of a homopolymer~e.g.,
collapse, or secondary structure formation! can be taken into
account in a straightforward way, as in homopolymer phys-
ics. The present questions revolve around the counting of
structures with a given degree of similarity to other ones.
When the underlying energy surface is made up by pair in-
teractions, this counting exercise is very similar to the theory
of a rubber vulcanization@18#. Indeed, rubber vulcanization
has already been addressed by the replica methods used in
spin glass theory@19,20#. As far as the entropic issues are
concerned, however, these theories have, in the main, repro-
duced the results of the much older analysis of Flory. We
adopt an analysis in this Flory style here, because we believe
it lends itself straightforwardly to generalization by taking
into account more molecular details. We find that it is nec-
essary, however, to go beyond the Flory analysis when one
must count states that correspond to highly cross-linked
structures. To this end we undertake an analysis of the col-
lective process of melting out of local structure in a random
heteropolymer.

With these polymer issues under control, it is possible to
evaluate the statistical thermodynamics of random het-
eropolymers within the generalized random energy model
approximation. We present results for these thermodynamic
properties for mesoscopic random heteropolymers; that is,
we study the finite size effects that are quite important for
heteropolymers in the size range relevant for protein folding.
We present transition temperatures for three-dimensional lat-
tice systems as a function of polymer size. We show that the
generalized random energy approximation and the random
energy model give closely similar results for the transition
temperature. On the other hand, the correlations in the en-
ergy landscape do modify the size of the basins of attraction
and the effective number of basins that need to be searched
through as the glass transition is approached. In a later paper
we will show how the information in the correlated energy
landscape can also be used to address kinetic issues such as
barrier height distributions, but here we limit our discussion
to the problem of the number of basins, i.e., the Levinthal
entropy@21#.

The organization in this paper is as follows: In Sec. II we
discuss the general issues related to the correlated energy
landscape, and obtain a formula for the energy correlations
between states with a given similarityq. In Secs. III and IV
we calculate the configurational entropy of a polymer given
the existence of weak and strong topological constraints~the
log of the total number of states consistent with the con-
straints imposed!. In Sec. V this entropy and the energy-pair
correlations are applied to the GREM model to obtain ther-
modynamic quantities such as entropy and energy for the
finite random heteropolymer. The glass transition tempera-
ture of partial and total freezing, as well as the ground-state
energy and entropy at the glass transition, are obtained for
various size polymers and packing fractions. The probability
distribution for overlapsq below the glass temperature is

also obtained. The GREM results are compared with those of
the uncorrelated energy landscape~the REM!, and the issues
of thermodynamic basins of attraction are discussed. In Sec.
VI we discuss the results and conclude with some remarks.

II. BASIC ISSUES

It was shown in a previous paper@22# that the thermody-
namic glass transition temperatureTg of a polymer should
always be less than its collapse temperatureTu . For our
purposes then, if we define the packing fraction of the poly-
mer,h, byNs/Rg

3wheres is the volume per monomer, and
Rg is the radius of gyration of the polymer, it is sufficient to
consider only configurations of the polymer that have values
of h*1/2. In considering these collapsed or semicollapsed
states, we neglect fluctuations about the mean number of
contacts ~off-chain pair interactions! Nz(N)h, where
z(N)h is then the mean number of contacts per monomer for
a collapsed walk of packing fractionh.

Let us consider the most collapsed walk to haveh>1,
wherez(N) is then the number of bonds made per monomer
in a Hamiltonian~dense! walk of N steps, a quantity studied
extensively by Douglas and Ishinabe@23#. The dependence
of z(N) uponN is clearly due to the fact that monomers on
the surface have less contacts than in the bulk. For three-
dimensional~3D! systems,z3(N) is given approximately by

z3~N!'
1

N
Int@2N23~N11!2/313#, ~2.1!

where Int@ # means the integer part. For 27-mer collapsed
cube structures with 28/27 actual contacts per mer, Eq.~2.1!
gives 29/27. On the other hand, the effect of the surface on
the number of contacts is quite important even for large mac-
romolecules, asz3(N) approaches its bulk value of two con-
tacts per monomer rather slowly, as;223N21/3.

For a dense walk ofh51, the total number of states is
determined by the connectivity constant, which to second
order is given by@24#

lnm' lnm~mf!1
1

6z2
, ~2.2!

wherem (mf) is the mean field connectivity constant andz is
the coordination number of a monomer in a polymer chain~4
for a polymer on a cubic lattice!, so that to within;0.01
accuracy, we can rely on the mean field result ofn/e states
per monomer~neglecting the; lnN translational entropy as-
sociated with the number of places the polymer can start its
walk from!, wheren is the number of states per monomer in
an ideal chain~6 on ad53 cubic lattice!.

If the polymer is not completely collapsed (h,1) the
mean field connectivity constant increases ash decreases
@22#

lnm~mf!5 ln
n

e
2S 12h

h D ln~12h!, ~2.3!

which just reflects the fact that partly collapsed walks have
more sterically allowed states than fully collapsed ones.
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If the average energy per contact is«̄, the total average
energy is then

^E~N,Rg!&5Nz~N!h~Rg!«̄, ~2.4!

which we will set to zero as our zero point of energy. In
using formulas like~2.4!, we are neglecting the coupling of
density (h) with topology ~bonds formed, or overlapq).
This is a ‘‘van der Waals’’ picture appropriate well below
the collapse temperature. It is straightforward to simulta-
neously include this coupling in obtaining a complete phase
diagram as obtained earlier in@8# ~albeit without correla-
tions!, but this is saved for another paper.

For a random heteropolymer, a pair of interacting mono-
mers$ i j % has an interaction energy« i j that can be taken to
be a random variable. The energyH for a given total con-
figuration is given by

H5(
i, j

« i js i j , ~2.5!

wheres i j51 when there is a contact made between mono-
mers$ i j % in the chain, ands i j50 otherwise. Here contact
means that the two monomers$ i j % are within a small dis-
tance ~bond radius! of each other, or we can equivalently
speak of the volume around monomeri which another mono-
mer must be inside for a bond to be present ([Dt). To
specify dimensionless quantities such as the entropy in
Boltzmann units, another distance scale must enter into the
problem, which is the Kuhn lengthl of the polymer. For a
flexible polymer on a 3D cubic latticel 3 is the volume one
lattice site occupies, andDt is the volume of four lattice
sites.

It is worthwhile to note that the ratioDt/l 354 for cubic
lattices is roughly that obtained in real proteins by finding
what the bond radius would have to be for the protein to
have a number of contacts equal tohz3(N), whereh.1
@25# andz3(N) is the contacts per monomer for a dense walk
of N steps on a cubic lattice. Taking three typical proteins of
mean sequence length 130, and usinghz3(130)>1.4 gives a
bond radius of>6.3 Å ~see Fig. 1!. Using aCa2Ca dis-

tance of>3.6 Å givesDt/l 3>5.3, in rough agreement with
the lattice value.

Since the total energy of the polymer is a sum of random
variables, it is a Gaussian random variable with probability
distribution

P~EuN,Rg!5
1

~2pDE2!1/2
expS 2

E2

2DE2D , ~2.6!

where the variance in energyDE25Nz(N)h(Rg)«
2, where

A«2 is the width of the effective Gaussian energy distribu-
tion of a single bond, which is the roughness energy scale as
in the random energy model@11#.

If we pick two different states of the polymer, both col-
lapsed withNzh total contacts, and ask what the probability
is of the states having energiesEa andEb , respectively, our
answer will depend not only on the two energies we have
picked, but on how similar the statesa andb were to begin
with. This similarity can be represented by a single param-
eterq defined as

q5
~number of contacts identical in the two states!

~total number of contacts!
.

~2.7!

The ‘‘overlap parameter’’q varies from 0 to 1. If we define
m as the number of identical contacts in the two different
states, it is clear that

m5(
i, j

s i j
~a!s i j

~b![(
i, j

si j
~a,b! ~2.8!

5Nqzh, ~2.9!

wheresi j
(a,b)51 if i and j are in contact in both states and

0 otherwise. To find the pair energy distribution mentioned
above, we can follow the procedure used by Derrida in the
generalized random energy model@26#. This is done in Ap-
pendix A. The result is

Pa,b~Ea ,Eb!5 const3expF2
1

4Nzh«2

3S ~Ea1Eb!
2

11q
1

~Ea2Eb!
2

12q D G ,
~2.10!

whereq is againm/(Nzh) . Note that asq→0 the states
share no common bonds, and the pair energy distribution
factors into the product of two single~uncorrelated! energy
distributions, P(Ea ,Eb)→P(Ea)P(Eb). As q→1 we are
looking at states very similar to each other, and
P(Ea ,Eb)→d(Ea2Eb). If we integrateP(Ea ,Eb) over one
of the energies, we obtain the single energy distribution for
the remaining energy, as expected.

If interactions of a more collective nature than pair inter-
actions are present in the Hamiltonian describing the system,
as, for example, must be present in the interactions facilitat-
ing ligand binding when there are cofactors, the interactions
involved in side-chain packing, or as results from averaging
over the solvent degrees of freedom, then thesem-body

FIG. 1. Plot of the 23~total number of contacts! vs the cutoff
distance of a contact for three real proteins of mean sequence length
130. Using the number of expected contacts for a dense walk on a
cubic lattice gives a bond radius over Kuhn length ('1.7) reason-
ably consistent with the cubic lattice value ('1.6).
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terms can give rise to aqm21 dependence of the pair energy
correlation on the overlapq, defined as above with a suitable
decomposition law for eachs i jk •••m into pair interaction
termss i js jk•••, such as in the superposition approximation
in the theory of fluids@27#. Whether such explicit coopera-
tive effects which enhance the first-order-like folding transi-
tion behavior are necessary to fully describe proteins is an
open issue. For states that are mostly collapsed, a REM-like
cooperative glass transition is still seen in the present GREM
analysis which uses only pair interactions, in that there is a
finite jump in the order parameterq, signifying the sudden
onset of freezing at discretely different values of overlap
@however, the glass transition is still second order, with a
thermally averaged overlap that is continuous atTg ~see the
comments in Sec. V!#.

The pair energy distribution we have obtained has the
same form as in the generalized random energy model@17#,
with the parameterv simply equal toq, so a(q)51 ~see
Appendix B for a brief review of the GREM!. The overlap
q smoothes out the energy landscape by making states that
are similar to a given statea ~i.e., statesb with qab close to
1) more likely to have an energy close toEa ~see Fig. 2!.
More precisely, given that we have picked statea of energy
Ea the probability for another stateb to have energyEb is

Pab

Pa
5 const3expS 2

~Eb2qEa!
2

2Nzh«2~12q2! D . ~2.11!

Note theq-dependent mean and variance of the distribution,
and the appropriate limits asq→0 andq→1.

Now that we have specified the parameter that determines
the roughness of the energy landscape as a function of simi-
larity, a(q), the only remaining quantity needed to describe
the thermodynamics~as described in Appendix B! is essen-
tially the rate of decrease in the number of states as we move
towards a given state by increasing the similarityq. This
quantity is calculated in the next two sections. Those who
wish to take the entropy results as given may skip to Sec. V
on thermodynamics.

III. ENTROPY OF A WEAKLY CONSTRAINED
POLYMER

The remaining quantity needed to apply the GREM is the
number of states that have an overlapq with a given state, or
equivalently the entropys(q) of a polymer that has
m5Nqzh bonds in common with a given state. This entropy
is given by the sum of several terms@see Eq.~3.9!#, the first
of which is simply the total entropy before any constraints
are imposed~here and throughout the text, unless explicitly
stated otherwise, all entropies are in units of Boltzmann’s
constant!:

So5Nlnm~mf!,

i.e., that of a collapsed random walk, where lnm(mf) is defined
in Eq. ~2.3!.

For low values ofq, the polymer is weakly constrained,
and the entropy formula is essentially one of entropy reduc-
tion due to bond formation, i.e., configurational entropy is
lost due to the constraints imposed by the bonds. We should
distinguish here between the bonds which are decreasing the
total entropy, i.e., those which contribute to the overlapq,
and the totalNzh bonds which are present in all states of the
collapsed heteropolymer@28#. These other bonds do not fur-
ther constrain the polymer, as their effect has already been
taken into account by assigning the collapsed entropySo .
The polymer can always explore its (m (mf))N states of a col-
lapsed walk, all of which haveNzh bonds. We are looking at
the fraction of these states consistent with a particular set of
qNzh bonds being formed.@However, as mentioned below
there is a set ofNzh(12q) bonds whichcannotbe formed
in addition to the set ofqNzh bonds that must be formed.
This causes a further reduction in the entropy.#

In calculating the decrease in conformational entropy of
the chain segments due to the formation of a bond, we want
to find the probability that the given bond will be formed,
which is equal to the fraction of the total number of states
without the bond that are equivalent in configuration to the
bond present, assuming effectively a microcanonical search
through the possible states. Since the polymer is collapsed,
for small q ~weakly constrained! any given piece of it be-
haves as if it were in a melt, i.e., as an ideal chain. This
means we can neglect excluded volume effects in our calcu-
lations, e.g., the probability distribution of end-to-end dis-
tances of a piece of polymer chain has no ‘‘hole’’ at small
values~as in a self-avoiding walk!.

To calculate the bond formation entropy loss we use the
approach of Flory’s older work on the formation of cross
links in polymer chains@18#. The reduction in configura-

FIG. 2. Qualitative picture of the energy landscape, pictured
here as a two-dimensional projection of the multidimensional con-
figuration space. We can speak of a distance radius;(12q) from
any given state, which determines how similar or correlated the
energies of states at that radius are. The correlations smooth out the
energy landscape, which affects the nature of the glass transition
and somewhat lowers the temperature at which it occurs.
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tional entropy from the unconstrained polymer due to the
addition ofqNzh cross links was found by Flory to be

1

N
DSbond~quN,h!5

3

2
qzh@ lnC211 lnqzh#, ~3.1!

where

C5
3

4p S Dt

b3 D
2/3

. ~3.2!

For details concerning the derivation of Eq.~3.1! see Appen-
dix C. C is a constant of order 1, and contains the ratio of
length scales discussed above in the factorDt/b3. It should
be mentioned that the entropy term due to bond formation
has also been more recently reproduced by replica calcula-
tions @29#.

Specifying the overlapq introduces an additional entropy
reduction due to the fact thatNzh2qNzh contacts of the
reference state mustnotbe formed. This ‘‘antibond’’ entropy
reduction is largest for small overlaps, and goes to zero as
q→1. It is given by~see Appendix D for a derivation!

1

N
DSAB~quNh!5

1

CECqzh
Czh

dxln~12x3/2!, ~3.3!

whereC is given by Eq.~3.2!.
Another term in the entropy is due to the many ways an

overlap ofm bonds can be realized, because these different
sets of overlapping bonds are all realizable in the conforma-
tional search of the polymer, there being nothing essential to
distinguish the bonds in common with the reference state
from any others. Neglecting the fact that some overlaps are
impossible due to steric constraints, the entropy ‘‘of mixing’’
~per monomer! associated with choosingqzNh bonds from
zNh total is

1

N
Smix~quN,h!>2z~N!h @qlnq1~12q!ln~12q! #.

~3.4!

The Flory approach~see Appendix C! of considering the
formation of a cross link from four chains defined by the
cross link’s four neighboring bonds breaks down in a~small-
N-dependent! region of very weak constraint, where the en-
tropy loss due to the formation of the cross link is more
accurately accounted for by considering the formation of
loops in a nearly unconstrained chain. Furthermore, as de-
scribed below, the loops that define a bond or cross link in
this nearly unconstrained regime are confined inside a region
of the linear size of the polymer, which reduces the rate at
which entropy is lost, i.e., the confinement to configurations
of the polymer consistent with a collapsed walk inside a
molten globule imposes a restriction on the size of a random
walk of a section of the polymer chain, which makes it more
likely for a loop to be formed. The rms length of a walk of
the size of the average chain lengthn̄b5 N/2m b cannot be
larger than the linear size of the globuleRg>(N/h)1/3b, so

S N

2mc
D 1/2'SNh D 1/3 ~3.5!

defines a critical number of bondsmc'(N1/3h2/3)/2 @30#, be-
low which random walks ‘‘see’’ the boundary of the globule.
So the number of the chains’ allowable configurations must
be reduced, and their distributions modified from the usual
Gaussian behavior assumed so far, for values of overlap less
than

qc'
1

2zh1/3N2/3. ~3.6!

Note that confinement effects become less important asN
and h increase.~The effect of localization induced by the
presence of cross links has also been investigated recently by
Bryngelson and Thirumalai@31#.!

A straightforward way to introduce the effect of a bound-
ary on the configurations of the polymer is to consider it
confined to a box of lengthL5(N/h)1/3b by introducing an
external potentialUe50 inside the box, andUe5` outside.
The details of the calculation are in Appendix E; a result is
that form,mc

1

N
DSbond

con f~quN,h!>
3

2
qzh~ lnC8211 lnqzh!, ~3.7!

where

C85
12

p S Dt

b3 D
2/3

. ~3.8!

(1/N) DSbond
con f has the same form as~3.1!, the only difference

being the constantC8 which makes the entropy loss not as
great.

Figure 3 is a plot of all the separate entropy contributions
and their sum vsq for the 27-mer; the total lowq entropy is
an interpolation between the confined and unconfined ex-
pressions~see Appendix E!.

Figure 4~a! is a comparison of the weakly-constrained-
polymer theory, where

1

N
STOT~q!5

1

N
@So1DSbond~q!1DSAB~q!1Smix~q!#,

~3.9!

with a lattice simulation ofS(q)/N for the 27-cube@32#. The
theory and simulations of the 27-cube are relevant for col-
lapsed, proteinlike heteropolymers of sequence length;60
with ;65% helicity and liquid crystalline ordering@3,15#. In
this sense the molten globule state of the polymer can pos-
sess secondary structure, but this structure is renormalized
away in coarse-graining the description of the individual mo-
nomeric units.

One detail that must be accounted for is thatS(q) consid-
ered in the simulation is relative to the collapsed cube state,
and thereforeh varies as a function ofq from about 0.7 to
1. To compensate for this effect in our constant-h theory, we
have used an initial unconstrained entropySo for that of a
partially collapsedh50.7 polymer, but to obtain accurate
values for higher values ofq, the fully collapsedh51 val-
ues for the other entropy terms were used. Later, when we
will interpolate between the weakly constrained and strongly
constrained entropies to obtain the glass temperature and
other quantities, we will holdh constant in all expressions.
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One important feature of theSTOT(q) curve is the exist-
ence of a maximum in the entropy (> lnm(mf)) at a small but
nonzero value ofq5qmin , which indicates the statistically
most likely value of the overlap asT→`, for two states both
with Nzh bonds. This ‘‘statistical overlap’’ signifies the
most uncorrelated two states can get as a consequence of the
finiteness of the polymer~its corresponding freezing tem-
perature is thereforè , as we shall see below!, and as
N→`,qmin→0.

Note that there is a value ofq less than 1,qv , at which

DSTOT~qv!50, ~3.10!

where qv;1/(z(N)h), i.e., at qv there is ;1 bond per
monomer. For 27-mersqv'1, but for larger polymers this
problem can become more serious@33#. For q.qv , there is
more than one bond on average per monomer, and configu-
rations with finite entropy are highly inhomogeneous, i.e.,
segments of the polymer which are correctly configured are
clustered together, and only a few loops or dangling ends are
free and contribute to the configurational entropy. An appro-
priate formula for highq based on the combinatorics of dis-
crete sections of the polymer chain ‘‘melting out’’ of the
‘‘frozen’’ constrained medium, rather than a ‘‘gas’’ of a few
individual formed contacts as in the lowq treatment, is ob-
tained in the next section.

IV. ENTROPY OF A STRONGLY CONSTRAINED
POLYMER

In the high q limit, we start from a reference state in
which all the bonds are formed, and the polymer is ‘‘fro-
zen.’’ By switching from the contact representation used at
low q to an atomic representation, we can study how certain
parts of the ‘‘frozen’’ polymer are ‘‘melted out’’ by keeping

FIG. 3. Entropy contributions~divided byN) to the total lowq entropy forN527,h51 ~all entropies here and throughout are in units
of Boltzmann’s constantkB .): Long-dashed line: Entropy loss due to the formation of bonds@Eq. ~3.1!#. Short-dashed line: Entropy
associated with the complexions consistent with the characterizationq @Eq. ~3.4!#. Thin solid line: Entropy loss due to forbidden configu-
rations which would cause the overlap to exceedq. This ‘‘antibond’’ term becomes larger for more compact polymers and for longer
polymers @Eq. ~3.3!# Thick solid line: Total entropy loss for the weakly constrained polymer. Addingso to this gives formula~3.9!.
Confinement effects add further modifications to the theory for small values ofq ~see Sec. III!.

FIG. 4. ~a! Theoretical entropy curve for a weakly constrained
polymer compared with molecular dynamics simulations for the
27-mer.~b! Interpolated entropy using the weakly constrained for-
mula with h50.7 and the strongly constrained formula with
h51. The small correction forq values aboveqmax is a linear
interpolation betweens(qmax)5(2lnm(mf))/N ands(q51)50. The
analytical curves are also qualitatively similar to the 2D simulations
carried out by Chan and Dill@56#.
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track of which residues are still in their correct geometrical
positions relative to the three-dimensional structure of the
reference state. The melted pieces each carry a certain
amount of entropy, and there is also a mixing entropy asso-
ciated with the different places that the given melted pieces
can occur along the sequence of the polymer. The process of
melting physically involves the collective freeing up of sev-
eral monomers at once, i.e., at least some critical number
l c of monomers must be free for the melted strand to have
any entropy. Each melted piece of segment lengthl carries
with it an entropy

S~ l !> lnm~mf!@ l 2~ l c21!#. ~4.1!

In addition, the ends are allowed to be freed up in the same
fashion, but we expect them to be easier to free up, with a
correspondingly smaller value of critical collective length.
So the entropy for a free end of lengthl is

S~ l !> lnm~mf!@ l 2~ l EC21!#, ~4.2!

where l EC,l c typically. See Appendix F for arguments
giving these two results.

We wish now to express the total number of states of an
entire polymer composed of melted and frozen pieces, along
with melted or frozen ends~see Fig. 5!, and concurrently
estimateq. We can characterize a state microscopically by
the number distribution of melted pieces of lengthl , $nl %,
the number distribution of frozen pieces of lengthl ,
$ml %, and of the probability distribution that an end has
length l , $pl %. As a consequence of specifying the total
number of states in terms of the given distributions$nl %,
$ml %, and$pl %, there must be a combinatorial factor present
associated with the permutation degeneracy given the above
distributions. There is also a mixing term pertaining to the
end length distributions, which is necessary for the end
lengths to have a probability distribution rather than just their
mean value. The melted pieces, frozen pieces, and end

lengths each have their own internal partition function given
by ~4.1! and~4.2! ~the frozen pieces do not have any internal
entropy in our model!, so the total number of states is given
by @35#

VTOT5 (
$nl %
$ml %
$pl %

~Nf !! 2

P l c

N nl !P1
Nml !

)
l 5l c

N

~m l 2~ l c21!!nl

3 )
l 5l

EC

N S 1pl m l 2~ l
EC

21!D 2pl , ~4.3!

where Nf[Ntot is the total number of melted pieces,
m5m (mf), and the sum is over all possible distributions of
$nl %, $ml %, and$pl % ~see Appendix G for arguments lead-
ing to this expression, specifically the partition function for
the ends!. Expressions of this form for the number of states
have been used in models of the helix-coil transition@34#,
and in models of polymer adsorption onto a surface@36,37#.
Maximizing the log of the largest term in~4.3! subject to
constraints~see Appendix H! gives the usual negative bino-
mial distributions for$nl %, $ml %, and$pl %:

nl
NTOT

5
f

r S 12
f

r D
l 2l c

,

ml

NTOT
5
f

q S 12
f

qD
l 21

,

pl 5s~12s! l 2l EC, ~4.4!

whereNTOT5Nf , and

r512q2 f ~ l c21!22l E /N, s5
1

l E2~ l EC21!
.

~4.5!

Substituting the distributions~4.4! back into lnW @Eq. ~H1!;
see Appendix H# gives the entropy as a function of the mac-
roscopic parametersq, f , andl E :

1

N
S~q, f ,l E!5 lnm~mf!F12q2 f ~ l c21!2

2~ l EC21!

N G
1qlnq2~q2 f !ln~q2 f !22 f lnf

1S 12q2 f ~ l c21!22
l E

N D
3 lnS 12q2 f ~ l c21!22

l E

N D
2S 12q2 f l c22

l E

N D lnS 12q2 f l c22
l E

N D
12S l E2~ l EC21!

N D lnS l E2~ l EC21!

N D
22S l E2l EC

N D lnS l E2l EC

N D22
lnN

N
. ~4.6!

FIG. 5. ~a! Diagram of a polymer in the geometrical configura-
tion of the reference state (q51). ~b! For large values of the simi-
larity parameterq, the entropy can be considered to come from
melted out strands along the sequence which are not in their correct
geometrical positions~dark lines!, and their combinatorics with the
rest of the frozen medium.
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Finding the most probable end lengths and total number
of melted pieces for a given overlap involves maximizing
S(q, f ,l E) with respect tol E and f , which gives the equa-
tions

f ~q,l E!5
12q22l E /N

l c1l E2l EC
~4.7!

and

~ l E2l EC! l cFq~ l c1l E2l EC!1q2112
l E

N G
2S 12q22

l E

N D ~ l E2l EC11! l c21m l c2150. ~4.8!

Equation~4.8! determines the end length solely in terms of
q. For values ofl c>3 the solutionl E(q) is numeric@see
Fig. 6~b! for l E(q) with l c53 andl EC51.5#. Putting the
solution l E(q) into ~4.7! gives f (q), whereNf(q) is the
number of melted internal pieces as a function ofq @see Fig.

6~a!#. Putting both l E(q) and f (q) into Eq. ~4.6! for
S(q, f ,l E) gives the entropy for a strongly constrained poly-
mer solely as a function ofq @see Fig. 6~c!#. If the polymer is
not completely collapsed (h,1), then there is still entropy
at q51, and the entropy curve is then interpreted as the
entropy relative to that of theq51 state.

Note that f (q) shows that there are melted pieces in the
interior — it is maximum for moderate values ofq because
at small q the ends eventually unwind and leave less se-
quence space for melted pieces.l E(q50)5N/2, and
l E(q) drops faster than linearly as it must for there to be
interior melted pieces. The mixing term causes there to be a
maximum in the entropy for a nonzero value ofq. Note also
that there is a maximum value ofq less than 1 where the
entropy essentially runs out as a result of the collectivity of
the melting process~the total entropy atqmax is just that of
two free monomers, 2lnm(mf)), i.e., the fact thatl c mono-
mers must be melted at once means that the overlapq cannot
get infinitesimally close to 1, but has a maximum value at a
finite distance from 1. If 2l EC,l c ,qmax5122l EC/N, oth-
erwiseqmax512l c /N. From the above solutions we can
also obtain the average length of a typical melted piece, or
frozen ‘‘train,’’ as a function ofq:

^l melted~q!&5
( l c

N l nl

( l c

N nl
5
12q

f ~q!
2
2l E~q!

Nf~q!
, ~4.9!

^l frozen~q!&5
(1
Nl ml

(1
Nml

5
q

f ~q!
, ~4.10!

which are plotted in Fig. 6~b! for the 64-mer.
Note that in our analysis of the polymer entropy we have

considered only states associated with different configura-
tions of the backbone and have neglected other contributions
to the entropy such as side chain configurations, and entropy
due to the solvent.

From the calculation of the entropyS(q) we can now
easily obtain the entropic quantity lna(q)52dS(q)/dq, which
along with the roughness parametera(q) is sufficient to cal-
culate thermodynamic quantities associated with the corre-
lated energy landscape.

The entropy calculated in the preceding two sections does
not consider the energetic dependence of an allowable state’s
probability of occupation through a Boltzmann factor, and in
this respects(q) is a ‘‘microcanonical’’ entropy which just
counts the total number of states of all energies with overlap
q. The transformation to a canonical entropy and thermody-
namic free energy is described in the next section.

Lastly, the entropy theories of the preceding two sections
can be easily modified to describe a polymer in dimension
d ~e.g., d52!. The analysis of the often studied 2d case
parallels the three-dimensional treatment, but the effects of
confinement are considerably less. We will not discuss these
results in detail here, but mention that the GREM result for
2d does not reproduce the replica symmetry breaking found
by variational calculations that include vibrational chain en-
tropy @38#.

FIG. 6. ~a! Plot of the number of internal melted pieces versus
similarity parameterq, Nf(q), ~with mean length per piece as in
~b! in a 64-mer withh51, l c53, andl EC51.5. ~b! Plots of the
average free end sequence lengthl E(q) ~solid line!, the mean in-
ternal melted strand lengtĥl melted(q)& ~dashed!, and the mean in-
ternal frozen train lengtĥl frozen(q)& ~dot-dashed! as a function of
the similarity parameterq, for a 64-mer withh51, l c53, and
l EC51.5 @Eqs.~ 4.8!, ~ 4.9! and~ 4.10!#. ~c! Entropy of a strongly
constrained polymer as a function of similarity parameterq, for a
64-mer withh51, l c53, andl EC51.5.
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V. THERMODYNAMICS OF THE MODEL

To get a better feel for the GREM results such as freezing
temperature and free energy, it is helpful to compare them
with those obtained for an uncorrelated landscape, i.e., in the
REM @11#. In general, the mean number of states with ener-
gies in the interval (E,E1dE) is just

^n~E!&5~m~mf!!NP~E!;expNS so2 E2

2NDE2D ~5.1!

with P(E) given by Eq.~2.6!, m (mf) given by Eq.~2.3!, and
so[ lnm(mf). If E.Eg52(2NsoDE

2)1/2 the average number
of states is very large for even fairly largeN ~we will con-
sider only the thermodynamically significant negative energy
states here!. If the energy landscape is uncorrelated, these
states are all statistically independent, and so the relative
fluctuations in the number of states at energyE,
A^@n(E)2^n(E)&#2&/^n(E)&, are;^n(E)&21/2 and are thus
negligible. Son(E);^n(E)& for E.Eg , and the microca-
nonical entropyS(E) is then

S~E!5 lnn~E!5NFso2 E2

2NDE2G . ~5.2!

On the other hand, ifE,Eg , the entropy vanishes~the
number of states at these low energies is thermodynamically
zero!, and the system is frozen into one energy state~of
energy Eg). Using dS/dE51/T52E/DE2 and
DE25Nzh«2[NJ2 whereJ5«Azh is a convenient energy
scale, we can find the free energyE(T)2TS(T):

2
F

N
5H Tso1J2/2T, T.Trem

Eg /N5JA2so, T,Trem ,
~5.3!

where the freezing temperatureTrem is given by

Trem5S DE2

2So
D 1/2 or

Trem
J

5~2so!
21/2, ~5.4!

whereSo5Nso . The entropy as a function of temperature,
2dF(T)/dT, is

S~T!

N
5H so2J2/2T2, T.Trem

0 T,Trem .
~5.5!

Note that the thermodynamic entropy is always less than
so , the reduction being due to the fact that higher energy
states are less likely to be occupied, with a correspondingly
small2palnpa contribution to the entropy@39#. The energy
as a function of temperature, usingE52T2 ]/]T (F/T), is
given by

2
E~T!

NJ
5H J/T, T.Trem

A2so, T,Trem ,
~5.6!

where2NJA2so is the ground-state energy.
The magnitude of the freezing temperatureTrem is deter-

mined by the competition between the roughness of the en-
ergy landscape of states~characterized byDE2), and the

entropy which must be lost to be localized to one state. The
process can be visualized as a localization to one branch of a
one-level GREM ultrametric tree witheNso branches.~Only
one level of the Parisi hierarchical replica-symmetry-
breaking scheme is necessary to obtain the correct free en-
ergy in the REM.! Replica calculations@12# of the order
parameterq(x) also show a discrete jump@40# from 0 to 1 at
x5T/Trem ~see Fig. 7!:

q~x!5qminQS T

Trem
2xD1QS x2

T

Trem
D . ~5.7!

Theq(x) curve determines the probabilityP(q) of seeing a
similarity q between two states through

P~q!5
dx~q!

dq
5S T

Trem
D d~q2qmin!1S 12

T

Trem
D d~q21!

~5.8!

~see inset of Fig. 8!, wherex(q) is the inverse ofq(x). For
temperatures belowTrem , there is a nonzero probability
(12T/Trem) of seeing the polymer localized in one state
with a ‘‘self-overlap’’ of q51. However, this probability is
infinitesimal atT5Trem so that the freezing transition is sec-
ond order in the thermodynamic sense, even though the order

FIG. 7. The order parameterq(x) for a 27-mer. Light-dashed
line: The REM q(x) has a jump from qmin to qmax at
xrem5T/Trem5(0.74/0.81)(T/Tg

o)50.46 @using Eq. ~5.4! and
Tg
o/«50.74#. Solid line: For the completely collapsed polymer

(h51), there is a discrete jump in the order parameter fromqmin to
Qg
o at x5T/Tg

o ~5 0.5 here!. Here @for Qg
o,q,qmax(T)# the in-

verse of

x~q!5
T

Tg~q!
5

T

Tg
o S ds~q!/dq

ds~Qg
o!/dqD

1/2

is used@see Eq.~5.12!#. One can then show this corresponds to
T/J>0.36 and thatTg

o>0.73J>0.74« ~see Fig. 13!. Heavy-dashed
line: The partially collapsed polymer (h50.7) has continuous-type
GREM behavior with a more gradual freezing transition. The in-
verse of Eq.~5.26! is used, withT/J50.36. As the packing density
h is increased, the transition from a continuous to a discontinuous
order parameter occurs athc>0.85.
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parameterq(x) itself undergoes a discrete jump@the entropy
~5.5! and energy~5.6! are continuous atTrem# @41#.

The derivation of the free energy in the GREM involves
essentially the same concepts as in the REM, but with the
modification that instead of thetotal energies of different
states being uncorrelated, the contributions to the energies
« i
(b) on the branches of the ultrametric tree at thei th level are
uncorrelated~see Fig. 9!. A freezing temperature associated
with each leveli involves the same competition between
roughness and entropy loss as before, but now the competi-
tion is between the decrease in roughness as we move to-
wards a given state an incrementdq,

DE2 U
rem

⇒~DE2!
dv~q!

dq
dq,

and the loss in entropy for the same incrementdq,

DS5So U
rem

⇒2
dS

dq
dq,

so thatTrem in ~5.4! is replaced by

Tg~q!5S ~DE2!
dv~q!

dq

22
dS

dq

D 1/2

. ~5.9!

It was shown in Sec. II that in our theoryv(q)5q, so

Tg~q!

J
5F2S 2

ds~q!

dq D G21/2

, ~5.10!

whereds/dq is obtained, numerically if necessary, from the
theories of Secs. III and IV.

Take, for example, a fully collapsed (h51) polymer of
lengthN527. Using a simple interpolation formula

Stot~q!5~12q!Slow~q!1qShigh~q! ~5.11!

between the lowq or weakly constrained and the highq or
strongly constrained entropy formulas of Secs. III and IV, we
obtain an entropy curve as in Fig. 10 and aTg(q) curve as in
Fig. 11. The interpolated entropy formula incidentally gives
a crude way to introduce the coupling of collapse and bond
formation by considering the weakly constrained polymer to
be partially collapsed~say h>0.7), and the strongly con-
strained polymer to be completely collapsed (h51)— see
Fig. 10~b!. Notice there is a maximum in thes(q) plot indi-
cating a most probable overlapqmin for two globule states,
which corresponds to a freezing temperatureTg(qmin)5`,
i.e., forq,qmin states are actuallyanticorrelated, and so this

FIG. 8. Probability distribution of similarity
parameterq. Inset: for a REM heteropolymer
with T>0.46Tg

o . Solid line: The completely col-
lapsed (h51) heteropolymer~here atT5

1
2Tg

o)
essentially retains ad function atqmin , but the
REM spike atqmax is spread to a continuum
group of states with overlapsq.Qg

o , the total
weight of which is slightly less than the REM
weight of 12T/Trem . Dashed line: In the par-
tially collapsed (h50.7) heteropolymer with
T/J>0.36, there is a finite probability of inter-
mediateq values occurring~more spreading! than
in the discreteh51 GREM polymer.

FIG. 9. The ultrametric tree used in GREM — the parameters
qi ,a i

N , ai , and« i
(b) are described in Appendix B.
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region cannot be analyzed by the GREM~in its present
form!. This situation is analogous to consideringp spin mod-
els only for the regiont>1/2 in the pair correlation param-
eter v5(2t21)p @17#, or for a GREM applied to a spin
system in a magnetic field@42#, where two states must both
have a magnetizationm, and thus have an overlapm with
the all-spins-up state, and then by ultrametricity have an
overlap greater thanm with each other~they are on the same
branch of the tree!. Since any branch of the GREM is still
itself a GREM, we can use the analysis of Appendix B to
obtain the free energy, but we consider only states that have
an overlap of at leastqmin with each other@which is equiva-
lent to obtaining the free energy at fixedN andh since these
parameters determineqmin (qmin'qc;h21/3N22/3)# @43#.
Notice also that theTg(q) plot has, in addition to the diver-
gence atqmin associated with the statistical overlap between
uncorrelated states, a single maximum freezing temperature
atq!'1/2. So if we were to cool the system down from high
temperatures, the implication is that as the temperature is
lowered, the system will undergo a REM-like transition with
a discrete jump in the order parameterq from qmin to Qg

o

~defined below and in Appendix B!, i.e., this is adiscrete-
typeGREM. The glass transition in this case is such that the
polymer is frozen into basins in the energy landscape which
contain collections of states that are all similar at least to the
degreeQg

o .
It was found by Derrida@42# that the Parisi ansatz applied

to the GREM reproduced the correct free energy, and the
functionx(q) which maximized@the equilibrium free energy
tends to a maximum in the limn→0n(n21) negative dimen-
sionality replica space# the replica-derived expression for the
free energy in thediscrete-typeGREM was

x~q!55
0, 0,q,qmin

T/Tg
o , qmin,q,Qg

o

T/Tg~q!, Qg
o,q,qmax~T!

1, qmax~T!,q,1.

~5.12!

@see Fig. 12 for the inverse functionq(x)#, whereTg(q) is
Eq. ~5.10! in our application, andqmax(T) is defined by

15
T

Tg„qmax~T!…
~5.13!

@qmax(T) here is approximately~but not identically! qmax as
defined earlier in describing the entropy curves#. Qg

o (>0.7
for the collapsed 27-mer! is defined through~see Appendix
B!

2
ds~Qg

o!

dq
5
smax2s~Qg

o!

Qg
o2qmin

, ~5.14!

wheresmax5s(qmin), and

Tg
o

J
5
Tg~Qg

o!

J
5F Qg

o2qmin

2@smax2s~Qg
o!#

G1/2. ~5.15!

ComparingTg
o/J with Trem /J in Eq. ~5.4!, we can see that

the decrease in roughness due to correlations lowersTg
o

@sinceQg
o2qmin,12qmin#, but the decrease in the amount

of entropy lost at freezing sinceQg
o,1 tends to makeTg

o

higher~sincesmax2s(Qg
o),smax). These two competing ef-

fects nearly cancel one another to leaveTg
o/«>0.74 close to

the REM value ofTrem /«>0.78, for the 27-mer. The GREM
freezing temperatures increase withN, essentially because of
the increase in roughness associated withz(N). Also Tg

o ap-
proachesTrem asN increases, since the increase ofQg

o with
N makes the transition more REM-like for largerN ~see Fig.
13!.

FIG. 10. Interpolated entropies forh50.7 and h51 @Eq.
~5.11!#, for the 27-mer. The shape of theh50.7 entropy curve at
qmax, indicating a discontinuity in the freezing temperature there
from T(qmax) to T50, means that a finite temperature@T(qmax)#
will localize the polymer to expS(qmax) states, but there are no lower
glass temperatures for the system untilT50 ~the vertical part of the
entropy curve!.

FIG. 11.Tg(q) curves forh50.7 andh51 @Eq. ~5.10!#, for the
27-mer.Qg

o is the similarity parameter where freezing begins at
Tg
o . The temperatures Tfroz5J/A2(2 ds(qmax)/dq), with

J5Azh«, where freezing is complete@q5qmax andS50 for the
h51 curve,q5qmax andS5S(qmax) for the h50.7 curve#, are
given for both cases.
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In addition to the order parameterq(x) for the REM, Fig.
12 showsq(x) for collapse values ofh51 and h50.7,
where the order parameter is discontinuous and continuous,
respectively. One can then see there must be a critical value
of h where the discontinuity inq(x) disappears~analogous
to the GREM tricritical point on the de Almeida–Thouless
line!. This tricritical behavior occurs athc>0.85 forN527
@one can extend this analysis to obtain a tricritical line
hc(N)#.

Down to the tricritical pointhc we can look at the pack-
ing density dependence of the REM-like freezing tempera-
ture

Tg
o

«
5F zh~Qg

o2qmin!

2@smax2s~Qg
o!#

G1/2.
As h increases, the decrease in entropy lost atTg

o , the in-
creasingly REM-like behavior of the order parameter char-
acterized by a largerQg

o @Figs. 7 and 14#, and the fact that the
roughness of the landscape increases (DE2;h) all cooper-
ate to give aTg

o that increases withh ~see Fig. 13!. The
behavior closely follows the REM behavior of Eq.~5.4!, with
a crossover point ath>0.88.

Below hc , there is no solutionQg
o to Eq. ~5.14!, but the

function Tg(q) still has a~weakly peaked! maximum atq!

(Qg
o>q! at h>hc), and we can still compute all the ther-

modynamic quantities by using this characteristic valueq
which signals the onset of overlaps of appreciable probabil-
ity in P(q). However belowh>3/4 the freezing tempera-
turesTg(q) are monotonically decreasing withq and there is
no longer any characteristic value ofq to describe REM-like
freezing. Throughout these regimes though, the functions
q(x) andP(q), as well as thermodynamic quantities, are not
significantly different.

The structure ofx(q) implies that the order parameter
q(x) @the inverse ofx(q)# has a plateau atqmin(N).0, and
a discrete jump atx5T/Tg

o from qmin>0.04 toQg
o>0.7 in-

dicatingP(q)50 in this region. It is fruitful to compare our
function q(x) with the GREM analogue applied to a spin
glass in a magnetic field~see Ref.@42# and Fig. 7!.

All of the thermodynamics obtained above is for a poly-
mer in equilibrium on the time scale~s! during which it is
trapped within a single basin. However, there may be ways
to escape from a basin kinetically, which leads to an inves-
tigation of the search time for the polymer to explore all of
its stable basins of attraction. Since exp@S(Qg

o)# is the average
number of states in a given basin, the~configurational! en-
tropy associated with the total number of basins~i.e., the

FIG. 12. Entropy of a single basin over total entropy at the
freezing temperature, and thermodynamic entropy over total en-
tropy at the freezing temp, plotted here vs packing densityh for
N527, and vs sequence lengthN for h51. SinceQg

o increases with
N, the basin size decreases asN increases, hence the decrease in
entropy.~This is to be compared with the Levinthal entropy for the
REM model, which issmax; sthermal for the REM is zero.!

FIG. 13. The temperatureTg
o at the onset of freezing~solid line!,

plotted with the REM freezing temperatureTrem ~dashed line!, as a
function of packing densityh and sequence lengthN. The dashed
continuation of theTg

o curve is the extension below the tricritical
pointhc as described in Sec. V. Temperatures are in units of«. The
temperatureT froz where total freezing occurs is lower than both
Trem andTg

o ~not plotted here!.
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Levinthal entropy@21#! is SLevinthal5Smax2S(Qg
o). A value

of Qg
o,qmax indicates a reduction in the number of basins

from the REM valueSmax, to be searched through at the
glass transitionTg

o ~every state in the uncorrelated landscape
is itself a basin!. This reduction in basin size on the energy
landscape, relevant for a kinetic search belowTg

o , is quite
significant for a typical collapsed polymer. For example, a
heteropolymer withN5100 and 60% helicity has an entropy
Smax'70kB @3,15#. Using the interpolateds(q) theory with
h>0.7 for low q and h51 for high q ~see Fig. 4!
smax>1.3 ~see Fig. 10! gives an equivalent collapsed cubic
lattice polymer of lengthN>54, and a REM Levinthal num-
ber of basinse70'1030. Using the configurational entropy at
Tg
o for a mostly collapsed 54-mer~consistent withQg

o) of
h>0.9, the Levinthal entropySLevinthal>(2/3)Smax546kB ,
and on a correlated landscape the system must search
through'1020 basins at the glass transition. Note that the
Levinthal entropy increases ash increases, so it is important
for the conformational search as to how collapsed the poly-
mer is when it undergoes its glass transtion.

If m-body forces dominate the interaction energies be-
tween monomers, we expect that in the limitm→` we
should recover the REM results such asQg

o→qmax,
Tg
o→Trem5J(2smax)

21/2, SLevinthal→Smax5Nlnm(mf), etc.

Using a Kirkwood superposition approximation as men-
tioned in Sec. II, and using simplifying assumptions such as
the probability to form a bond to monomerj is Markovian,
overlaps ofm-body interactions, in terms of the two-body
single-bond overlapq, go as;qm21. To see the effect of
thesem-body forces, we can consider them as the sole con-
tributors to the energy, and modify the pair energy distribu-
tion ~2.10! by replacing the two-body correlationq with
qm21. This results in a GREM with

v~q!5qm21 and a~q!5~m21!qm22,

which has anm-dependent freezing temperature

Tg
o

J
5A~m21!~Qg

o!m22

22
ds~Qg

o!

dq

5A~Qg
o!m212~qmin!

m21

2@smax2s~Qg
o!#

and a Levinthal entropy

SLevinthal5Smax2S~Qg
o!, ~5.16!

whereQg
o is the solution to

FIG. 14. ~a! The minimum similarity Qg
o

within a frozen basin belowTg
o is an increasing

function of the sequence length of the polymer
N, for the completely collapsed polymer
(h51). ~b! Qg

o is an increasing function of col-
lapse parameterh for the 27-mer, plotted above
the tricritical point h27

! >0.852. Belowh27
! the

nature of the transition changes to continuous
freezing, but we can still obtain an approximate
Qg
o value by equatingQg

o with the broad maxi-
mum of theTg(q) curve ~dotted line in inset!.
The increasing roughness in the landscape asN
andh increase leads to more REM-like behavior,
with the similarity at freezing getting closer to
1, and the corresponding basin size getting
smaller~see Fig. 12!.This implies that in the fold-
ing model which includes an energy gap, where
h is an increasing function of the overlapQnat

with the native state,Qg
o ~and henceTg

o) will be
an increasing function of native similarityQnat .
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~Qg
o!m212~qmin!

m21

smax2s~Qg
o!

5
~m21!~Qg

o!m22

2
ds~Qg

o!

dq

. ~5.17!

Qg
o can be shown to be a monotonically increasing function

of m, and abovem>4, there is no solution to Eq.~5.17!, and
in this regionQg

o5qmax @42#. The increasing value ofQg
o

gives the order parameterq(x) a larger discontinuity at
x5T/Tg

o , consistent with the REM description~see Fig. 7!.
If qmax>1, in the REM limit m→`, Tg

o approaches the
REM value ofJ(2smax)

21/2. SinceQg
o increases withm, the

configurational entropy per basinS(Qg
o) decreases, and the

Levinthal entropy, measuring the number of thermodynamic
basins to be searched below the glass temperatureTg

o , in-
creases tosmax abovem>4 ~see Fig. 15!.

The general shape ofq(x) as well asP(q)5dx(q)/dq
can be seen to be ‘‘smoothed out’’ versions of the REM
results@see Eq.~5.18!# and Fig. 8!. P(q) has ad function at
qmin as in the REM, but instead of pure states atqmax having
a finite weight Y5(aPa

2512T/Tg
o below Tg

o as in the
REM, the weight is spread out among a group of similar
ergodically confined states with high overlap (q.Qg

o).
~There is also some spreading nearqmin which increases with
decreasingh.) There will be a plateau, however, if
T,T froz5T(qmax), wheres(T)50. This can be seen from
the Tg(q) curve @Fig. 11#, which drops vertically atqmax,
meaning thatx(q) has a vertical step atqmax andq(x) has a
plateau in this region@see also the inverse functionq(T) in
Fig. 16#. The finite weight of a pure state forT,T froz is
consistent with the vanishing entropy in this region of tem-
perature. The form ofP(q) is given by

P~q!5
dx~q!

dq

55
0, q,qmin

spike of weightT/Tg
o , q5qmin

0, qmin,q,Qg
o

TTg~q!

J2 S 2
d2s~q!

dq2 D , Qg
o,q,qmax~T!

0, qmax~T!,q,1.

~5.18!

As mentioned in Appendix B, a monotonically increasing
Tg(q) curve will give a REM-like freezing with a jump in
order parameterq(x) as in Fig. 7. A REMx(q) dependence
can be obtained from a linearly decreasings(q) ~Fig. 17! as
follows. The shape ofx(q) for the REM has two steps, one
from 0 to T/Trem at qmin and another fromT/Trem to 1 at
qmax, with horizontal pieces from 0 toqmin at x50 and
qmin to qmax at x5T/Trem . Since each state in the REM is
itself one basin,SLevinthal5Smax atTrem , and therefore in the
GREM languageQg

ourem5qmax. So there is no second re-
gion betweenQg

o andqmax in x(q) in Eq. ~5.12!, and there is
only one freezing temperature, which by Eq.~5.15! is

Trem
J

5
Tg~qmax!

J
5S qmax2qmin

2smax
D 1/2,

which is just Eq.~5.4! when qmax51 andqmin50. It also
follows that the bilinear~two-slope! approximation fors(q)
whenN is large~Fig. 17! has two freezing temperatures, and
by the above arguments can be seen to be equivalent to a
two-tier GREM @26#.

For N527 andh51, the glass temperature curveTg(q)
and the order parameterq(x) justify that the free energy is

FIG. 15. Levinthal entropy per monomer in units ofkB , as a
function ofm where the Hamiltonian describing the energetics of
the system hasm-body interactions. The dotted line is the REM
result, the integer values of the solid line are them-body results.
Real proteins may contain both two-body and higher-body interac-
tions. For these cases, the interpolated values of the Levinthal en-
tropy can give some crude idea of the magnitude of many-body
effects on the search problem.

FIG. 16. q(T), defined as the inverse ofTg(q) ~see Fig. 11! for
the 27-mer ath50.9, for the REM and GREM, the REM being
defined here with a linears(q) from smax at qmin to 0 atqmax. All
temperatures are in units of«. This is similar to the functionq(x)
~Fig. 7! but here we can see there exists a plateau below
T5T froz . Note the temperature in the GREM where the freezing
begins is higher thanTrem8 , but the GREMT5T froz is much lower.
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obtained by applying to the polymer a discrete-type GREM
in a ‘‘magnetic field’’ of strengthqmin , with the result

2
F~T!

N
5Tsmax1

J2

2T
~qmax2qmin!, T.Tg

o ,

2
F~T!

N
5Ts„q~T!…1

J2

2T
@qmax2q~T!#

1A2JE
Qg
o

q~T!

dqS 2
ds~q!

dq D 1/2

1
J2

Tg
o ~Qg

o2qmin!, T froz,T,Tg
o,

2
F

N
5A2JE

Qg
o

qmax
dqS 2

ds~q!

dq D 1/2

1
J2

Tg
o ~Qg

o2qmin!, T,T froz ,

~5.19!

whereq(T) is the inverse ofTg(q), s(q)5S(q)/N is the
specific entropy~per monomer! as in Fig. 10,qmax is theq
value wheres(qmax)50, T froz5T(qmax), andJ

25zh«2 (J
is defined slightly differently in Appendix B!.

Below the temperatureTg
o , overlaps with values ofQg

o

and greater begin to be seen with finite weight, illustrating
that the system begins to be confined within basins in the
energy landscape containing configurations at least as similar
asQg

o ~see Fig. 14!. SinceQg
o,qmax, there are still many

states within these basins, and a corresponding finite entropy
left over below the glass transition temperatureTg

o . Since the
glass transition is thermodynamically second order as it was
in the REM, we can obtain the thermodynamic entropy left
over at the freezing temperature,s(Tg

o), by taking the tem-

perature derivative of either the high temperature or partially
frozen phase and evaluating atTg

o :

S~Tg
o!

N
52

]

]T S FND U
T
g
o

5s~Qg
o!2

1

2 S JTgoD
2

~qmax2Qg
o!,

~5.20!

which has a reduction from the raw configurational entropy
per basinsbasin5s(Qg

o). The thermodynamic entropy de-
pends onN andh mostly throughQg

o , Tg
o , and thez(N) and

h dependence ofJ ~see Fig. 13!. So a feature of the GREM
is that there is now a nonzero entropy below the glass tem-
peratureTg

o , where a collective transition takes place to lo-
calize states to within similar values, but not immediately to
one pure state.

We can also find the energy in the polymer atTg
o through

E~Tg
o!

N
5
1

N

]

]~1/T! S FTD U
T
g
o
52

J2

Tg
o ~qmax2qmin!

~5.21!

and the ground-state energy

EGS

N
5 lim

T→0

F~T!

N
52

J2

Tg
o ~Qg

o2qmin!

2A2JE
Qg
o

qmax
dqS 2

ds

dqD
1/2

522Tg
o~smax2s~Qg

o!!

2A2JE
Qg
o

qmax
dqS 2

ds

dqD
1/2

~5.22!

which is above the REM ground-state energy
EGS/N522Tremsmax ~Fig. 18!.

FIG. 17. Interpolated entropies forN527 and
N5125 @Eq. ~5.11!#. The entropy curve imitates
a bilinear form for largerN. The small discrep-
ancy betweensmax for the curves is due to the
N-dependent confinement theory:smax→ lnm(mf)

asN approaches the bulk limit. The range inq
where confinement is important→0 asN→`,
while qmax ~where s>0) →1 asN→`. Note
that qmax increases withN approximately in the
manner described by the highq formula; the de-
creasing value ofqv where the entropy crisis oc-
curs in the lowq formula only affects the slope
of the interpolated entropy for smallq.
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From the free energyF(T) in the free, partially frozen,
and completely frozen regimes, we can obtain the thermody-
namic entropy and energy as functions of temperature.
Above the freezing temperatureTg

o the results are as in the
REM, with overlapq5qmin andS(T) andE(T) in the high
temperature phase. So that the high temperature results
agree, we have modified the REM analysis by makings(q) a
linearly decreasing function ofq from smax to 0 on the in-
terval $qmin ,qmax% instead of$0,1%. This increases the slope
ds/dq and thus lowersTrem below Tg

o , so we will call the
REM transition temperatureTrem8 here. In the example in
Figs. 19 and 20,N527 andh50.9; the freezing begins
aboveTrem8 and there is a gradual transition down toT froz

below which the system is completely frozen into one state.
In the partly frozen regime betweenTg

o andT froz , all tem-
peraturesT are freezing temperaturesT(q) @Eq. ~5.10!# :

T~q!5
J

A22
ds~q!

dq

, ~5.23!

as the overlapq monotonically increases the freezing tem-
peratures monotonically decrease, andq(T) in Eq. ~5.19! is
understood as the inverse ofT(q) above~Eq. ~5.23! see Fig.
18!. BelowT froz , q5qmax, S(T)50, andE(T)5EGS. The
form of the entropy as a function ofT is

S~T!

N
5smax2

J2

2T2
~qmax2qmin!, T.Tg

o ,

S~T!

N
5s@q~T!#2

J2

2T2
@qmax2q~T!#, T froz,T,Tg

o ,

S~T!

N
50, T,T froz ~5.24!

and the energy vsT is

FIG. 18. Ground-state energy for the GREM and REM, as well
as the energy at the glass transition, vs packing density~for the
27-mer!, and sequence length@for a densely packed (h51) poly-
mer#. All energies are per monomer and in units of«. The mini-
mum ath somewhat less than 1 is due to the competition between
the increase in ground-state energy as the polymer becomes more
dilute ~because the width of the Gaussian random energy distribu-
tion becomes narrower as the number of bonds decreases!, and the
decrease in ground-state energy as the total number of states which
must be frozen out at the glass transition increases~with decreasing
h).

FIG. 19. Entropy per monomer, in units of
Boltzmann’s constant, of a GREM heteropolymer
(N527, h50.9) plotted vs 1/T, where tempera-
tures are in units of«. In the GREM the polymer
is more gradually localized to one state at a lower
temperature than in the REM. This is because the
energy correlations between states smooth the en-
ergy landscape in the vicinity of a state, making
glassy localization to that state happen at lower
temperatures than in the uncorrelated landscape.
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E~T!

NJ
52

J

T
~qmax2qmin!, T.Tg

o ,

E~T!

NJ
52

J

T
@qmax2q~T!#2

J

Tg
o ~Qg

o2qmin!

2A2E
Qg
o

q~T!

dqS 2
ds~q!

dq D 1/2, T froz,T,Tg
o ,

E

NJ
52

J

Tg
o ~Qg

o2qmin!2A2E
Qg
o

qmax
dqS 2

ds~q!

dq D 1/2,
T,T froz , ~5.25!

whereT froz5Tg(qmax).
We can also apply the GREM to a partially collapsed

27-mer with, say,h50.7, and obtain the corresponding
quantities as above. The interpolated configurational entropy
curve of Eq.~5.11! ~see Fig. 10! corresponds to a larger total
number of states since the polymer is less compact, and also
has a minimum overlapqmin>0.04 where the entropy is a
maximum (smax> lnm(mf)51.31). The corresponding freez-
ing temperature curveTg(q) is indicative of acontinuous-
type GREMwith the exception that there is a diverging glass
temperatureTg(qmin)5` ~see Fig. 11!, which we deal with
as before by considering this the finite-size analogue of a
spin system in a magnetic field. This is seen most clearly by
investigating the order parameterq(x) ~see Fig. 7!, defined
as the inverse of

x~q!55
0, 0,q,qmin

T/Tg~q!, qmin,q,qmax~T!

1, qmax~T!,q,1,

~5.26!

whereqmax is as defined before, andTg(q) is Eq. ~5.10!.
In the random heteropolymer withN527 andh50.7, the

monotonically decreasingTg(q) curve ~Fig. 11! indicates a
continuous-type GREM, with no completely free high tem-

perature phase sinceTg(qmin)5`, and the free energy~rela-
tive to that of the fully constrained state! in the remaining
two phases~partly frozen and completely frozen! given by

2
F~T!

N
5Ts@q~T!#1

J2

2T
@qmax2q~T!#

1A2JE
qmin

q~T!

dqS 2
ds~q!

dq D 1/2,
Tg~qmax!,T,Tg~qmin!,

2
F

N
5A2JE

qmin

qmax
dqS 2

ds~q!

dq D 1/2, T,Tg~qmax!, ~5.27!

whereq(T), s(q), qmax, andJ are defined as before.

VI. CONCLUSION

We have analyzed the thermodynamics of a mesoscopic
random heteropolymer by combining the generalized random
energy model of a correlated energy landscape with the ap-
propriate polymer physics of a simple collapsed polymer.
For higher collapse density the glass transition is a first-
order-like random phase transition~with respect to the order
parameter! like the transition exhibited by the random energy
model. A feature is the emergence of a tricritical point at
lower packing density, where the transition becomes con-
tinuous. The physical observables such as the probability dis-
tribution of the order parameterP(q) are not dramatically
different quantitatively on either side of the transition. The
transition temperatureTg

o for the first-order REM-like transi-
tion is within about 5% of the REM valueTrem , which is
reassuring for the previous thermodynamic description of
real proteins by the REM. In fact, even when the transition is
continuous the large values ofP(q) occur near the REMd
functions. The continuous REM transition coupled with col-
lapse may be related to the unusual non-self-averaging be-

FIG. 20. Energy per monomer, in units of«,
of a GREM heteropolymer (N527,h50.9) plot-
ted vs 1/T (T also in units of«). In the GREM,
the polymer approaches its ground-state energy
more gradually than in the REM, because in the
correlated landscape the polymer is not yet
trapped to its ground-state at temperatures below
Trem8 , the smoothness of the energy landscape al-
lowing the polymer to still explore many states at
colder temperatures.
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havior manifest in the sensitivity of collapse to single-site
mutations in staphylococcal nuclease observed by Engleman
and co-workers@44#. We must also bear in mind that their
system is a natural protein and thus is minimally frustrated,
which gives an another reason why the collapse would be
non-self-averaging.

While the thermodynamic transition temperature is not
very different from the REM value, the properties of the
basins of attraction are quantitatively modified. The
Levinthal number, measuring the number of basins to be
searched at the glass transition, is significantly reduced~by a
factor of about 1/3 on a logarithmic scale for collapsed
protein-sized molecules!. This means it may be possible to
get thermodynamically proteinlike behavior for a larger frac-
tion of considerably longer random chains than would have
been expected. Experiments on sampling random polypep-
tides and studying their thermodynamics@45,46# have indeed
given many more sequences with a first-order-like transition
than naively anticipated. According to the GREM, however,
it is likely that the basins into which the polypeptide freezes
at the transition still have considerable conformational free-
dom, as manifest by the large entropy left over after the
transition. For the 27-mer in low density assemblies
(h50.75), the residual entropy of a single basin is
>0.8max, while at high density (h51) this entropy is
>0.3smax. Similarly, we expect the correlations to consider-
ably reduce the size of the barriers between basins, an issue
we shall investigate quantitatively within the GREM in a
future paper.

One technical point regarding the GREM analysis relates
to the fact that we have analyzed polymers of finite size
(N). Because of the significant surface to volume ratio of
biopolymers, thermodynamic properties within the analysis
depend moderately uponN. There can be other specific ef-
fects due the finite size that will act to round the transitions,
which will come from the introduction of defects in the fro-
zen order. Some of these effects may be correctly handled by
the highQ analysis, but higher order correlations, reflecting
the possibility of a type of freezing into different low energy
reference structures for the melted regions, would have to be
taken into account~this effect requires at least triplet corre-
lations between the energy levels!. We should also note that
the highQ analysis may be useful in describing hydrogen
exchange experiments on proteins with low denaturant con-
centrations@47#.

The GREM analysis is only approximate, but it also al-
lows us to address important questions. An especially impor-
tant issue is the approximate treatment of barriers between
local minima, above the glass transition@48#. It is also pos-
sible to use it to estimate the fraction of sequences which are
sufficiently minimally frustrated to fold kinetically, and to
discuss the shape of the free energy surfaces and folding
funnels of minimally frustrated random heteropolymers. The
quantitative application of the theory to natural proteins also
raises additional questions concerning partial order in protein
molten globules@15,16#. Not only do such states exhibit lo-
cal secondary structure~increasing the rigidity of the back-
bone!, but also liquid crystallinity@15,16# and microphase
separation@49#. We believe each of these effects can be ac-
commodated within the GREM formalism by modifying the
Flory-style analysis of the configurational entropyS(q), a

problem which we hope to return to in the future.
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APPENDIX A

Consider two different states of the polymer that havem
bonds in common. Assuming that them energies of interac-
tion corresponding to them identical bonds in both ‘‘copies’’
of the polymer are the same, let us define a parameter
F5(« i j si j which is the contribution to the total energy that
is the same for both states. Next, letEa5F1fa and
Eb5F1fb , wherefa,b is the contribution to the total en-
ergy from the remainingNzh2m bonds. The probability of
statesa andb having energiesEa andEb is then

Pa,b~Ea ,Eb!5E dfaE dfbE dFP~fa!P~fb!P~F!

3d„Ea2~F1fa!…d„Eb2~F1fb!…,

~A1!

whereP(F) andP(fa,b) are Gaussian probability distribu-
tions with varianceŝF2&5m«2 and ^fa,b

2 &5(zNh2m)«2.
Integrating outfa andfb using thed functions,

Pa,b~Ea ,Eb!5 const83E dFexpF2
~Ea2F!2

2~Nzh2m!«2

2
~Eb2F!2

2~Nzh2m!«2
2

F2

2m«2G
5 const3expF2

1

4Nzh«2

3S ~Ea1Eb!
2

11q
1

~Ea2Eb!
2

12q D G . ~A2!

APPENDIX B

In the GREM, one can consider the (m (mf))N states of a
polymer as the end points of an ultrametric tree ofn levels
~see Fig. 9! @50#. To each leveli (1< i<n) of the tree one
associates three quantitiesa i , ai , andqi . Two configura-
tionsa andb have an overlapqab5qi , whereqi is the level
on the tree where the branches coming froma and
b join. qi is an increasing function of i with
05q1,q2•••,qn1151. At the i th level one branch di-
vides into a i

N branches, so at leveli there are
(a1a2•••a i)

N branches, and (a1a2•••an)
N5(m (mf))N.

On each branch of the tree at leveli , one chooses a ran-
dom variable« i

(b) according to a distributionr i(« i
(b)) whose

width is ai :
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r i~« i
~b!!5

1

~paiNJ
2!1/2

expS 2
~« i

~b!!2

aiNJ
2 D . ~B1!

The energy of each configurationb is then given by

Eb5(
i51

n

« i
~b! , ~B2!

where the « i
(b) are the energies associated with then

branches that connect each state to the top of the tree. States
a and b with overlapqab5qi have« j

(a)5« j
(b) for j< i21

and« j
(a)Þ« j

(b) for j> i . The model is defined once the two
sequencesa i andai are given for 1< i<n. If we choose the
normalization

(
i51

n

ai51, ~B3!

then the energiesEb of the (m
(mf))N states are distributed as

Gaussian random variables:

Pa~Ea!5
1

~pNJ2!1/2
expS 2

~Ea!
2

NJ2 D . ~B4!

The probability distributionPab(Ea ,Eb) that two configura-
tional statesa andb have energiesEa andEb is

Pa,b~Ea ,Eb!5 const3expF2
1

2NJ2

3S ~Ea1Eb!
2

11vab
1

~Ea2Eb!
2

12vab
D G , ~B5!

wherevab is a measure of the correlation in energy between
two configurations with overlapqi :

vab5v i5(
j51

i21

aj . ~B6!

Given a configuration (a), the number of configurations
that have an overlap ofqi with (a) is

V i5eNsi5~a i
N21!~a i11•••an!

N. ~B7!

This is the number of states to which formulas~B5! and~B6!
apply. In the thermodynamic limit (N→`), the entropy at
level i is

si5(
j5 i

n

lna j . ~B8!

We assume this equation holds approximately for fairly large
N. For N fairly large there is almost a continuous range of
possible overlaps (0<q<1) which means the number of
levels in the ultrametric tree is large@51#. Sosi andv i may
be treated as continuous quantitiess(q) and v(q), which
means

lna~q!52
ds~q!

dq
and a~q!5

dv~q!

dq
. ~B9!

The GREM free energy and its derived quantities are dis-
cussed in the section on thermodynamics. In brief, there are
two cases where the GREM has been solved@a third scenario

is if T(q) is monotonically increasing or constant — in this
case we just retrieve the REM results@11##.

Continuous-type GREM

If the freezing ~glass! temperature as a function ofq,
defined by

T~q!5
J

2 S a~q!

lna~q! D
1/2

5
J

2S dv~q!

dq

2
ds~q!

dq

D 1/2

~B10!

is a monotonically decreasing function of the overlapq, then
the freezing occurs from the top of the ultrametric tree down-
ward ~most dissimilar states freeze out first!, and the thermo-
dynamic free energy is given by

2
F

N
5Tso1

J2

4T
, T.T~0!,

2
F

N
5Ts„q~T!…1

J2

4T
@v~1!2v„q~T!…#

1JE
0

q~T!

dqS 2
ds~q!

dq

dv~q!

dq D 1/2,
T~1!,T5T~q!,

2
F

N
5JE

0

1

dq(2
ds~q!

dq

dv~q!

dq
)1/2, T,T~1!, ~B11!

where q(T) is the inverse ofT(q), so5 lnm(mf), and
s(q)5S(q)/N is the specific entropy~per monomer! ob-
tained from the theories in Secs. III and IV. At the highest
temperatures @i.e., those higher than T(q50) if
T(q50),`# the system can freely explore all of its states
regardless of dissimilarity. At lower temperatures there is a
continuous freezing which gradually causes states to be more
localized.

Discrete-type GREM

The functionT(q) has a single maximum, say, atq!. We
would expect based on the comments in Sec. V that there
will be a REM transition with a discreet jump in the order
parameter q, and then a gradual freezing as in the
continuous-type GREM above. Defineqg

o such that

v~qg
o!2v~0!

s~0!2s~qg
o!

5

dv
dq

~qg
o!

2
ds

dq
~qg

o!

. ~B12!

qg
o is always greater thanq!. Now define what will be a
REM-like transition temperature, where the freezing will
have a sudden onset atqg

o :

Tg
o5

J

2S dv
dq

~qg
o!

2
ds

dq
~qg

o!
D 1/2

5
J

2 S v~qg
o!2v~0!

s~0!2s~qg
o!

D 1/2.
~B13!

Then the thermodynamic free energy is
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2
F

N
5Tso1

J2

4T
, T.Tg

o

2
F

N
5Ts„q~T!…1

J2

4T
@v~1!2v„q~T!…#

1JE
qg
o

q~T!

dqS 2
ds~q!

dq

dv~q!

dq D 1/2
1J$@v~qg

o!2v~0!#@s~0!2s~qg
o!#%1/2,

T~1!,T,Tg
o , ~B14!

2
F

N
5JE

qg
o

1

dqS 2
ds~q!

dq

dv~q!

dq D 1/2
1J$@v~qg

o!2v~0!#@s~0!2s~qg
o!#%1/2, T,T~1!.

If there is a limitqmin as to how uncorrelated two states can
be, e.g., an SK spin glass in a magnetic field or a finite
polymer, the above formulas are only slightly modified by
effectively replacing the lower limits of 0 withqmin . This is
described in Sec. V.

APPENDIX C

Consider the region of a cross linked polymer around a
given cross link about to be formed~see Fig. 21!. Each cross
link and its two associated monomers@52# has four neigh-
boring cross linksC1 ,C2 ,C3 ,C4 . We seek the fraction of
allowable states that are consistent with the formation of a
specific cross link atA, vADt. We assume that if the spe-
cific monomers thatA joins are within a volumeDt of each
other then a cross link is formed. If we consider the system
to be composed of four separate chains,vADt equals the
probability that all four chains meet inDt, divided by the
probability that the chains meet in pairs~restoring the allow-
able configurations in the unbonded initial structure!. If the
chains are Gaussian, the propagator from the origin to posi-
tion r i for a polymer chain ofni statistical segments is

G~r i uni !5S 3

2p^r i
2& D

3/2

expS 2
3r i

2

2^r i
2& D ~C1!

with ^r i
2&5nib

2, whereb is the length of one segment. So
the probability of forming a cross link is then given by

vADt5Dt
*dtG1~r1!G2~r2!G3~r3!G4~r4!

*dtG1~r1!G2~r2!*dtG3~r3!G4~r4!
, ~C2!

whereGi(r i) is a Gaussian function extending from position
Ci , andr i is the vector from the position ofCi to the volume
elementDt. The integrations extend over all space — to
perform them set up an originO at the most probable posi-
tion of the junctionA, defined such that fromO

R1

^R1
2&

1
R2

^R2
2&

1
R3

^R3
2&

1
R4

^R4
2&

50, ~C3!

whereRi goes fromO to Ci . Let r be a vector fromO to
Dt, and using the fact thatr i5r2Ri in ~C2!, and separating
into Cartesian coordinates, we can integrate over thex, y,

and z components ofr to obtainvADt as the product of
X, Y, andZ factors which look like

vA,x5F ~b1
21b2

2!~b3
21b4

2!

p~b1
21b2

21b3
21b4

2!G
1/2

expF2
~b1

2X11b2
2X2!

2

b1
21b2

2

2
~b3

2X31b4
2X4!

2

b3
21b4

2 G , ~C4!

whereXi is the x component ofRi , and

b i
25

3

2^r i
2&

5
3

2nib
2 . ~C5!

In the ~isotropic! reference state, the position ofXi is ran-
domly distributed over a Gaussian distribution of values

P~Xi !5Ab i
2

p
exp~2b i

2Xi
2!. ~C6!

AveragingvA,x over theX coordinates of theCi ’s, we obtain
the mean value of the probability to form a cross link atA,

^vA,x&5F ~b1
21b2

2!~b3
21b4

2!

p~b1
21b2

21b3
21b4

2!G
1/2S 12D . ~C7!

To a good approximation, we can replace theb i
2 by their

average values, so that

v̄A,x5S b2

4p
D 1/2, ~C8!

FIG. 21. Allowable configurations of polymer strands~a! before
and ~b! after bond formation. Each pair of bonded mers has four
nearest cross-linked neighbors.
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where

b25
3

2n̄b2
, ~C9!

where n̄ is the average number of statistical segments be-
tween cross links given that there arem cross links present.

To calculaten̄, note that the probabilitypm that a given
monomer is cross linked is equal to the number of cross-
linked monomers over the total number of monomersN,

pm5
2m

N
. ~C10!

The probabilityPn,m of having a chain of lengthn with m
bonds present is just the negative binomial distribution

Pn,m5pm~12pm!n21, ~C11!

so that the average chain length is

n̄5
(nPn,m
(Pn,m

5
1

pm
5

N

2m
. ~C12!

Thus we obtain for the average probability to form bondA

vADt5v̄A,xv̄A,yv̄A,z5S b2

4p
D 3/2Dt ~C13!

or

v̄~m!Dt5S 3m

4pNb2D
3/2

Dt, ~C14!

which is the fraction of states permissible as a result of form-
ing one more cross linkage withm cross links already
present. We can now consider adding one cross link at a
time, using formula~C14! in a mean field sense, to obtain the
total fraction of states permissible as a result of forming
qNzh bonds@53#:

Vq

Vo
5 )

m51

qNzh

v̄~m!Dt5S Dt

b3 D
qNzhS 3

4pND
3
2 qNzh

@~qNzh!! #3/2.

~C15!

Thus the reduction in entropy ~per monomer!,
2(So2Sq)/N, associated with the formation ofqNzh
bonds, is

DS~q!

N
5
1

N
ln

Vq

Vo
5
3

2
qzhF ln 3

4p S Dt

b3 D
2/3

211 lnqzh G .
~C16!

APPENDIX D

Given a polymer withm cross links present, the probabil-
ity of not forming one more cross link is

pnot~m!512v̄~m!Dt. ~D1!

The probability of not formingNzh(12q) more cross links
is

Pnot~qNh!5 )
m5qNzh

Nzh

pnot~m! ~D2!

and the antibond entropy reduction is then

DSAB~quNh!5 ln )
m5qNzh

Nzh

@12v̄~m!Dt#

>E
qNzh

Nzh
dm ln@12~Bm!3/2#, ~D3!

where

B5
3

4pN S Dt

b3 D
2/3

. ~D4!

Letting x5Bm, Eq. ~3.3! follows. The upper limit in the
integral in ~3.3! cannot be greater than 1, which sets a limit
as to how largeN can be for the antibond term in the entropy
to be valid. SettingCzh51, using the lattice value of
Dt/b354, and usingh51 gives z(Nmax)> (p/3)41/3 or
Nmax>710, which is much higher than the typical size of the
polymers we are concerned with.Nmax is higher for smaller
values ofh.

APPENDIX E

To find the probability of bond formation and its associ-
ated entropy loss for a polymer in a box, we must seek the
Green’s function solution to the differential equation

S ]

]N
2
b2

6
¹ r
21

Ue~r !

T DG~r ,r 8,N!5d~r2r 8!d~N! ~E1!

with the boundary conditionsUe50 inside the box and
Ue5` outside. The solution, obtained by an expansion in
eigenfunctions@54#, is

G~r ,r 8,N!5Gx~x,x8,N!Gy~y,y8,N!Gz~z,z8,N! ~E2!

with

Gx~x,x8,N!5
2

L (
kx51

`

sinS kxpxL D sinS kxpx8L D
3expS 2

kx
2p2Nb2

6L2 D . ~E3!

Given this propagator, there are several approaches of vary-
ing complexity one can use to find the probability of bond
formation. We can start by considering the probability of
forming a loop of lengthn̄5N/2m, and then average over
the position of the starting point:

v̄con f~m!Dt5
1

L3EVdrEr85r

r85r1Dt
dr 8G~r ,r 8,n̄!. ~E4!

Splitting the integrations over Cartesian coordinates gives

v̄con f~m!Dt5v̄x
con f~m!v̄y

con f~m!v̄z
con f~m! ~E5!

with
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v̄x
con f~m!5

Dx

L (
kx51

`

eb n̄kx
2

~E6!

where

b5
p2

6 S h

ND 2/3. ~E7!

So

v̄con f~m!Dt5
h

N S Dt

b3 D (
kx ,ky ,kz

eb n̄~kx
2
1ky

2
1kz

2
!. ~E8!

We can ~without necessarily assuming ground-state domi-
nance! approximate the sums by integrals to obtain

v̄con f~m!Dt5
h

N S Dt

b3 D S E0`dke2b
N
2m k2D 3 ~E9!

5
Dt

b3 S 12p m

ND 3/2, ~E10!

which preserves them3/2 dependence in the Flory theory@see
Eq. ~C14!#, but gives a probability;102 times higher to
form a bond.

One can obtain comparable values to those from~E10!
with a more detailed calculation which takes a flat average of
~E8! over loop sizesn̄8 from a minimum loop sizeNc
to n̄5N/2m:

vcon f~m,Nc!Dt5
h

N S Dt

b3 D (
kx ,ky ,kz

1

n̄2Nc11
(
n̄85Nc

n̄

e2b n̄8k2,

~E11!

where k25kx
21ky

21kz
2 . Carrying out the geometric sum

on n̄8 and approximating the sums onk by a volume integral
in k space gives

vcon f~m,Nc!Dt>
h

N S Dt

b3 D 1

n̄2Nc11

4p

8

3E
0

`

k2dk
e2bNck

2

12e2bk2
. ~E12!

Changing variables toe5bk2, the integral becomes

p

4b3/2E
0

`

dee1/2
e2Nce

12e2e 5
p

4b3/2(
m51

` E
0

`

dee1/2e2~Nc1m21!e

5S p

4b D 3/2(
m51

`

~Nc1m21!23/2

5S p

4b D 3/2z~ 3
2 ,Nc!, ~E13!

wherez(3/2 ,Nc) is the generalized Riemann zeta function,
plotted vsNc in Fig. 22. We can see from the figure that
increasing the number of segments needed to make a loop,
Nc ~i.e., making the chain stiffer!, decreases the probability

that a bonded loop will be formed. So the probability to form
a new bond givenm bonds present is now

vcon f~m,Nc!Dt>S Dt

b3 D S 3

2p D 3/2 zS 32 ,NcD
N

2m
2~Nc21!

,

~E14!

which gives probabilities comparable to~E10! for Nc'1.
~However, the averaging over loop lengths results in a linear
m dependence, instead of the mean fieldm3/2 dependence.!
The formula for entropy loss due to bond formation for
m,mc is then obtained as in Appendix C.~This was the
entropy formula used in the comparison with the lattice
simulations in Fig. 4.!

The critical value ofmc divides the entropy formulas up
into two regions. Form,mc , confinement effects are impor-
tant, and (1/N) DSbond(q) and (1/N) DSAB(q) have the
form:

1

N
DSbond~q!5 Eq. ~3.7!,

1

N
DSAB~q!5

1

C8
E
C8qzh

C8qczh
dxln~12x3/2!

1
1

CECqzh
Czh

dxln~12x3/2!.

~E15!

Form.mc , the bonds have essentially confined the polymer
within its collapsed radius, and (1/N)DSbond(q) and
(1/N)DSAB(q) have the form:

1

N
DSbond~q!5

1

N
DSbond

con f~qc!1
1

N
ln )

m5Nqczh

qNzh

v̄~m!Dt

5
3

2
qczh ln

C8

C
1
3

2
qzh~ lnC211 lnqzh!,

1

N
DSAB~q!5 Eq. ~3.3!. ~E16!

FIG. 22. Riemann zeta functionz( 32,Nc) as a function ofNc .
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The first term in the bond formation entropy of Eq.~E16! is
a finite size effect;N22/3, and vanishes ifC85C, where-
upon (1/N) DSbond(q) becomes Eq.~3.1!.

APPENDIX F

Consider the entropy of one of the melted pieces in a
strongly constrained polymer. The average probability for a
melted piece ofm segments to propagate from positionA to
positionB is ~assuming an ideal chain Green’s function!

^G~rA ,rBum!&Dt85S 3

2pmb2D
3/2

3expS 2
3^~rA2rB!2&

2mb2 DDt8,

~F1!

whereDt8 is the volume each of the end points must be
localized within, which is>b3, and wherê (rA2rB)

2& is
obtained by sampling (rA2rB)

2 for a melted piece ofm
segments starting atA and ending atB for all the different
end-to-end distances it would have if the melted piece were
‘‘slid’’ along the length of the polymer structure, i.e., the
average square end-to-end distance of the melted piece over
all its possible locations along the polymer. Assuming that
the frozen globule is essentially a collapsed random walk
~we are not considering any secondary structure formation or
other order parameters besidesq in this paper!,
^(rA2rB)

2&5mb2. So the average number of states the
melted piece has is

Vm5VTOT~m!^G~rA ,rBum!&Dt8

5~m~mf!!mS 3

2peD
3/2 1

m3/2S Dt8

b3 D , ~F2!

whereDt8/b3'1, andm (mf)5n/e if the walk is completely
collapsed (h51). So the average entropy of a melted piece
of m segments is

S~m!5
3

2
lnS 3

2peD1~ lnm~mf!!m2
3

2
lnm ~F3!

which is plotted vsm in Fig. 23. Note that the shape of the
curve vs sequence length roughly obeys a linear behavior
with a cutoff sequence lengthmc of '5 @Eq. ~4.1!#, i.e., each
monomer freed after the fourth has an entropy of lnm(mf), but
at least four segments must be melted for the piece to be free
enough to have any entropy.

We suspect that the ends of the polymer should follow the
same behavior but with a smaller critical length. To model an
end, consider the entropy of a chain confined to a half-plane
@see Fig. 24~a!#. This problem can be solved by the same
method as used much earlier for the adsorption of molecules
onto a surface by Chandrasekhar@55#. We wish to find the
number of random walks ofn steps that can start anywhere,
but must not touch the wall until thenth step~if it touches
before it may be considered a melted piece as above, but on
the surface!. Let a walk start atO, and let the wall be
mz5z/b steps away~if n is odd,mz must be odd! @see Fig.

24~b!#. Neglectingthe wall, the total number of paths from
O to the wallM in n steps is just

V f ree~n,mz!5
n!

S n1mz

2 D ! S n2mz

2 D ! ~F4!

FIG. 23. Entropy of a melted strand or loop along the sequence
of the polymer. Dashed line: linear approximation used in the high
q analysis. Solid line: formula~F3! with h50.85. Both curves dis-
play a cutoff sequence length for a melted loop, and are comparable
for the length values of typical loops in a polymer.

FIG. 24. ~a! Polymer end confined to lie on the surface of the
globule. ~b! The polymer end can be modeled as a random chain
confined to, and attached to the surface of, a half-plane, which can
be solved by considering a random walk of a particle near an ad-
sorbing wall@55#.
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We must subtract from this number all the walks that either
crossed or touched before. If the walk goes tomz in the
nth step, it must have come from eithermz21 ormz11 in
the (n21)th step, but the

~n21!!

S n1mz

2 D ! S n2mz22

2 D ! ~F5!

walks tomz11 cannot be counted. Any walk that went to
mz11 must have crossed the barrier at some point~e.g.,
D8 in walk OABD8E8, or A8 in walk OA8B8D8E8). Con-
sider the segments of these walks after they first touched or
crossed the wall—each of these walks must have aunique
reflection about the wall into a walk that went to
(n21,mz21), but that either touched and/or crossed before
~e.g.,OABD8E or OA8BD8E). These walks,both equal in
number, are all the walks that we want to subtract from
V f ree . So the true number of walks fromO to M without
touching or crossing the wall earlier is

Vwall~n,mz!5V f ree~n,mz!22
~n21!!

S n1mz

2 D ! S n2mz

2
21D !

5
mz

n

n!

S n1mz

2 D ! S n2mz

2 D !
>2n

mz

n
A 2

pn
e2mz

2/2n ~F6!

using Stirling’s approximation. So, lettingz5mzb, the prob-
ability a walk goes withindz of a wall at positionz in n
steps without hitting the wall first, or equivalently, the prob-
ability that the free end of a one-dimensional polymer of
length n fastened to a wall atO is in the interval
(z,z1dz) is

W~z,n!dz5S dz2bD z

nb
A 2

pn
expS 2

z2

2nb2D . ~F7!

The factordz/2b is the number of states in the intervaldz,
since 2b is the distance between allowable states for a given
n ~if n is even,mz must be even!.

The fraction of free Gaussian states that remain to the
outside of the wall is this probability integrated over allz:

f end5E
0

`

W~z,n!dz5
1

~2pn!1/2
. ~F8!

This is the reduction in the total number of states due to the
fact that the polymer chain must be outside the globule. Us-
ing the fact that 1/3 of the steps of a three-dimensional walk
would be in thez direction, the total number of states of a
polymer end of lengthl is

Vend~ l !5V f reef end5
1

S 2p
l

3 D 1/2~m~mf!!n ~F9!

with entropy

S~ l !5
1

2
lnS 3

2p D1~ lnm~mf!!l 2
1

2
lnl , ~F10!

which has the same form as Eq.~F3! ~but with the connec-
tivity constant probably only about 1 or 2 for smalll ), so
we are led to use the same linear entropy formula as in~4.1!,
but with a different critical length@formula ~4.2!#.

APPENDIX G

We can calculate the total number of states in terms of the
distributions$nl %,$ml %, and$pl % from the fundamental for-
mula

S52(
a

palnpa

by considering the ensembles of melted internal pieces and
ends in the polymer~Fig. 5!. For example, leta be the total
state of both endsi , j . Since the states of each of the ends are
independent,

S U
l
E
tot

52(
i j

8pipj lnpipj ~G1!

is the entropy at fixed total end length, where(8 is con-
strained so thatl i1l j5l E

tot . Here

pi5pl iS 1

g l i
D , ~G2!

wherepl i is the probability for an end to have lengthl i ,

andg l i is the number of configurational states for a chain of

length l i :

g l i5~m~mf!! l 2~ l EC21!. ~G3!

Using( i j8 5( l i ,l j
8 g l ig l j , and allowing all possible total end

lengths, the entropy of the ends is

SE52(
l
E

tot
S (
l i ,l j

8g l ig l j D S pl ig l i

pl j
g l j

D S lnpl ig l i
1 ln

pl j
g l j

D
52 (

l i ,l j
unconstrained

pl ipl jS lnpl ig l i
1 ln

pl j
g l j

D
522(

l
pl ln

pl
g l

. ~G4!

So the total number of states has a mixing component, and a
nN component:

VE5eSE5 )
l 5l

EC

N S 1pl D
2pl

@~m~mf!! l 2~ l EC21!#2pl .

~G5!
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A similar derivation for the internal melted pieces is equiva-
lent to simply replacing

pl →
nl
NTOT

, l EC→l c , 2→NTOT , ~G6!

where nl is the number of melted pieces of lengthl ,
NTOT5Nf is the total number of melted pieces, andl c is the
critical length for internal melted pieces to have entropy. So
making the replacements gives

V melt5 )
l 5l c

N SNTOT

nl
D nl @~m~mf!! l 2~ l c21!#nl

>
NTOT!

P l c

N nl !
)
l c

N

@~m~mf!! l 2~ l c21!#nl . ~G7!

For the internal frozen pieces m (mf)51,
NTOT(frozen)5NTOT(free) thermodynamically, andl c51,
so

V frozen5
NTOT!

P1
Nml !

, ~G8!

whereml is the number of frozen pieces or ‘‘trains’’ of
lengthl . So the total number of states~4.3! is just the prod-
uct of all these factors.

Note that in our analysis we have treated the entropies of
the melted strands as independent units, and they will remain
energetically independent in calculating the free energy from
this entropy ~and landscape roughness! using the GREM
analysis. More realistic models would include some interac-
tion between melted pieces depending on their proximity.

APPENDIX H

The log of the maximum term which dominates the sum
in Eq. ~4.3! is

lnW52Nf lnNf1 lnm(
l c

N

@ l 2~ l c21!#nl

12lnm(
l EC

N

@ l 2~ l EC21!#pl 2(
l c

N

nl lnnl

2(
1

N

ml lnml 22(
l EC

N

pl lnpl , ~H1!

which when maximized subject to the constraints

a f :(
l c

N

nl 5Nf ,b f :(
l c

N

l nl 5N~12q!22l E ,

ac :(
1

N

ml 5Nf ,bc :(
1

N

l ml 5Nq,

aE :(
l EC

N

pl 51,bE :(
l EC

N

l pl 5l E ~H2!

gives the thermodynamic entropy. The constraints~H2! are
straightforward to derive, for example,

(
1

N

l ml 5Nq

comes from the fact that if there areNF frozen monomers,
there arezhNF frozen bonds. Equating this withqNzh
bonds givesNF5Nq. The other constraints follow from this
type of reasoning. Introducing the constraints intod lnW50
with the Lagrange multipliers listed in~H2! gives the usual
exponential dependence for the most probable distributions:

nl 5Cfe
2b f l , ml 5Cce

2bcl , pl 5CEe
2bEl ,

~H3!

whereCx5e2ax21. Substituting the distributions~H3! back
into the constraints~H2! gives the negative binomial distri-
butions in Eq.~4.4!.
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