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Motivated by recent experiments, we study the interaction corrections to the damping of magneto-
oscillations in a two-dimensional electron gas �2DEG�. We identify leading contributions to the interaction-
induced damping which are induced by corrections to the effective mass and quantum scattering time. The
damping factor is calculated for Coulomb and short-range interaction in the whole range of temperatures, from
the ballistic to the diffusive regime. It is shown that the dominant effect is that of the renormalization of the
effective electron mass due to the interplay of the interaction and impurity scattering. The results are relevant
to the analysis of experiments on magneto-oscillations �in particular, for extracting the value of the effective
mass� and are expected to be useful for understanding the physics of a high-mobility 2DEG near the apparent
metal-insulator transition.
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I. INTRODUCTION

The influence of electron-electron interaction on transport
properties of low-dimensional disordered conductors at suf-
ficiently low temperatures T remains one of the central topics
of the condensed matter physics. In a seminal set of works
�see the review Ref. 1�, Altshuler and Aronov studied the
effects of the interplay of interaction and disorder on conduc-
tivity and tunneling density of states in the diffusive regime
characterized by the condition 2�T��1, where � is the
transport mean free time �we set kB=�=1�. Their results
were generalized within the framework of the renormaliza-
tion group �RG� by Finkelstein.2 The last decade has wit-
nessed a renewed increase of activity in this field, largely
motivated by experiments on an apparent metal-insulator
transition in two-dimensional �2D� systems. This interest was
triggered by experiments3 which showed a “metallic” behav-
ior �decrease of resistivity with lowering T� in high-mobility
Si structures. Later, qualitatively similar behavior was ob-
served in a variety of high-mobility 2D systems, see Refs.
4–7 for reviews.

The metallic behavior has been attributed to the effects of
the electron-electron interaction in the ballistic temperature
range, 2�T��1. These effects were originally considered in
the framework of the temperature-dependent screening.8

More recently, a systematic theory was developed, taking
into account also exchange contributions and the effects of
both parallel and transverse magnetic fields, and valid in the
whole range of T from the diffusive to the ballistic
regime.9,10 Another mechanism that can explain the metallic
behavior of resistivity in an intermediate temperature range
in the diffusive regime was studied within the RG framework
in Ref. 11. It is applicable to systems with more than one
valley, such as silicon metal-oxide-semiconductor field-effect
transistor.

Despite these successes of the theory, numerous experi-
mental observations remain puzzling and wait for an expla-
nation. In particular, it was found that the spin susceptibility,
proportional to the product mg of the effective mass m and

the g-factor, is strongly growing when the density ap-
proaches the value nc corresponding to the apparent transi-
tion. This conclusion was drawn on the basis of several ex-
perimental methods, including the analysis of beating pattern
of Shubnikov-de Haas oscillations,12–15 the study of magnet-
oresistance16,17 in the parallel field, and measurement of ther-
modynamic magnetization;18 see recent reviews.19,20

The enhancement of susceptibility with lowering density,
interpreted in a number of papers as its divergence at n=nc,
has attracted a great deal of attention, since it might be an
indicator of some phase transition that the system undergoes
with a decrease of density. The interpretation of the data has
remained, however, controversial. In particular, it remained
unclear whether the strong increase of spin susceptibility
should be attributed to that of m or of g. This information is
of crucial importance for understanding the nature of the
possible transition.

Several experimental approaches have been used to sepa-
rate the behavior of the effective mass from that of the
g-factor. In Refs. 21–23 a fit of the resistivity data to the
theoretical formulas of Ref. 9 was used to find the interaction
constant F0

�, and thus the g-factor. The accuracy of this pro-
cedure is questionable, since the theory of Ref. 9 neglects
higher Fermi-liquid interaction constants and assumes isotro-
pic impurity scattering. Another approach is based on ther-
modynamic measurements in strong magnetic field.24 How-
ever, the authors of this work were able to measure the
effective mass in a very narrow interval of electron concen-
tration only, so that the results are not too informative. Also,
a strong magnetic field is expected to influence strongly the
characteristics of the electron liquid, so that the applicability
of such measurements to the low-field properties is question-
able. So, while most of the above measurements seem to
indicate that it is the effective mass that is responsible for the
strongly enhanced susceptibility, an independent verification
is clearly needed.

A well-known method for determination of the effective
mass is based on the investigation of the temperature depen-
dence of Shubnikov-de Haas oscillations �SdHO�. It was ap-
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plied to the present problem in Refs. 14 and 25. However,
the analysis of the SdHO data is complicated by the fact that
both the effective mass and the elastic quantum scattering
time �q are T-dependent, in view of the combined effect of
interaction and disorder. An unambiguous interpretation of
experimental data requires14 a theoretical information on
T-dependence of m and �q. A development of the correspond-
ing theory is the aim of the present paper.

In fact, a recent paper26 has made an important step in this
direction. Specifically, it was shown in Ref. 26 that the
Lifshitz-Kosevich formalism,27 originally developed for the
analysis of magneto-oscillations in a 3D Fermi liquid, is also
applicable in 2D in the regime where the oscillations are
exponentially suppressed by temperature smearing or disor-
der. �In the regime of strong oscillations, the Lifshitz-
Kosevich formula in 2D should be modified, as was earlier
shown in Ref. 28.� Another result of Ref. 26 is that the in-
elastic electron-electron relaxation does not contribute to the
damping of magneto-oscillations �similarly to the earlier re-
sult of Ref. 29 for the case of electron-phonon scattering�.

The authors of Ref. 26 then calculated the contribution to
the damping induced by the interplay of interaction and dis-
order. Their theoretical treatment of the problem is, however,
far from complete. First, they consider only diagrams for the
self-energy with one impurity-ladder vertex correction to the
interaction line and discard diagrams with no and with two
vertex corrections. Second, they claim that the T-dependence
of the oscillation damping rate can be equivalently attributed
either to the correction to the effective mass, or to the quan-
tum scattering rate �Dingle temperature�. Furthermore, in the
latter case their result for the T-dependence of �q is in con-
tradiction with the picture of Friedel oscillations inducing a
correction to the relaxation rate, which is linear in T and is
governed by backscattering.9

In addition to the above experimental motivation, the de-
velopment of the theory of interaction effects on magneto-
oscillations in a disordered two-dimensional electron gas
�2DEG� represents a fundamental theoretical problem. Such
a theory should complement the recently developed theory of
interaction effects in transport of 2D electrons in zero and
nonquantizing magnetic fields.9,10 Let us emphasize a pecu-
liar aspect of the present problem. The damping of oscilla-
tions is governed by the self-energy, which is a single-
particle quantity. �Indeed, the relevant diagrams, see Sec.
II B below, are reminiscent of those for the tunneling density
of states �DOS��. Generally, the self-energy is not a gauge-
invariant object. On the other hand, the magnetization and
the conductivity �magneto-oscillations of which we would
like to study� are observable �and thus gauge-invariant�
quantities. It is well-known that the gauge-invariance is of
crucial importance for interaction-induced corrections; a dif-
ference between the results for conductivity and for tunnel-
ing DOS in the case of Coulomb interaction1,2 serves as a
nice illustration. It is thus a theoretical challenge to see how
the gauge invariance manifests itself in the magneto-
oscillation problem.

The outline of the paper is as follows. Section II is de-
voted to presentation of the general formalism. In Sec. III we
apply it to calculate the interaction-induced contribution to
the damping of magneto-oscillations in the case of short-

range interaction. In Sec. IV we show how to extract from
the above result the corrections to the effective mass and the
quantum scattering time. We also perform a calculation of
the correction to the scattering time based on the picture of
Friedel oscillations and demonstrate a complete agreement
between the two approaches. In Sec. V we generalize our
results to the case of Coulomb interaction. We also perform
there a comparison with the calculation of Ref. 26. Section
VI summarizes our findings. Some technical details of our
calculations are presented in Appendixes.

II. MAGNETO-OSCILLATIONS: GENERAL FORMALISM

A. Derivation of the formula for a decay of the
oscillations

We begin by calculating the oscillatory part 	osc of the
thermodynamic potential 	. From this quantity one can de-
rive the oscillating contribution to the thermodynamic den-
sity of states

�nosc

�

=

�2	osc

�
2 , �1�

where 
 is the chemical potential, and de Haas-van Alphen
oscillations of magnetic susceptibility

�osc = −
�2	osc

�B2 , �2�

where B is a magnetic field. The main subject of our interest
is the exponential damping factor of these magneto-
oscillations. For noninteracting electrons, the same exponen-
tial damping factor governs the magnitude of the
Shubnikov-de Hass oscillations of the conductivity for the
case of weak disorder potential in sufficiently weak magnetic
field,35,36 where the self-consistent Born approximation35

�SCBA� is valid. As we are going to show, the interaction-
induced correction to the damping factor of the thermody-
namic density of states arises due to the renormalization of
the effective mass and the quantum scattering time. There-
fore these T-dependent corrections to the damping factor
govern the magnitude of the Shubnikov-de Hass oscillations
as well, similarly to the noninteracting case.

Our starting point is the expression for the thermody-
namic potential derived in the paper by Luttinger and Ward30

	 = − T Tr ln�− G−1� − T Tr�G�� + 	�. �3�

Here

G�in,m�c� = �G0
−1�in,m�c� − ��in,m�c��−1 �4�

is the dressed Green’s function in the Matsubara formalism,
in= �2n+1�i�T is the Matsubara fermionic energy, �c is the
cyclotron frequency, and m is the Landau level index. Fur-
ther,

G0�in,m�c� =
1

in + 
 − �m + 1/2��c

is the Green’s function in the absence of disorder and inter-
action, and ��in ,m�c� is a self-energy part of Green’s func-

ADAMOV, GORNYI, AND MIRLIN PHYSICAL REVIEW B 73, 045426 �2006�

045426-2



tion which includes all the disorder and interaction effects.
The trace in Eq. �3� implies summation over Matsubara

frequencies n and over Landau levels m. The logarithmic
term contains all the closed loop diagrams with insertion of
self-energy �Fig. 1�. The terms −T Tr�G�� and 	� are intro-
duced to avoid double-counting of diagrams.30,31 The term
	� denotes the sum of all so-called skeleton diagrams with
all bare Green’s functions replaced by dressed Green’s func-
tions �for the recent discussion of Luttinger-Ward formalism
in 2D Fermi systems see Refs. 32 and 33�.

As shown in Ref. 34, the exponential decay of magneto-
oscillations is described by the Tr ln term. The oscillatory
parts of the additional terms, which are introduced to fight
overcounting, cancel each other. In order to obtain the cor-
rection to the thermodynamic potential we need to calculate
the self-energy part of the Green’s function.

We decompose the self-energy into two parts:

��in,m�c� = �dis�in,m�c� + �ee�in,m�c� , �5�

where �dis�in ,m�c� denotes the self-energy part due to the
scattering on disorder potential with electron-electron inter-
action switched off and �ee�in ,m�c� contains all the inter-
action effects.

In this paper we assume that disorder potential is
�-correlated, inducing a large-angle scattering of electrons.
The disorder-induced �noninteracting� part of the self-energy
for white-noise disorder and weak magnetic field �c��1 is
given by

�dis�in,m�c� = −
i sgn n

2�
. �6�

For stronger magnetic field �i.e., for separated Landau lev-
els�, one should employ the SCBA. In this case, both the real
and imaginary parts of the self-energy depend on in in a
nontrivial way. In this paper, however, we will address only
weak magnetic fields when Landau levels overlap.

We thus consider the relevant term 	̃=−T Tr ln�−G−1� in
the thermodynamic potential,

	̃ = − 2�T �
n=−�

�

�c�
m=0

�

ln��cm − 
 − in + ��in,�cm�� .

�7�

For overlapping Landau levels,

�c� � 1, �8�

the kth harmonics of the magneto-oscillations

	osc = 2�� �c

2�
�2

�
k

Ak cos
2k�2ne

eB

�ne is the electron concentration� is damped by disorder
even at zero temperature via the standard Dingle factor
exp�−�k /�c��. Therefore we will consider only the first har-
monics of the oscillations, A1, neglecting all Ak with k�1
�whose damping is much stronger�.

The oscillatory part of Eq. �7� is calculated in Appendix
A:

	osc � 2�� �c

2�
�2

A1 cos
2�2ne

eB
�9�

with the amplitude of the first harmonics of the oscillatory
part of the thermodynamic potential given by

A1 	
4�2T

�c
�
n�0

exp�−
2�

�c
* 
n +

1

2��1 + �0�

+
i���in,�0�

1 + �0
�� . �10�

Here ���in ,�0� is the self-energy part related to the inter-
play of disorder and interaction. It is analytically continued
from the points m�c to the whole complex plane � and taken
at �=�0, where �0 �defined in Eqs. �A9� and �A10� of Appen-
dix A� is the pole of the Green’s function in the presence of
disorder.

The coefficients �0 and �0 determine the Fermi-liquid
�FL� renormalization of the effective mass in a pure system
at zero T,

m* = m
1 + �0

1 + �0
. �11�

The effective mass m* in turn governs the expression for the
FL-renormalized effective cyclotron frequency,

�c
* =

eB

m* = �c
1 + �0

1 + �0
. �12�

The coefficient �0 is related to the FL renormalization of the
Z-factor,

Z =
1

1 + �0
, �13�

which is given by the residue of the Green’s function.
Depending on the relation between temperature T and the

elastic scattering rate 1 /�, there are two regimes: ballistic,
T��1, and diffusive, T��1 �more accurately, the relevant
dimensionless parameter is 2�T��. In the ballistic regime, it
follows from Eq. �8� that T�1/���c. The diffusive regime
can be further split into two subregimes: normal diffusive
��c�T�1/�� and ultradiffusive �T��c�1/��. When T
��c, as in the ballistic and normal diffusive regimes, only
the first Matsubara frequency 0=�T in the sum determining
A1 is relevant, since the contribution of higher Matsubara
frequencies are exponentially suppressed. On the other hand,
in the ultradiffusive regime T��c and higher Matsubara fre-
quencies contribute as well.

FIG. 1. The logarithmic term 	̃, Eq. �7�, in the thermodynamic
potential, Eq. �3�, is a sum of closed loop diagrams with self-energy
insertions �. This term is responsible for magneto-oscillations.
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In what follows we concentrate on the case T��c. Under
this condition, we get

A1 =
4�2T

�c
exp
−

2�

�c
* ��T + iZ���i�T,�0��exp
−

�

�c
*�*� ,

�14�

where we introduced the FL-renormalized scattering time

�* = ��1 + �0� . �15�

We note that this renormalization of � is incomplete since it
does not include the FL vertex corrections to the impurity
scattering line. The corresponding contributions are con-
tained in ���i�T ,�0� �T-independent terms in Eqs. �41� and
�81�� and will be addressed in Secs. III and IV below. We
also note that the inelastic contribution to the self-energy
����T�2−n

2�sgn n �see Appendix B� vanishes for n=�T,
and thus does not affect the damping of the magneto-
oscillations B�T� for T��c, in agreement with Refs. 26 and
29.

Using the renormalized quantities in Eq. �14� we repre-
sent A1 in the form

A1 = A1
�0��T�exp�B�T�� , �16�

where

A1
�0��T� 	

4�2T

�c
exp
−

2�2T

�c
* −

�

�c
*�*� �17�

is the standard FL Lifshitz-Kosevich result and

B�T� = −
2�iZ���i�T,�0�

�c
* . �18�

We thus see that in order to obtain the additional interaction-
induced damping factor of magneto-oscillations it is neces-
sary to evaluate Z���i�T ,�0�.

B. Self-energy

We begin by considering the interaction-induced self-
energy part �ee�in ,m�c� in the lowest order in interaction.
This is sufficient in the case of a weak short-range interaction
analyzed in Sec. III below. For the more realistic case of the
Coulomb interaction �Sec. V�, the relevant higher-order
terms can be treated using the random-phase approximation
�RPA�. Higher-order contributions to the T-dependent part of
the self-energy, ���i�T ,�0�, are small in the parameter
1 /EF� or T /EF.

Let us list important elements which are necessary for
calculation of the interaction-induced part of the self-energy
�Fig. 2�. Each contribution to the self-energy has exchange
and Hartree parts. We first address the exchange contribution
�the Hartree terms can be written in a similar way�. It con-
tains the angle-averaged Green’s function covered by the ef-
fective interaction line. The corresponding vertices may be
dressed by impurity ladders �Fig. 3�. Notice that the renor-
malized vertex includes at least one impurity line. Finally,
when the interaction line changes the signs of Matsubara
frequencies at vertices, an additional diagram �we term it a

“Hikami-box diagram”� with a single impurity line covering
the whole block is to be included �Fig. 2�b��.

We split �ee�in ,m�c� into three contributions, corre-
sponding to different possibilities of dressing the two inter-
action vertices by impurities,

�ee = �00 + 2�01 + �11. �19�

Here the subscripts i , j=0,1 indicate whether the corre-
sponding vertex is dressed by an impurity ladder. The factor
2 in front of the �01 term reflects two possibilities of dressing
one of the interaction vertices. Each of the terms �ij is a sum
of two contributions, �ij =�ij

a +�ij
b , where �ij

a is the “simple”
self-energy �Fig. 2�a�� and �ij

b is its Hikami-box counterpart
�Fig. 2�b��. We note that in Ref. 26 only one out of six
diagrams �namely, �01

a � was taken into account.
The expression for �00

a in a finite magnetic field reads

�00
a �in,m�c� = − T�

�k

�
L
� d2q

�2��2J�L�
2 �qRc�V�i�k,q�

�G�in − i�k,m�c + L�c� , �20�

where

G�in,m�c� =
1

in + 
 − �m + 1/2��c − ��in,m�c�
�21�

is the Green’s function in Landau levels representation,
V�i�k ,q� is the effective interaction, and J�L�

2 �qRc� describes
the bare vertex function connecting Landau levels m and m
+L in the quasiclassical limit m ,m+L�1 �for details see,
e.g., Ref. 37 and references therein�. In the expressions for

FIG. 2. Self-energy diagrams in the first order in the effective
interaction �wavy line�. Black triangles denote impurity ladders �
dressing interaction vertices, Fig. 3. �a� “Simple” self-energies �ij

a ;
and �b� Hikami-box self-energies �ij

b generated by covering each of
�ij

a by an impurity line �dashed�.

FIG. 3. Interaction vertex renormalized by the impurity ladder,
��i�k ,q�. Dashed line represents scattering on impurity.
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�01
a and �11

a this bare vertex function is multiplied by
��i�k ,q� and �2�i�k ,q�, respectively, where � is the impu-
rity ladder �Fig. 3�.

In the limit B→0, the corresponding self-energies depend
on the momentum p instead of the Landau level index m.
The interaction vertices are dressed only when the Matsubara
energies at the vertices have opposite signs, which restricts
the summation over �k in �01 and �11 to the domain n��k

−n��0:

�00
a �in,�p� = − T�

�k

� d2q

�2��2V�i�k,q�G�in − i�k,p − q� ,

�22�

�01
a �in,�p� = − T �

n��k−n��0
� d2q

�2��2V�i�k,q���i�k,q�

�G�in − i�k,p − q� , �23�

�11
a �in,�p� = − T �

n��k−n��0
� d2q

�2��2V�i�k,q��2�i�k,q�

�G�in − i�k,p − q� , �24�

where G�in ,p�= �in+
−�p+ i sgn n /2�−�ee�in ,�p��−1

with �p= p2 /2m and the vertex correction �Fig. 3� reads

��i�k,q� =
1

����k�� + 1�2 + �qvF��2 − 1
. �25�

The expressions for Hikami-box self-energies are obtained in
a similar way, see Appendix B.

To calculate the damping factor of the oscillations, we
need the self-energy taken at the value of � which is deter-
mined by the pole of the Green’s function, �=�0, see Appen-
dix B. According to Eq. �18�, the self-energy is further mul-
tiplied by Z in the damping exponent. This is equivalent to
calculating the following integral:

Z�ij
a �i�n,�0� =

sgn n

2�i

1 + �0

1 + �0
� d�kG�i�n,k��ij

a �i�n,�k�

� sgn n
vF

*

2�i
� dkG�i�n,k��ij

a �i�n,�k� . �26�

We note that the Z-factor drops out in the product Z�. In-
deed, the Green’s function under the interaction line in the
self-energy contains the Z-factor in the numerator so that in
the numerator of the product Z� we get the factor Z2. How-
ever, the Z-factor is not a gauge-invariant quantity and there-
fore should not appear in the expressions for observables, in
contrast to the FL-renormalized effective mass. At this point
we should take into account the FL renormalization of the
two interaction vertices in �. Since we are interested in the
contribution of relatively slow transferred momenta and fre-
quencies giving rise to the T dependence of B�T�, q�kF and
�k�EF, we can set them to zero when considering the FL
vertex renormalization. Then one can apply the Ward identity
for the FL-interaction dressing of the vertices,39 which
amounts to multiplying each vertex by a factor 1 /Z. These

vertex factors in the denominator of B�T� cancel Z2 in the
numerator of B�T�. This implies that one can simply discard
such renormalizations, setting Z=1 everywhere, when the
observable quantities are calculated. The FL renormalization
then amounts to replacement of the bare band mass m, Fermi
velocity vF, and elastic scattering time, �, by the renormal-
ized parameters, m*, vF

* , and �*, respectively. In what fol-
lows, we will omit the asterisks, using the notation m, vF,
and � for the renormalized quantities.

The relevant contributions to the self-energy are calcu-
lated in Appendix B. Combining all the terms together, we
have

���in,�0� = − iT �
�m�n

� d2q

�2��2V�i�m,q�K�i�m,q� ,

�27�

K�i�m,q� =
�1 + ��i�m,q��2

S�i�m,q� 
1 −
W

�S2�i�m,q�� −
1

S0�i�m,q�
,

�28�

where

S�i�m,q� = ����m� + 1/��2 + vF
2q2 = �W2 + vF

2q2,

W = ��m� + 1/� �29�

and

S0�i�m,q� = ���m�2 + vF
2q2. �30�

An important feature of the kernel function K�i�m ,q�, Eq.
�28�, is that it is exactly zero for q=0 for arbitrary �m. In-
deed, using S�i�m ,q=0�=W, S0�i�m ,q=0�= ��m�, and
��i�m ,q=0�=1/ �W�−1�, we get

K�i�m,q = 0� =
1

W

1 +

1

W� − 1
�2
1 −

1

W�
� −

1

��m�

=
1

W − 1/�
−

1

��m�
= 0. �31�

We stress that this equality only holds when all the contribu-
tions to the self-energy are combined together. This property
of the kernel function is characteristic for the gauge-invariant
quantities in the presence of interaction. Indeed, the interac-
tion at q=0 implies the shift of the chemical potential and
hence can be gauged out.2 Therefore the contribution of
small q to the observables should be suppressed by vanishing
of the corresponding kernel function. The same situation is
well-known for the interaction-induced correction to the
conductivity.9

It is worth discussing a peculiarity of the problem of
magneto-oscillations with respect to the gauge invariance.
The gauge invariance of the oscillatory part of the observ-
ables is guaranteed by the fact that the thermodynamic po-
tential is represented by closed loops. Since the characteristic
spatial scale for such a loop is cyclotron radius Rc, the inter-
action with momenta q�Rc

−1 should not contribute. So, if we
would find that our result does not satisfy this requirement, it
would mean that the diagrammatic treatment is not sufficient
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and should be complemented by the infrared cutoff at q
�Rc

−1. On a more rigorous level this could be done by using
the real-space path integral approach combining the treat-
ment of magneto-oscillations in the presence of long-range
disorder40 with the quantum kinetic-equation approach to the
interaction effects9,41 and to magnetotransport.42 In this con-
text, it is instructive to recall the calculation of the dephasing
length l�, where the infrared cutoff at q� l�

−1 or q�R−1 arises
for the problems of weak localization43 and Aharonov-Bohm
oscillations44 in a ring of radius R, respectively.

Since we find, however, that the kernel K�i�m ,q� govern-
ing the perturbative self-energy �27� does satisfy the condi-
tion K�i�m ,q=0�=0, the above cutoff is irrelevant and the
perturbative treatment is sufficient in the considered regime
of strongly damped oscillations, T��c. Indeed, the
q-integral in Eq. �27� is cut off at q�� /vF�T /vF which is
much larger than Rc

−1 under the above condition.
We also emphasize that the kernel K�i�m ,q� given by Eq.

�28� vanishes in the clean limit

�K�i�m,q���→� = 0. �32�

This implies, in particular, that the correction to the effective
mass found in Refs. 32–34 from the - and p-dependence of
the self-energy �� , p� of a clean system, �m /m*�T /EF

does not show up in the damping of magneto-oscillations, in
accordance with the statement made in Ref. 32. In general,
�� , p� is not an observable �and not gauge invariant� quan-
tity, and thus the above correction �m should be at least
treated with caution.

III. DAMPING OF MAGNETO-OSCILLATIONS: SHORT-
RANGE INTERACTION

In this section we evaluate ���in ,�0� in the case of a
weak pointlike interaction given by

V�i�m,q� 	 U0. �33�

We are interested in the correction to the self-energy to the
first order in �U0, where �=m* /2� is the density of states
per spin direction. We calculate the contributions �ij

a and �ij
b

starting from Eqs. �B15�, �B8�, �B9�, and �B20�–�B22� de-
rived in Appendix B. Using the notation S�i�m ,q� introduced
in Eq. �29�, the vertex factor � can be presented as

��i�k,q� =
1

S� − 1
. �34�

Performing the momentum integration for 0�q�kF, we ob-
tain

�00
a �in,�0� = − iTU0 �

�m�n

�
0

kF qdq

2�

1

S
−

1

S0
�

= −
iTU0

2�vF
2 �
�m�n

��EF
2 + W2

− W − �EF
2 + �m

2 + �m�

� −
iT�U0

2EF�
�

�m�n


 �m

�EF
2 + �m

2
− 1� , �35�

2�01
a �in,�0� + �11

a �in,�0�

= −
iTU0

2�vF
2�

�
�m�n

�
�m+1/�

�EF
2+�m

2

dS
�2S − 1/��
�S − 1/��2

= −
iT�U0

2EF�
�

�m�n

�ln
EF

2 + �m
2

�m
2 +

1

�m�
� . �36�

These expressions are valid independently of the value of the
parameter T�, i.e., they describe both the diffusive and the
ballistic regimes, as well as the crossover between them. The
logarithmic term in Eq. �36� comes from �01

a , while the 1/�m
term originates from �11

a .
The contributions of the Hikami-box diagrams are given

by

�00
b �in� =

iT�U0

2EF�
�

�m�n

��m +
1

�
��

�m+1/�

�EF
2+�m

2 dS

S2

� −
iT�U0

2EF�
�

�m�n


 �m

�EF
2 + �m

2
− 1� , �37�

2�01
b �in� + �11

b �in�

=
iTU0

2�vF
2�2 �

�m�n

��m +
1

�
��

�m+1/�

�EF
2+�m

2 dS

S2

�2S − 1/��
�S − 1/��2

=
iT�U0

2EF�
�

�m�n

1

�m�
. �38�

We see that the Hikami-box contribution exactly cancels
the second �1/�m� term in Eq. �36�. Thus the total correction
to the self-energy reads

���in,�0�

= −
iT�U0

EF�
�

�m�n


� �m

�EF
2 + �m

2
− 1� + ln

�EF
2 + �m

2

�m
� .

�39�

The upper limit of the summation over �m is effectively
given by mmax�EF /T. The term ��m /�EF

2 +�m
2 −1� in Eq.

�39�, which originates from �00, yields after the summation
over �m��T a contribution �T in addition to a large
T-independent contribution, renormalizing �. As we will see
below, a term �T ln�EF /T� will arise from the contributions
of �01 and �11, and hence �00 yields only a subleading con-
tribution to the damping.

To calculate the sum of logarithms in Eq. �39� we write

�
�m�n

ln
�EF

2 + �m
2

�m
= �

�m�n


ln
EF

�m
+ ln

�EF
2 + �m

2

EF
� .

�40�

For T�EF the second sum in the right-hand side can be
replaced by the integral, yielding a T-independent contribu-
tion. We further use the identity
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�
m=1

M

ln
N

m
= M ln N − ln ��M + 1� ,

and the Stirling’s formula

ln ��M + 1� = M ln M − M +
1

2
ln�2�M� + ¯

for M�1, where ��x� is the gamma function. As a result, we
get for arbitrary positive n

���in,�0� � −
iT�U0

EF�
� c1EF

T
−

n

2�T
ln

c2EF

T

+ ln
 1
�2�

�� n

2�T
+

1

2
��� , �41�

where c1,2 are constants of order unity. We see that the con-
tribution to ���i�T ,�0� containing vertex corrections to the
interaction line has an additional factor ln�EF /T� as com-
pared to the T-dependent part of ��00. In Eq. �41�, we have
absorbed the contribution of ��00 into the upper cutoff of the
log-term which is given by EF up to a factor of order unity.
Furthermore, the same can be done with the last term in Eq.
�41� which at n=�T also yields a linear-in-T contribution.
Equation �41� thus translates for T��c into the follow-
ing expression for the damping exponent B�T�
=−2�i���i�T ,�0� /�c:

B�T� = − c1�U0
�

�c�
+
�T

�c

�U0

EF�
ln

c2EF

T
. �42�

The first term in Eq. �42� describes the T-independent FL-
renormalization of � due to vertex corrections and should be
included in the effective relaxation time �*, as was men-
tioned after Eq. �15� in Sec. II. The second term represents
the T-dependent contribution to the damping factor that we
are interested in and is analyzed in the next section.

IV. INTERPRETATION: EFFECTIVE MASS VS QUANTUM
SCATTERING TIME

The above result �42� can be interpreted in terms of cor-
rections to the effective mass �or �c� and the elastic scatter-
ing rate entering the standard formula �17�. These corrections
come from the interplay of disorder and interaction. Writing

A1�T� =
4�2T

�c
exp
−

2�2T

��c + ��c�
−

�

��c + ��c�
1

�� + ����
� A1

�0��T�exp
2�2T

�c

��c

�c
�exp
 �

�c�
���c

�c
+
��

�
��

� A1
�0��T�exp
−

2�2T

�c

�m

m
�exp
 �

�c�
�−

�m

m
+
��

�
�� ,

�43�

we conclude that

B�T� = −
2�2T

�c

�m

m
−

�

�c�
��m

m
−
��

�
� . �44�

It is worth noting that the FL-renormalization does not affect
the product �cm=eB.

Comparing Eqs. �42� and �44� �we recall that the first term
in Eq. �42� is absorbed in ��, we see that the T ln T depen-
dence of the damping factor could in principle originate ei-
ther from the ln T correction to the effective mass, or from
the T ln T-type correction to �. This led the authors of Ref.
26 to the conclusion that the nonlinear T-dependence of the
damping factor may be equivalently interpreted either as a
T-dependent renormalization of the effective mass or as a
T-dependent Dingle temperature. It is clear, however, that
these two possibilities correspond to different physical pro-
cesses.

A. Self-energy at real energies: Analytical continuation

To identify the physical origin of the leading contribution
to the damping it is instructive to obtain B�T� using the ex-
pression for the self-energy analytically continued to real
values of energies n→−i. Performing the analytical con-
tinuation to real energies  and real frequencies � in Eq.
�27�, we get

���,�0� =
�U0

EF�
�

−�

� d�

4�
tanh� − �

2T
�

��ln��EF
2 − �2

− i�
� + � − i�

�EF
2 − �2

− 1�� ,

�45�

so that the real part of the self-energy is given by

Re ���,�0� =
�U0

4�EF�
��

0

EF

d�
tanh� − �

2T
�

+ tanh� + �

2T
��
ln��EF

2 − �2

�
� − 1�

+ �
EF

�

d�
tanh� − �

2T
� + tanh� + �

2T
��

�
ln���2 − EF
2

�
� +

�

��2 − EF
2

− 1��
� 

�U0

2�EF�
ln

EF

max���,T�
. �46�

The leading contribution here comes from the term ln�EF /��
in the first integral over ��EF while other terms only res-
cale the ultraviolet cutoff EF of the logarirthm by a constant
of order unity, which is beyond the accuracy of our quasi-
classical approximation.

The imaginary part of �� reads
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Im ���,�0� =
�U0

4�EF�
�

0

EF

d�
tanh� − �

2T
� − tanh� + �

2T
��

�
�2 −
�

�EF
2 − �2�

� − const
�U0

�
+
�U0

2EF�
T ln
2 cosh� 

2T
�� ,

�47�

where the T-dependent term has the following asymptotics:

T ln�2 cosh�/2T�� = �/2,  � T ,

T ln 2,  � T .
� �48�

The contribution of the term � /�EF
2 −�2 to the integral in

Eq. �47� is T-independent up to small corrections of order of
�U0�T /EF�2 /� which are beyond the accuracy of the calcu-
lation.

Having calculated Re � and Im � for real energies , we
can determine �m and ��. Indeed, the magnitude of the first
harmonics of the magneto-oscillations of the thermodynamic
density of states is expressed through the real- self-energy
���� as follows:

A1�T� =
4�2T

�c
� d
−

�nF��
�

�A1��,T� , �49�

A1��,T� = exp�2�i

�c
� − Re ���,�0���

�exp�−
�

�c�
+

2�

�c
Im ���,�0�� , �50�

where nF��= �1+exp� /T��−1 is the Fermi distribution func-
tion.

In analogy with Eq. �43� we represent the energy-
dependent amplitude A1�� ,T� in terms of energy- and
temperature-dependent corrections to the quantum scattering
time and mass, ��� ,T� and m� ,T�:

A1��,T� = exp�2�i

�c

1 +

�m�,T�
m

��
�exp�−

�

�c�

1 +

�m�,T�
m

−
���,T�

�
�� .

�51�

Comparing Eq. �51� with Eq. �50�, we express ��� ,T� and
m� ,T� through Re ��� and Im ��� as follows:

�m�,T�
m

= −
Re ���,T�


, �52�

���,T�
�

= 2� Im ���,T� +
�m�,T�

m
. �53�

Using Eqs. �46� and �47� in combination with Eqs. �52� and
�53�, we obtain

�m�,T�
m

= −
�U0

2�EF�
ln

EF

max���,T�
, �54�

���,T�
�

= �U0
T

EF
ln
2 cosh� 

2T
�� −

�U0

2�EF�
ln

EF

max���,T�
.

�55�

The integration in Eq. �49� sets in effect ��T in the
above expressions. The T-dependent corrections to the effec-
tive mass and the quantum scattering time extracted experi-
mentally with the help of Eq. �43� are thus given by

�m�T�
m

= −
�U0

2�EF�
ln

EF

T
, �56�

���T�
�

= �U0
T

EF
−

�U0

2�EF�
ln

EF

T
. �57�

In Eq. �57� we assume that ��U0T /EF��c�, expand
exp����� ,T� /�c�

2�, and then average the term
ln�2 cosh� /2T�� �which is a real-energy counterpart of the
last term in Eq. �41�� with −�nF�� /�.

It is clear from these results that the leading term in B�T�
�proportional to T ln�EF /T�, Eq. �42�� originates from the
real part of the self-energy, Eq. �46�, i.e., from renormaliza-
tion of the effective mass, which affects incommensurability
of the oscillations at different values of energy . The con-
tribution to B�T� of the imaginary part of the self-energy
�corresponding to the last term in Eq. �41��, which is gov-
erned in the ballistic regime by the renormalization of the
scattering time, is smaller by a factor ln�EF /T�. In the ex-
pression for the damping, Eq. �42�, this contribution is ab-
sorbed in the numerical constant c2 in the upper cutoff of the
logarithm.

The obtained result for the interaction-induced correction
to the scattering time �, Eq. �57�, agrees, up to a factor 1

2 ,
with the correction to the transport time following from the
calculation of conductivity correction in the ballistic regime
in Ref. 9. This is exactly what one would expect on physical
grounds. Indeed, it is known that the conductivity correction9

can be understood as governed by an additional, predomi-
nantly backscattering, contribution to the scattering cross
section related to the dressing of an impurity by Friedel os-
cillations. Since this contribution is concentrated near the
scattering angle �=�, the correction to the momentum re-
laxation rate is larger by the factor 1−cos ��2 than the
correction to the total scattering rate. In Sec. IV B we will
corroborate the results of this section by an explicit calcula-
tion of the contribution to the impurity scattering rate due to
Friedel oscillations.

Up to now we calculated the exchange contribution to the
self-energy. For the pointlike interaction, the Hartree term
has opposite sign and is twice larger in magnitude than the
exchange term due to the spin summation. This simply re-
verses the sign of the corrections to the damping factor.
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B. Calculation of �� from the scattering off Friedel
oscillations

In this section we calculate the correction to the total elas-
tic scattering time �� in a different, physically more trans-
parent way, considering the scattering off impurities dressed
by Friedel oscillations.9,38 We will demonstrate how the re-
sult �57� is reproduced in this way. In particular, this will
confirm once more that there is no T ln T term in �� and
therefore the leading T ln T contribution to the damping fac-
tor comes from �m.

We start with the expression relating the total elastic scat-
tering rate and the scattering cross section S��� of a single
impurity,

1

�q�,T�
= nimpvF� d�

2�
S��� , �58�

where nimp is the concentration of impurities. The expression
for the transport scattering time �tr determining the conduc-
tivity differs from Eq. �58� by a factor 1−cos � in the inte-
grand:

1

�tr�,T�
= nimpvF� d�

2�
S����1 − cos �� . �59�

We note that the two times, �q and �tr, though equal for the
pointlike impurities in the noninteracting case �for which
S���= �nimpvF��−1=const����, differ from each other when
the scattering off Friedel oscillations is taken into account.

The impurity scattering cross section for dressed impuri-
ties reads

S��� =
2��

vF
�V�2k sin

�

2
��2

� S0 +
2��V0

vF
2 Re �V�2k sin

�

2
� . �60�

Here S0=2��V0
2 /vF is the bare impurity scattering cross sec-

tion and V0=�d2rV0�r�, where V0�r� is the bare pointlike
impurity potential. The cross section S��� depends on energy
� of an electron through k=kF+� /vF in the Fourier transform
V�q�=V0+�V�q� of the effective impurity potential, renor-
malized by the Friedel oscillations of the electron density.
For r�kF

−1 the oscillatory correction to the electron density
reads

���r� = − �V0
�2�rT/vF�

sinh�2�rT/vF�
sin 2kFr

�r2 . �61�

The correction to the impurity scattering potential �V�r�
due to scattering off the Friedel oscillations is proportional,
for the short-range interaction, to the electron density at
point r. Similarly to the consideration of Secs. III and IV A,
we will concentrate on the exchange part of this correction,

�V�r� = −
1

2
U0���r� . �62�

To calculate the correction to the impurity cross section, we
need the Fourier transform of �V�r�,

�V�2k sin
�

2
� =

U0

2
� d2r���r�exp�2ikr sin

�

2
cos �� ,

�63�

where � is the polar angle of r, see Fig. 4. Substituting Eqs.
�61� and �63� into Eq. �60�, we find the interaction-induced
correction to the scattering cross section,

�S��� = �U0S0� d�

2�
� dr

�2�T/vF�
sinh�2�rT/vF��sin�2r
kF

+ k cos � sin
�

2
�� + sin�2r
kF − k cos � sin

�

2
��� .

�64�

Performing the integration over r we get

�S��� = S0
�U0

4
� d��tanh �+ + tanh �−� , �65�

where

�± =
vF

2T
�kF ± k cos � sin

�

2
�

=
EF

T

1 ± �1 +



2EF
�cos � sin

�

2
� . �66�

For �±�1, i.e., for most values of the scattering angle �
except for those corresponding to the backscattering ��
���, we see that the scattering cross section does not de-
pend on � up to exponentially small corrections of order
O�exp�−EF /T��:

S��� = S0�1 + ��U0�, �� − �� � �max�T,�/EF�1/2.

�67�

On the other hand, in the vicinity of �=� the cross section
has a “hump,” see Fig. 5, of the width and the height scaling
as ��, �S��� /S0��max�T ,� /EF�1/2. The explicit expression
for S��� at T=0 can be found in Ref. 9. In Fig. 5 we plotted

FIG. 4. Schematic illustration of the scattering off Friedel oscil-
lations. The black dot in the middle represents a short-range impu-
rity which creates the oscillatory correction to the electron density
around it. The circle represents the equipotential line of the effec-
tive impurity potential. The correction to the impurity cross section
at the angle � arises due to the interference of two electronic waves
�Refs. 9 and 38�, one of which �dashed line� scattered by the impu-
rity and another �solid line� by the Friedel oscillations at a point
parametrized by the distance r from the impurity and the angle �.
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S��� for fixed T and several values of  �Fig. 5�a�� and for
fixed =0 and several values of T �Fig. 5�b��.

To calculate the � ,T�-dependent correction to 1/�q

�which is determined by the “hump”�, we expand sin�� /2�
around �=�. Furthermore, we expand cos � around �=�
and �=0 in the expressions for �+ and �−, respectively. This
corresponds to the two possible interfering paths propagating
along the horizontal line in Fig. 4 with the scattering off the
Friedel oscillation occurring either to the left or to the right
from the impurity. Denoting ��=x, �� /2=y, z2=x2+y2, and
�=z2EF, we get from Eq. �65�

� d�

2�
�S��� � S0

�U0

2�
� dx� dy tanh�EF

T

1 − �1 +

�

2EF
�

��1 −
x2 + y2

2
���

� S0�U0� zdz tanh�EF

T

 z2

2
−



2EF
��

= S0
�U0

2EF
�

0

�EF

d� tanh�� − 

2T
� . �68�

Using Eqs. �58� and �68�, we find the total quantum scatter-
ing rate,

1

�q�,T�
=

1

�
+ �� 1

�q
� , �69�

�� 1

�q
� = −

��q�,T�
�2

=
�U0

�

const −

T

EF
ln�2 cosh



2T
� −



2EF
� .

�70�

This result for the interaction-induced correction to �q agrees
�to the leading order in 1/T� corresponding to the ballistic
regime� with that obtained from the imaginary part of the
self-energy, Eqs. �55� and �57�. More accurately, Eq. �70�
differs from Eq. �55� by the last �T-independent� term
�U0 /2EF�, which drops out after the thermal averaging
with −�nF�� /� and thus does not contribute to ��q�T�, Eq.
�57�. This term is in a sense anomalous, since it arises from
the ultraviolet limit of the � integration in Eq. �68�. In fact,
one could question the validity of this contribution, since we
used the asymptotic, large-r form of the Friedel oscillations
in Eq. �61�. One can check, however, that the same result �up
to an irrelevant additive constant independent of T and : in
Eq. �67� ��U0 is replaced by 2�U0� is obtained from a cal-
culation using the exact form of the Friedel oscillations.46

The appearance of this linear-in- term is related to the vio-
lation of the particle-hole symmetry in the parabolic spec-
trum; this term did not appear in the diagrammatic calcula-
tion of Sec. IV where the spectrum was linearized. What,
however, enters the experimental damping of magneto-
oscillations is 1 /�q integrated over the energy with an even
function −�nF�� /�. Therefore we are in fact interested in
the collision rate symmetrized with respect to →−. Per-
forming this symmetrization in Eq. �64�, we get a result de-
termined solely by the infrared scale, r�vF /T, yielding Eq.
�70� without the last, linear-in- term.

Finally, using Eq. �59�, we see that the correction to the
transport rate is larger than ��1/�q� by a factor of 2. The
corresponding correction to the conductivity reproduces the
result of Ref. 9 in the ballistic limit.

V. DAMPING OF MAGNETO-OSCILLATIONS: COULOMB
INTERACTION

We turn now to the Coulomb interaction. In the case of
Coulomb interaction, one should take into account the dy-
namical screening of the interaction within the random phase
approximation �RPA�, see Fig. 6. In what follows we use for
simplicity the so-called F0 approximation,9 which retains
only the zeroth harmonics of the Fermi-liquid constants F0

�

and F0
� in the charge and spin channels, respectively. Then

the effective interaction propagator in the charge channel
�combining the exchange term and the singlet contribution of
the Hartree-type interaction� reads9,10

V��i�m,q� = �„V0�q� + F0
�/2�…−1 + ��i�m,q��−1, �71�

where ��i�m ,q� is the polarization operator

FIG. 5. Differential impurity cross section S��� �in units of the
bare cross section S0� renormalized by the scattering off Friedel
oscillations �with only the exchange contribution taken into ac-
count� calculated for �U0=0.2 and �a� fixed T=0.01EF and � /EF

=0, 0.01, 0.02, 0.05, 0.1, and 0.2, from top to bottom; and �b� fixed
�=0 and T /EF=0.005, 0.01, 0.02, 0.05, 0.1, and 0.2, from top to
bottom.
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��i�m,q� = 2��1 − ��m����i�m,q�� , �72�

��i�m ,q� is the impurity ladder, and �=m /2� is the density
of states per spin direction. The triplet contribution to the
effective interaction arises from the ladder of Hartree-type
interaction blocks and reads

V��i�m,q� = �2�/F0
� + ��i�m,q��−1. �73�

A. Singlet channel

The main difference as compared to the case of the short-
range weak interaction considered in Sec. III is the nontrivial
form of the dynamically screened Coulomb interaction �one
should take into account the renormalization of the interac-
tion by polarization operator�. Using

V0�q� =
2�e2

q

and neglecting F�
0, we get

V��i�m,q� =
V0�q�

1 + V0�q���i�m,q�

=
2�e2/q

1 + �2�e2/q�2��1 − ��m����i�m,q��

=
1

2�

 �S − 1/��
�q +  ��S − 1/�� −  �W − 1/��

. �74�

Here we use the standard notation  =4��e2 for the inverse
Thomas-Fermi screening radius and use the shorthand nota-
tion S for S�i�m ,q�	�W2+vF

2q2 with W= ��m�+1/�.
For q� , neglecting q in the sum q+ in the denomina-

tor of Eq. �74�, one finds that the exchange interaction

Ṽ��i�m,q� =
1

2�

S − 1/�

S − W
�75�

has a singularity �1/q2 in the limit q→0:

Ṽ��i�m,q� =
1

2�

2��m����m� + 1/��
q2vF

2 , q → 0, �76�

so that each separate term �ij
a , �ij

b in the self-energy would
diverge. This divergence is analogous to the one encountered
in the course of calculation of the tunneling density of
states.1 In that case, one has to keep the q term in the de-
nominator of Eq. �74�, which cuts off the logarithmic diver-
gence. For the present problem, this is, however, not needed.
Indeed, as was emphasized in the end of Sec. II, the kernel
K�i�m ,q� combining together contributions of all relevant

self-energy diagrams is proportional to q2 in the limit q→0

and hence cancels the singularity in Ṽ�i�m ,q�. In view of
this, it is convenient to represent the kernel function �28� in a
form which shows explicitly that K�i�m ,q=0�=0 �we recall
that S0�q=0�= ��m� and S�q=0�=W�:

K�i�m,q� = �−
1

S0
+

1

��m�� +
S − W

S − 1/�

 1

S��S − 1/��
−

1

��m�� .

�77�

Then the product Ṽ��i�m ,q�K�i�m ,q� takes the form

2�Ṽ��i�m,q�K�i�m,q� =
S0 − ��m�
S0�S − W�

−
1

S0
+

1

S��S − 1/��
.

�78�

Performing the integration over the momentum q in Eq. �27�,
we get the correction to self-energy in the singlet �charge�
channel

����in,�0� = −
iT

2EF�
�

�m�n

! ��1 + 2�m��ln
1 + 2�m�

2�m�
− 1

+ ln
!2 + �m

2

�m
2 � , �79�

where we introduced

! 	  vF. �80�

Comparing Eqs. �79� and �39�, we see that the last term in
Eq. �79� corresponds to a static short-range interaction with
�U0=1.

Setting n=�T and separating the contributions to the
sum �79� governed by the high-energy ��!� and low-
energy ��T� regions, we can present the result in the fol-
lowing form:

����i�T,�0� = −
iT

2EF�

 const !

T
− �1 −

1

8�T�
�ln

!

T

− f�4�T��� , �81�

where f�x� is a parameterless function,

f�x� = �
m=1

� 
1 − �1 + mx�ln
1 + mx

mx
+

1

2mx
�

= �
cf

x
+ 
 1

2x
+

1

2
�ln

1

x
, x � 1,

�2

36x2 , x � 1,� �82�

with cf=−3/4−��1� /2=−0.461392. . . �here ��x� is the di-
gamma function�. Thus the dynamical screening of Coulomb
interaction leads to different asymptotics of the self-energy
in the diffusive and ballistic regimes, in contrast to the case
of weak short-range interaction.47

FIG. 6. Diagrammatic equation for the effective interaction line
�bold wavy line� in the random-phase approximation, Eqs. �71� and
�73�. Dotted wavy line represents the bare interaction, V0�q�
+F0

� /2� in the singlet channel or F0
� /2� in the triplet channel. The

bubble � is the polarization operator, Eq. �72�.
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The T-dependence of the leading correction to the magneto-oscillations damping factor due to the interaction in the singlet
channel has therefore the form

B��T� =
�

�c�

T

EF

�1 −

1

8�T�
�ln

!

T
+ f�4�T��� �83�

=
�

�c�

T

EF
� �

3

2
ln
!

T
−

1

2
�1 +

1

4�T�
�ln�4�!�� −

cf

4�T�
, 4�T� � 1,

�1 −
1

8�T�
�ln

!

T
, 4�T� � 1.� �84�

This result is illustrated in Fig. 7. Note that the ballistic
asymptotics describes the exact result with a remarkable ac-
curacy down to very low temperature, T��0.01–0.05, see
Fig. 7�a�. Retaining in Eq. �84� only the leading terms and
suppressing the T-independent contributions which can be
absorbed in the FL-renormalized �, we get

B��T� =
�

�c�

T

EF
� �

3

2
ln
!

T
−

1

2
ln�4�!�� , 4�T� � 1,

ln
!

T
, 4�T� � 1.�

�85�

B. Triplet channel

Calculation of the corresponding triplet contribution
B��T� is presented in Appendix C and leads to qualitatively
similar asymptotics. The leading term in the total correction
to the damping factor in the ballistic regime, realized in ex-
periments on low-disorder samples at realistic temperatures,
takes the simple form

B�T� = B��T� + B��T� � �1 +
3F0

�

1 + F0
�� �

�c�

T

EF
ln
!

T
.

�86�

As discussed in Sec. IV, this result arises due to the correc-
tion to the effective mass �the consideration of Sec. IV fully
applies to the case of the Coulomb interaction as well�.

It is worth noting that due to the factor �1+F0
�� in the

denominator of B��T�, the damping of magneto-oscillations
tends to diverge upon approaching the Stoner ferromagnetic
instability. Since the damping is determined by the effective
mass m*�T� �see Sec. IV�, we conclude that m*�T� diverges
as F0

�→−1 due to the interplay of disorder and interaction.
This should be contrasted with the clean case, where the
effective mass is solely determined by Fermi-liquid constant
in the singlet channel, F1

�, and hence is insensitive to the
ferromagnetic instability.

C. Discussion and comparison to earlier work

Let us discuss the obtained results for the damping factor
B�T�. In both the diffusive and ballistic regimes we find the

temperature dependence of the form B�T��T ln T. In the dif-
fusive �low-T� regime the relative correction to the damping
factor, �c�B�g−1T� ln T is less singular than the known
corrections1 to the conductivity, �� /��g−1 ln T, and the
tunneling density of states, �� /��g−1 ln2 T �here g�EF� is
the dimensionless conductivity�. On the technical level, the
qualitative difference with the tunneling DOS can be traced
back to the contribution of the Hikami box diagrams, �ij

b .
As has been already mentioned in Sec. I, the problem of

the effect of the interaction on magneto-oscilations was re-
cently addressed in Ref. 26. The result of this work for the
damping factor is qualitatively similar to ours, B�T ln T.
However, the crossover function and, in particular, the pref-
actors in both ballistic and diffusive limits differ from ours �1
instead of 3/2 in the first line of Eq. �85�, and 3/2 instead of
1 in the second line�. This difference is not surprising, since
the authors of Ref. 26 took into account only one diagram
�01

a out of six in Fig. 2. Thus even the qualitative agreement
may be considered as an accidental coincidence. In fact,
there is a conceptual difference between our result and that
of Ref. 26. To illustrate this, consider a toy interaction of the
type V�� ,q�=F�����q�. Our result then would be zero, since
the kernel function K�i�m ,q�, Eq. �28�, satisfies the gauge-
invariance constraint �see Eq. �31� and discussion below it�,

�K�i�m,q��q=0 = 0. �87�

In contrast, the formula of Ref. 26 would give a finite result,
since their kernel

K01
�a� =

2

S

1

S� − 1
�88�

does not satisfy the requirement �87�,

K01
�a��i�m,q = 0� =

2

��m����m�� + 1�
.

For the Coulomb interaction this results in a logarithmic di-
vergency at small q that is cut off by the plasmon pole at q
�qmin with
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qmin =
��m����m� + 1/��

 vF
2 ,

similarly to the calculation of the tunneling density of states.1

As we explained in the end of Sec. II, the contribution of
small momenta, q�Rc

−1, should be suppressed for the
present problem. Therefore the above small-q divergence
should be cut off by the magnetic field, which would partly
transform ln T of Ref. 26 into ln B. However, this problem is
in fact spurious: the result of our work does not suffer from
any infrared divergencies, since our kernel K�i�m ,q� does
satisfy Eq. �87�.

Finally, let us briefly comment on the ultradiffusive re-
gime, T��c�1/�. In this regime the summation over Mat-
subara energies n is not restricted to n=0 and Nc��c /T
�1 Matsubara harmonics are important. Therefore the

damping due to the inelastic scattering �suppressed only for
n=0, see Ref. 26 and Eq. �B13�� becomes finite. The corre-
sponding contribution to the damping can be roughly esti-
mated using Eq. �B13� taken at relevant n�Nc:

�Binel�T� � − n2� T2

�cEF
ln�EF���

n�Nc

� −
�c

EF
ln�EF�� ,

�89�

yielding ��Binel�T���1, since in the ultradiffusive regime
�c�1/�. Thus the inelastic contribution to the damping fac-
tor is always small. Note that the contribution to the damping
due to the renormalization of the effective mass in the ul-
tradiffusive regime is also small: at n=Nc we have B�T�=
−2�n /�c�m /m��m /m�1.

VI. CONCLUSIONS

In conclusion, we have studied the T-dependent interac-
tion corrections to the damping of magneto-oscillations in a
two-dimensional electron gas. The damping factor has been
calculated for Coulomb and short-range interaction in the
whole range of temperatures, from the ballistic to the diffu-
sive regime. While the relevant diagrams are similar to those
for the local density of states, the results are essentially dif-
ferent, see Eqs. �42� and �83�.

We have identified leading contributions to the damping
induced by interplay of interaction and disorder, which can
be associated with corrections to the effective mass and the
quantum scattering time. It has been shown that in the bal-
listic regime, which is typically realized in low-disorder
samples at realistic temperatures, the dominant effect is that
of the renormalization of the effective electron mass due to
the interplay of the interaction and impurity scattering. Spe-
cifically, the correction to the effective mass is of the form
�m /m�1/ �EF��ln�EF /T�, Eq. �56�. The correction to the
impurity scattering time is of the form ��q /��T /EF, Eq.
�57�, and yields a subleading contribution to the damping.
We have confirmed the result for the correction to the quan-
tum scattering time by performing a calculation based on the
picture of scattering by impurities dressed by Friedel oscil-
lations. The results of the paper are relevant to the analysis of
experiments on magneto-oscillations �in particular, for ex-
tracting the value of the effective mass� and are expected to
be useful for understanding the physics of a high-mobility
2DEG near the apparent metal-insulator transition.
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FIG. 7. Temperature dependence of the singlet channel correc-
tion to the damping factor B��T�, Eq. �83�, for 4�!�=100 �solid
line� with the low-T �dot-dashed� and high-T �dashed� asymptotics,
Eq. �84�. �a� Wide temperature range: on this scale B��T� is essen-
tially indistinguishable from its high-T asymptotics; and �b� low-T
part: the crossover between the two asymptotics occurs at T�
�0.05.
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APPENDIX A: LUTTINGER FORMALISM FOR THE
THERMODYNAMIC POTENTIAL

In this appendix we derive the oscillatory part of the ther-
modynamic potential 	, following Ref. 34.

We calculate the sum in Eq. �7�, using Poisson’s summa-
tion formula

�
m=0

�

f�m�c� =
1

2
f�0� + �

0

� d�

�c
f��� − �

k=1

�
1

2�ik
�

0

�

d�f����

��e2�ik�/�c − e−2�ik�/�c� . �A1�

From Eq. �7� we have f����=−G�in ,��, where G�in ,�� is
the Green’s function. Thus to extract the oscillatory contri-
bution to 	, we should calculate the following integral

I± = �
0

�

d�
e±2�ik�/�c

� − 
 − in + �ee�in,�� − i sgn n/2�

�
1 +
��ee�in,��

��
� . �A2�

Here we introduce the self-energy �ee�in ,��, which is a
function defined in the plane of a complex variable �, such
that

�ee�in,m�c� = �ee�in,� = m�c� . �A3�

The main contribution comes from the pole �=�0, where
�0 obeys the self-consistent equation

�0 = 
 + in +
i

2�
sgn n − �ee�in,�0� . �A4�

We expand the self-energy �from now on we will skip the
subscript “ee” in �ee� in the vicinity of the pole,

��in,�� � ��in,�0� + �� − �0�� ���in,��
��

�
�=�0

. �A5�

Then the denominator in Eq. �A2� becomes proportional to
�1+�� /��� so that these factors drop out and the integral
takes a simple form

I± = �
0

�

d�
exp�±2�ik�/�c�

� − �0
. �A6�

We first single out the FL renormalization factors in �,
i.e., represent the self-energy in the following form �assum-
ing a constant electron concentration�:

��in,�� � �
 + �0�� − 
̃� − i�0n + ���in,�� , �A7�

where


̃ = 
 − �
 = �ne/m

is the chemical potential for noninteracting electrons �ne is
the electron concentration�: �− 
̃�vF�k−kF�. The correction
to the self-energy ���in ,�� contains contributions that are
smaller than �0��−
� and �0n by either T /EF or 1/EF�.
These additional contributions are related to the inelastic

processes and to the modification of the pure FL result due to
disorder.

In order to solve Eq. �A4�, we treat the subleading terms
constituting �� as small corrections. Solving Eq. �A4� by
iterations, we first find its solution neglecting these small
corrections and expanding �00 around the mass-shell:

�0
�0� � 
̃ + in +

i

2�
sgn n + i�0n − �0��0

�0� − 
̃� , �A8�

which yields

�0
�0� =

�ne

m
+ in

1 + �0

1 + �0
+

i sgn n

2��1 + �0�
. �A9�

Next we use this value of �0 in �� and solve the self-
consistent equation again, now keeping the terms previously
neglected. Then we arrive at

�0 � �0
�0� − ���in,�0

�0��/�1 + �0� . �A10�

Substituting this value of the pole in Eq. �A6�, we obtain

	 = 	osc + 	Non-osc, �A11�

where

	Non-osc = − T��c �
n=−�

�

ln�− 
 − in + ��in,0� −
i sgn n

2�
�

− 2�T �
n=−�

� �
0

�

d� ln�� − 
 − in + ��in,��

−
i sgn n

2�
� �A12�

and

	osc = �
k=1

�

�
n=−�

�
T2��c

k
exp�2�k

�c
�i
�ne

m
sgn n

−
�n��1 + �0� + 1/2� + i���in,�0�sgn n

1 + �0
��

= �
k=1

�
4�T�c

k
cos

2�2kne

eB
�
n=0

�

exp�−
2�k

�c

1 + �0

1 + �0

�
n +
1

2��1 + �0�
+

i���in,�0�
1 + �0

�� �A13�

�2�� �c

2�
�2

A1 cos
2�2ne

eB
. �A14�

Here A1 is the amplitude of the principal harmonics of the
oscillations

A1 	
4�2T

�c
�
n�0

exp�−
2�

�c

1 + �0

1 + �0

n +

1

2��1 + �0�

+
i���in,�0�

1 + �0
�� . �A15�
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APPENDIX B: CALCULATION OF SELF-ENERGIES

In this appendix we calculate the relevant self-energy contributions and derive Eq. �28�. The zero-B Green’s function is
given by

G�in − i�m,p − q� =
i

��m − n��1 + �0� + sgn��m − n�/2� − �i�� − 
̃� − ivFq cos "��1 + �0�

=
i

�̃m − ̃n + sgn��m − n�/2� − i�� − 
̃��1 + �0� + ivFq̃ cos "
. �B1�

We denote the FL-renormalized energies and momenta as �̃m= �1+�0��m, ̃n= �1+�0�n, and q̃= �1+�0�q. As the first ap-
proximation, we have set in Eq. �B1� p /m=vF in the linear-in-q term ivFq cos " and neglected q2 /2m.

Since the effective interaction �Eqs. �71� and �73�� does not depend on the polar angle of the transferred momentum q, we
average the FL-dressed Green’s function G�in− i�m ,p−q� over the angle between p and q. The result of angle-averaging is

�G�in − i�m,p − q�� =� d"

2�
G�in − i�m,p − q� �B2�

=
i sgn��m − n�

���̃m − ̃n + sgn��m − n�/2� − i�� − 
̃��1 + �0��2 + vF
2 q̃2

. �B3�

We substitute �=�0��0
�0�= 
̃+ ĩn / �1+�0�+ i sgn n /2��1

+�0� for � in Eq. �B3� since we are interested in ���in ,�0�
�the only place where �0 appears in �� is the Green’s func-
tion under the interaction line�. Then the denominator in Eq.
�B3� for q=0 reads

�̃m − ̃n + sgn��m − n�/2� − i�� − 
̃��1 + �0�

= �̃m − ̃n + sgn��m − n�/2�

− i�1 + �0�
i
̃n

1 + �0
+ i

sgn n

2��1 + �0��
= �̃m +

1

�
"��m − n�"�n� , �B4�

with "�x� the theta function. For definiteness, below we con-
sider n�0.

For �01 and �11 at n�0 we consider the Green’s func-
tion at �m−n�0 in order to have different signs of Matsub-
ara energies in the Green’s functions connected by the inter-
action vertex. This condition allows us to dress the
interaction vertices by impurity ladders.

We see that n drops out in the averaged Green’s function
taken at �=�0, as in two-particle quantities:

��G�in − i�m,p − q����=�0
=

i

����̃m� + 1/��2 + vF
2 q̃2

,

�m � n. �B5�

When both n and n−�m have the same sign �such a con-
tribution appears in the calculation of ��00�, we find

��G�in − i�m,p − q����=�0
= −

i

���̃m�2 + vF
2 q̃2

, �m � n.

�B6�

Now we redefine the Fermi velocity to absorb the FL-
factors according to

vF
* = vF

1 + �0

1 + �0
=

kF

m* . �B7�

Then we can return from �̃m and q̃ to �m and q, expressing
the angle-averaged Green’s function in terms of FL-
renormalized parameters Z, �* �introduced in Eq. �15�� and
vF

*:

��G�in − i�m,p − q����=�0
=

iZ

����m� + 1/�*�2 + �vF
*q�2

,

�m � n,

��G�in − i�m,p − q����=�0
= −

iZ

���m�2 + �vF
*q�2

, �m � n.

Furthermore, the Z-factor will be cancelled in the final result,
when �G�in− i�m ,p−q�� is used to calculate the correction
to the observables, see, e.g., Ref. 39 and discussion in Sec.
II B.

Using Eqs. �B5� and �B6�, we obtain
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�01
a �in,�0� = − T �

�m�n

� d2q

�2��2V�i�m,q���i�m,q��

��G�in,p − q����p=�0

= − iT �
�m�n

� d2q

�2��2

V�i�m,q���i�m,q�
S�i�m,q�

,

�B8�

�11
a �in,�0� = − T �

�m�n

� d2q

�2��2V�i�m,q��2�i�m,q�

���G�in,p − q����p=�0

= − iT �
�m�n

� d2q

�2��2

V�i�m,q��2�i�m,q�
S�i�m,q�

,

�B9�

where for brevity we introduce new variables S�i�m ,q�
	����m�+1/��2+vF

2q2=�W2+vF
2q2 and W	��m�+1/�.

Now we consider the contribution to the self-energy with-
out vertex corrections, �00

a �in ,��. We recall that in
�00

a �in ,�� the summation over transferred frequencies is not
restricted to �m�n. Presenting �00

a �in ,�� as

�00
a �in,�0� = �00

a,+−�in,�0� + �00
a,++�in,�0� , �B10�

�00
a,+−�in,�0�

= − T �
�m�n

� d2q

�2��2V�i�m,q���G�in,p − q����p=�0

= − iT �
�m�n

� d2q

�2��2

V�i�m,q�
S�i�m,q�

, �B11�

we further split the contribution �00
a,++�in ,�0� corresponding

to no change of Matsubara frequencies at the interaction ver-
tices into two parts as follows:

�00
a,++�in,�0� = − T �

�m�n

� d2q

�2��2V�i�m,q��

��G�in,p − q����p=�0

= iT� d2q

�2��2� �
��m��n

+ �
�m�−n

� V�i�m,q�
���m�2 + q2vF

2
.

�B12�

The terms with ��m��n are responsible for the FL-
renormalization and for the inelastic �determined by real pro-
cesses� contribution to the self-energy, yielding the following
FL-type term:26

�FL�in,�0� = − i�0n − i#�in,T�
n

2 − �2T2

EF
, �B13�

where the function #�in ,T� depends logarithmically on
max��n ,T ,1 /��: in particular, #�in ,T�� ln�EF / �−i�n�� for
�n�T ,1 /� and #�in ,T�� ln�iEF�� for 1 /��T ,�n. The first

term in Eq. �B13� determines the FL Z-factor and has been
separated from �� which governs the correction to the
damping factor, see Eq. �A7�. As for the second term, its
imaginary part describes the inelastic electron-electron scat-
tering, while its real part contributes to the renormalization
of the effective mass.32,33,45 However, when taken at �0
=�T, as appropriate for the damping of the magneto-
oscillations at T��c, the second term in Eq. �B13� vanishes,
in agreement with Ref. 26. Note that for the case of weak
short-range interaction, V�i�m ,q�=const��m�, the inelastic
contribution is zero to the first order in V.

Thus in order to calculate ��, we shall retain in Eq. �B12�
only the term corresponding to the summation over �m�
−n. In this term we change the sign of �m and �suppressing
the irrelevant inelastic term� obtain

�00
a,++�in,�0� = iT �

�m�n

� d2q

�2��2

V�i�m,q�
���m�2 + q2vF

2
,

�B14�

thus arriving at

�00
a �in,�0� = − iT �

�m�n

� d2q

�2��2V�i�m,q�

�
 1

S�i�m,q�
−

1

S0�i�m,q�� . �B15�

Here we use the fact that V�i�m ,q�=V�−i�m ,q� as the dy-
namically screened interactions depends on �m only through
��m� and introduced S0�i�m ,q�=��m

2 +q2vF
2 .

Let us turn now to the Hikami-box diagrams, shown in
Fig. 2�b�. We remind the reader that these diagrams are gen-
erated by covering each contribution to the self-energy �ij
from Fig. 2�a� with n�n−�m��0 by a single impurity line.
Therefore for white-noise disorder �addressed in this paper�
the Hikami-box contribution to the self-energy is indepen-
dent of �p and can be expressed through the corresponding
�ij

a as

�ij
b �i�n� =

1

2���
� d�p��G�i�n,�p��2�ij

a �i�n,�p� �B16�

=
i

�

�

��p
��ij

a �i�n,�p���p=�0
, �B17�

�ij
b �i�n� =

i

�

�

��p
��ij

a �i�n,�p���p=�0
�B18�

since the pole of G is given by �0, see Eq. �A10�. Differen-
tiating Eq. �B3� we get

�� �

��p
G�in − i�n,p − q���

�p=�0

= −
��m� + 1/�

����m� + 1/��2 + vF
2q23/2 = −

W

S3 . �B19�

This yields
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�00
b �in,�0� = iT �

�m�n

� d2q

�2��2

V�i�m,q�W
�S3�i�m,q�

, �B20�

�01
b �in,�0� = iT �

�m�n

� d2q

�2��2

V�i�m,q���i�m,q�W
�S3�i�m,q�

,

�B21�

�11
b �in,�0� = iT �

�m�n

� d2q

�2��2

V�i�m,q��2�i�m,q�W
�S3�i�m,q�

.

�B22�

Combining all the contributions together, we arrive at
Eqs. �27� and �28�.

APPENDIX C: COULOMB INTERACTION: TRIPLET
CHANNEL

In this appendix we calculate the contribution of the trip-
let channel to the damping of magneto-oscillations. The ef-
fective interaction in the triplet channel can be found by
replacing V0�q�→F0

� /2� in the expression for the singlet
channel:

2�V��i�m,q� =
F0
�

1 + F0
���i�m,q�

=
F0
�

1 + F0
��1 − ��m�/�S − 1/���

=
F0
��S − 1/��

�1 + F0
���S − 1/�� − ��m�F0

� =
F0
�

1 + F0
�

S − 1/�

S − w
,

�C1�

where we introduced

w 	 ��m�
F0
�

1 + F0
� +

1

�
. �C2�

This yields

2�V��i�m,q�K�i�m,q�

=
F0
�

1 + F0
�
S0 − �S − 1/��

S0�S − w�
+

S − W

S − w

1

S��S − 1/��� .

�C3�

Performing the integration over q in Eq. �27� and taking into
account the three triplet terms corresponding to different pro-
jection of the total spin on the z axis Sz=0, ±1, we obtain

����i�T,�0� = −
iT

2EF�

3F0
�

1 + F0
� �
�m=2�T

! �� �m

�!2 + �m
2

− 1�
+ ln

!2 + �m
2

�m
2 + h��m�,F0

��� , �C4�

h�z,y� � �1 −
1

y
�ln�1 + y� +

y

1 + y
zh1�x,y� , �C5�

h1�z,y� = ln
�1 + 2z��1 + y�

2z
+

zy + �1 + y�
��2�1 + y�z − �zy�2��
arcsin

zy − 1
�2z + 1

− arcsin
zy + �1 + y�

�1 + y��2z + 1
� , z �

2�1 + y�
y2 ,


ln�1 +
2 + y

zy − 1 + ��zy�2 − 2�1 + y�z
� − ln�1 + y�� , z �

2�1 + y�
y2 .�

�C6�

We see that the first two terms in Eq. �C4� correspond to the
pointlike interaction with �U0→3F0

� / �1+F0
��, see Eq. �39�.

The term h��m ,F0
�� corresponds to the crossover function

f�x� in the singlet channel, see Eqs. �81� and �82�. The result
for the singlet channel is reproduced in the limit F0

�→� �cf.
Ref. 9�.

The summation over Matsubara frequencies leads to

����i�T,�0� = −
iT

2EF�

3F0
�

1 + F0
�� const !

T
− 
1 −

$�F0
��

8�T�
�ln

!

T

− f��4�T�,F0
��� , �C7�

where

$�y� =
1 + y

y3 �y�6 + y� − 2�3 + 2y�ln�1 + y�� �C8�

and

f��x,y� = �
m=1

� �− h�mx

2
,y� + 
1 −

2 ln�1 + y�
y

� +
$�y�
2mx

� .

�C9�

As a result we obtain the following T dependence of the
triplet contribution to the damping exponent

INTERACTION EFFECTS ON MAGNETO-OSCILLATIONS… PHYSICAL REVIEW B 73, 045426 �2006�

045426-17



B��T� =
�

�c�

3F0
�

1 + F0
�

T

EF
�
1 −

$�F0
��

8�T�
�ln

!

T
+ f��4�T�,F0

��� .

�C10�

For not too strong interaction, �F0
��2 / �1+F0

��%1 �i.e., for

�F0
��%0.6, which is typically met in experiments, see, e.g.,

Ref. 48� the crossover function f��x ,y� only yields the sub-
leading T-dependence49 of B��T�, so that the leading contri-
bution to the damping is given by Eq. �42� for the short-
range interaction with �U0 replaced by 3F0

� / �1+F0
��.
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burg, Russia.
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