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The possibility to use perturbation theory to systematically improve calculations on circular quantum dots is
investigated. A few different starting points, including Hartree-Fock, are tested and the importance of correla-
tion is discussed. Quantum dots with up to 12 electrons are treated and the effects of an external magnetic field
are examined. The sums over excited states are carried out with a complete finite radial basis set obtained
through the use of B splines. The calculated addition energy spectra are compared with experiments and the
implications for the filling sequence of the third shell are discussed in detail.
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I. INTRODUCTION

During the last decade a new field on the border between
condensed matter physics and atomic physics has emerged.
Modern semiconductor techniques allow fabrication of elec-
tron quantum confinement devices, called quantum dots,
containing only a small and controllable number of electrons.
The experimental techniques are so refined that one electron
at a time can be injected into the dot in a fully controllable
way. This procedure has shown many similarities between
quantum dots and atoms, for example the existence of shell
structure. To emphasize these similarities quantum dots are
often called artificial atoms. The interest in quantum dots is
mainly motivated by the fact that their properties are tunable
through electrostatic gates and external electric and magnetic
fields, making these designer atoms promising candidates for
nanotechnological applications. An additional aspect is that
quantum dots provide a new type of targets for many-body
methods. In contrast to atoms they are essentially two-
dimensional and their physical size is several orders of mag-
nitude larger than that of atoms, leading, e.g., to a much
greater sensitivity to magnetic fields. Another difference
compared to atoms is the strength of the overall confinement
potential relative to that of the electron-electron interaction,
which here varies over a much wider range.

The full many-body problem of quantum dots is truly
complex. A dot is formed when a two-dimensional electron
gas in a heterostructure layer interface is confined also in the
xy plane. The gate voltage applied for this purpose results in
a potential well, the form of which is not known. A quanti-
tative account of this trapping potential is one of the quan-
tum dot many-body problems. Self-consistent solutions of
the combined Hartree and Poisson equations by Kumar et
al.1 in the early 1990s indicated that for small particle num-
bers this confining potential is parabolic in shape at least to a
first approximation. Since then a two-dimensional harmonic
oscillator potential has been the standard choice for studies
concentrating on the second many-body problem of quantum
dots; that of the description of the interaction among the
confined electrons. The efforts to give a realistic description
of the full physical situation, see, e.g., Refs. 1–5 have, how-
ever, underlined that it is important to realize the limits of
this choice. To start with, the pure parabolic potential seems
to be considerably less adequate when the number of elec-
trons is approaching 20. The potential strength is further not
independent of the number of electrons put into the dot, an

effect which is sometimes approximately accounted for by
decreasing the strength with the inverse square root of the
number of electrons.6 Finally, the assumption that the con-
fining potential is truly two-dimensional is certainly an ap-
proximation and it will to some extent exaggerate the Cou-
lomb repulsion between the electrons. In Ref. 3 the deviation
from the pure two-dimensional situation is shown to effec-
tively take the form of an extra potential term scaling with
the fourth power of the distance to the center and which can
be both positive and negative. Although the deviation is quite
small it is found that predictions concerning the so-called
third shell can be affected by it.

There is thus a number of uncertainties in the description
of quantum dots. On the one hand there is the degree to
which real dots deviate from two-dimensionality and pure
parabolic confinement. On the other hand there is the uncer-
tainty in the account of electron correlation among the con-
fined electrons. The possible interplay among these uncer-
tainties is also an open question. In a situation like this it is
often an advantage to study one problem at a time, since it is
then possible to have control over the approximations made
and quantify their effects. We concentrate here on the prob-
lem of dot-electron correlation. For this we employ a model
dot, truly two-dimensional, with perfect circular symmetry
and with a well defined strength of the confining potential.
This choice is sufficient when the aim is to test the effects of
the approximations introduced through the approximative
treatment of the electron-electron interaction.

Especially the experimental study by Tarucha et al.7 has
worked as a catalyst for a vast number of theoretical studies
of quantum dots. A review of the theoretical efforts until a
few years ago has been given by Reimann and Manninen.8 A
large number of calculations has been done within the frame-
work of density functional theory �DFT�6,8–10 and references
therein, but also Hartree-Fock �HF�,11–13 quantum Monte
Carlo methods,14,15 and configuration interaction �CI�16–18

studies have been performed. The DFT studies have been
very successful. The method obviously accounts for a sub-
stantial part of the electron-electron interaction. Still, the
situation is not completely satisfactory since there is no pos-
sibility to systematically improve the calculations or to esti-
mate the size of neglected effects. For just a few electrons
the CI approach can produce virtually exact results, provided
of course that the basis set describes the physical space well
enough. The size of the full CI problem grows, however,
very fast with the number of electrons and to the best of our
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knowledge the largest number of electrons in a quantum dot
studied with CI is 6. It would be an advantage to also have
access to a many-body method which introduces only well
defined approximations and which allows a quantitative es-
timate of neglected contributions. The long tradition of accu-
rate calculations in atomic physics has shown that many-
body perturbation theory �MBPT� has these properties. It is
in principle an exact method, applicable to any number of
electrons, and the introduced approximations are precisely
defined. With MBPT it is possible to start from a good, or
even reasonable, description of the artificial atom and then
refine this starting point in a controlled way. We are only
aware of one study on quantum dots that have been done
with MBPT, the one by Sloggett and Sushkov.19 They did
second-order correlation calculations on circular and ellipti-
cal dots in an environment free of external fields.

In the present study we use second-order perturbation
theory to calculate energy spectra for quantum dots with and
without external magnetic fields. We consider this second-
order treatment as a first step towards the calculation of cor-
relation to high orders through iterative procedures, an ap-
proach commonly used for atoms.20 The method is described
in Sec. II. In Sec. III we compare our calculations with ex-
perimental results,3,7 DFT calculations,16 and CI calculations,
our own as well as those of Reimann et al.,16 and discuss the
strength and limits of the MBPT approach. We have mainly
used the Hartree-Fock description as a starting point for the
perturbation expansion, but we also show examples with a
few alternative starting points, among them DFT. To obtain a
complete and finite basis set, well suited to carry out the
perturbation expansion, we use so-called B splines, see, e.g.,
Ref. 21. The use of B splines in atomic physics was pio-
neered by Johnson and Sapirstein22 twenty years ago and
later it has been the method of choice in a large number of
studies as reviewed, e.g., in Ref. 23. We compare our corre-
lated results to our own HF calculations, thereby highlighting
the importance of correlation both when the quantum dot is
influenced by an external magnetic field and when it is not.
We present addition energy spectra for the first 12 electrons.
The interesting third shell �electrons 7 to 12� is discussed in
Sec. IV. Here we investigate several different filling se-
quences and show that correlation effects in many cases can
change the order of which shells are filled. We note also that
the energy of the first excited state can be very close to the
ground state, in some case less than 0.1 meV, which raises
the question if it is always the ground state which is filled
when an additional electron is injected in the dot since more
than one state may lie in the transport window controlled by
the source drain voltage.24

II. METHOD

The essential point in perturbation theory is to divide the

full Hamiltonian Ĥ into a first approximation ĥ and a correc-

tion Û. The first approximation should be easily obtainable,
in practice it is more or less always chosen to be an effective
one-particle Hamiltonian, and it should describe the system
well enough to ensure fast and steady convergence of the
perturbation expansion. The partition is written as

Ĥ = �
i=1

N

ĥ�i� + Û . �1�

Here we have chosen to mainly use the Hartree-Fock Hamil-

tonian as ĥ but we have also investigated the possibility to
use a few other starting points.

A first approximation to the energy is obtained from the

expectation value of Ĥ, calculated with a wave function in
the form of a Slater determinant formed from eigenstates to

ĥ�i�. The result is then subsequently refined through the per-
turbation expansion. Below we describe the calculations step
by step.

A. Single-particle treatment

For a single particle confined in a circular quantum dot
the Hamiltonian reads

ĥs =
p̂2

2m* +
1

2
m*�2r2 +

e2

8m*B2r2 +
e

2m*BL̂z + g*�bBŜz,

�2�

where B is an external magnetic field applied perpendicular
to the dot. The effective electron mass is denoted with m*

and the effective g factor with g*. Throughout this work we
use m*=0.067me and g*=−0.44, corresponding to bulk val-
ues in GaAs.

The single particle wave functions separate in polar coor-
dinates as

��nm�ms
� = �unm�ms

�r���eim����ms� . �3�

As discussed in the Introduction we expand the radial part
of our wave functions in so-called B splines labeled Bi with
coefficients ci, i.e.,

�unm�ms
�r�� = �

i=1
ci�Bi�r�� . �4�

B splines are piecewise polynomials of a chosen order k,
defined on a so-called knot sequence and they form a com-
plete set in the space defined by the knot sequence and the
polynomial order.21 Here we have typically used 40 points in
the knot sequence, distributed linearly in the inner region and
then exponentially further out. The last knot, defining the
box to which we limit our problem, is around 400 nm. The
polynomial order is 6 and combined with the knot sequence
this yields 33 radial basis functions, unm�ms

�r�, for each com-
bination �m� ,ms�. The lower energy basis functions are
physical states, while the higher ones are determined mainly
by the box. The unphysical higher energy states are, how-
ever, still essential for the completeness of the basis set.

Equations �3� and �4� imply that the Schrödinger equation
can be written as a matrix equation,

Hc = �Bc , �5�

where Hji= �Bje
im��Ĥ�Bie

im�� and Bji= �Bj �Bi�.31

Equation �5� is a generalized eigenvalue problem that can
be solved with standard numerical routines. The integrals in
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Eq. �5� are calculated with Gaussian quadrature and since B
splines are piecewise polynomials this implies that essen-
tially no numerical error is produced in the integration.

B. Many-body treatment

The next step is to allow for several electrons in the dot
and then to account for the electron-electron interaction,

e2

4	�r�0

1

�ri − r j�
, �6�

where �r is the relative dielectric constant which in the fol-
lowing calculations is taken to be �r=12.4 corresponding to
the bulk value in GaAs. For future convenience we define the
electron-electron interaction matrix element as

�ab� 1

r̂ij
�cd	 =
 
 e2�a

*�ri��b
*�r j��c�ri��d�r j�

4	�r�0�ri − r j�
dAidAj ,

�7�

where a, b, c, and d each denote a single quantum state, i.e.,
�a�= �na ,m�

a ,ms
a�.

1. Multipole expansion

As suggested by Cohl et al.,25 the inverse radial distance
can be expanded in cylindrical coordinates �R ,� ,z� as

1

�r1 − r2�
=

1

	�R1R2
�

m=−





Qm−1/2���eim��1−�2�, �8�

where

� =
R1

2 + R2
2 + �z1 − z2�2

2R1R2
. �9�

Assuming a two-dimensional �2D� confinement we set z1
=z2 in Eq. �9�. The Qm−1/2��� functions are Legendre func-
tions of the second kind and half integer degree. We evaluate
them using a modified32 version of software DTORH1.F de-
scribed in Ref. 26.

Using Eqs. �8� and �3� the electron-electron interaction
matrix element �7� becomes

�ab�
1

r̂12

�cd� =
e2

4	�r�0
�ua�ri�ub�rj��

Qm−1/2���
	�rirj

�uc�ri�ud�rj��

� �eima�ieimb�j� �
m=−





eim��i−�j��eimc�ieimd�j�

� �ms
a�ms

c��ms
b�ms

d� . �10�

Note that the angular part of Eq. �10� equals zero except if
m=ma−mc or m=md−mb. This is how the degree of the Leg-
endre function in the radial part of Eq. �10� is chosen. It is
also clear from Eq. �10� that the electron-electron matrix
element �7� equals zero if states a and c or states b and d
have different spin directions.

2. Hartree-Fock

If the wave function is restricted to be in the form of a
single Slater determinant, the Hartree-Fock approximation

can be shown to yield the lowest energy. In this approxima-
tion each electron is governed by the confining potential and
an average Hartree-Fock potential formed by the other elec-
trons. To account for the latter the Hamiltonian matrix H in
Eq. �5� is modified by the addition of a term:

uji
HF = �Bj�ûHF�Bi� = �

aN

�Bja�
1

r̂12

�Bia� − �Bja�
1

r̂12

�aBi� .

�11�

The sum here runs over all occupied orbitals a defined by
quantum numbers n, m�, and ms. Equation �5� is then solved
iteratively yielding new and better wave functions in each
iteration until the energies become self-consistent. The
hereby obtained solution is often labeled the unrestricted
Hartree-Fock approximation since no extra constraints are
imposed on uHF.

One property of the unrestricted Hartree-Fock approxima-
tion deserves special attention. Consider the effects of the
Hartree-Fock potential on an electron in orbital b,

�b�ûHF�b� = �
aN

�ba�
1

r̂12

�ba� − �ba�
1

r̂12

�ab� , �12�

where the last term in Eq. �12�, the exchange term, is non-
zero only if orbitals a and b have the same spin. Configura-
tions where not all electron spins are paired electrons with
the same quantum numbers n and m�, but with different spin
directions, will experience different potentials. This is in ac-
cordance with the physical situation, but has also an undes-
ired consequence; the total spin, S2= ��isi�2, does not com-
mute with the Hartree-Fock Hamiltonian. This means that
the state vector constructed as a single Slater determinant of
Hartree-Fock orbitals will not generally be a spin eigenstate.
However, the full Hamiltonian, Eq. �1�, still commutes with
S2 and during the perturbation expansion the spin will even-
tually be restored, provided of course that the perturbation
expansion converges. Since, in contrast to the energy, the
total spin of a state is usually known, the expectation value
of the total spin, �S2�, can be used as a measure of how
converged the perturbation expansion is. It can also be used
as an indication of when the Hartree-Fock description is too
far away from the physical situation to be a good enough
starting point. This is discussed further in Secs. III and IV.

3. Second-order correction to a Hartree-Fock starting
point

The leading energy correction to the Hartree-Fock starting
point is of second order in the perturbation �defined in Eq.

�1�. When ĥ= ĥs+ ûHF and Û=�i�j
1
r̂ij

−�i=1
N ûHF�i�, the corre-

sponding corrections to the wave function will not include
any single excitations. This is usually referred to as Bril-
louin’s theorem and is discussed in standard many-body
theory textbooks, see, e.g., Lindgren and Morrison.20 Start-
ing from the HF Hamiltonian for N electrons in the dot we
write the second-order correction to the energy
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�EN
�2� = �

a�bN
�

r,s�N

r�s

��rs�1/r̂12�ab��2 − �ba�1/r̂12�rs��rs�1/r̂12�ab�
�a + �b − �r − �s

, �13�

where thus both r and s are unoccupied states.
Since B splines are used for the expansion of the radial

part of the wave functions there is a finite number of radial
quantum numbers �n� to sum over in the second sum of Eq.
�13�. However, in principle there is still an infinite number of
angular quantum numbers �m�� to sum over in the same sum.
In praxis this summation has to be truncated and the effects
of this truncation will be discussed in Sec. III.

4. Other starting points than Hartree-Fock

In principle any starting point, with wave functions close
enough to the true wave functions �to ensure convergence of
the perturbation expansion�, can work as a starting point for
MBPT. We have in addition to HF investigated three alterna-
tive starting points. If there are important cancellations be-
tween the full exchange �included in Hartree-Fock� and cor-
relation �not included in Hartree-Fock� an alternative starting
point might converge faster, or even provide convergence in
regions where it cannot be achieved with Hartree-Fock. First

of all we start with the simplest possible starting point: the
pure one-electron wave functions. In this case the basis set
consists of the solutions to the pure 2D harmonic oscillator
in the chosen box and we treat the whole electron-electron
interaction as the perturbation. The second alternative start-
ing point is the local density approximation �LDA�. That is
we switch the second term in Eq. �11� to

��Bj�4aB
*�2��r�

	
�Bi

�, where ��r� is the radial electron density
and � is called the Slaters exchange parameter and is usually
set to 1. Both these starting Hamiltonians are defined with
only local potentials and will thus commute with the total
spin. The third alternative starting point is a reduced ex-
change HF, i.e., the exchange term �the second term� in Eq.
�11� is simply multiplied with a constant ��1. When using
these alternative starting points, one must in contrast to the
Hartree-Fock case include single excitations in the perturba-
tion expansion.

The second-order perturbation correction then becomes

�EN
�2� = �

a,b�N
�
r�N

��r�V̂ex�a� − �rb�
1

r12
�ba��2

�a − �r
+ �

a�bN
�

r,s�N

r�s

��rs�
1

r̂12

�ab��2

− �ba�
1

r̂12

�rs��rs�
1

r̂12

�ab�

�a + �b − �r − �s
, �14�

where V̂ex is the chosen exchange operator. From this expres-
sion it is also clear that the first term yields zero in the pure
Hartree-Fock case, i.e., then all single excitations cancel.

5. Full CI treatment of the two-body problem

To investigate how well second-order many-body pertur-
bation theory performs we have for the simple case of two
electrons also solved the full CI problem. We then diagonal-
ize the matrix that consists of all the elements of the form

Hji = �mn� jĥs
1 + ĥs

2 +
1

r̂12

�op�i �15�

for given values of ML=�m� and MS=�ms of our electron
pairs ��mn�i�. Following the selection rules produced by Eq.
�10� we get the conditions m�

o+m�
p=m�

m+m�
n, ms

m=ms
o, and

ms
n=ms

p.

III. VALIDATION OF THE METHOD

The main purpose of this work is to investigate the usabil-
ity of many-body perturbation theory on �GaAs� quantum

dots. Therefore we have in this section compared our results
with results from other theoretical works.

Our energies are generally given in meV. For easy com-
parison with other calculations it should be noted that the
scaled atomic unit for energy is 1 hartree*=1 hartree
�m* / �me�r

2��11.857 meV, with m*=0.067me and �r=12.4.
The scaled Bohr radius is aB

* = ��rme /m*�aB�9.794 nm.

A. Two electron dot

Figure 1 shows the second-order many-body perturbation
correction to the energy, Eq. �13�, as a function of max�n�
�squares� and max��m��� �circles�, respectively, for the two
electron dot with ��=6 meV. It clearly illustrates that both
curves converge but also that the sum over m� converges
faster than the sum over n. Due to this we have throughout
our calculations used all radial basis functions and as many
angular basis functions that are needed for convergence. One
should, however, notice that the relative convergence as a
function of max�n� and max��m��� varies with the confine-
ment strength and occupation number. Weak potentials ���
�2 meV� usually produce the opposite picture, i.e., a faster
convergence for n than for m�. For confinement strengths
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����3 meV� and most occupation numbers the trend
shown in Fig. 1 is, however, typical.

Comparison between different starting points

In Figs. 2�a� and 2�b� comparisons between HF �i.e., the
expectation value of the full Hamiltonian with a Slater deter-
minant of Hartree-Fock orbitals, labeled HF+1st order
MBPT in Figs. 2 and 3�, the alternative starting points dis-
cussed in Sec. II B 4, second-order MBPT �HF or alternative
starting point+second-order correlation�, and CI calculations
for the ground state in the two electron dot are made. Both
the second-order MBPT and CI results have been produced
with all radial basis functions �33 for each combination of m�

and ms� and −6m�6. It is clear from Fig. 2�a� that the
second-order correlation here is the dominating correction to
the Hartree-Fock result. Even for ��=2 meV the difference
compared to the CI result decreases with one order of mag-
nitude when it is included. For stronger confinements the
difference to CI is hardly visible. As expected, the perfor-
mance of both HF and second-order MBPT is improved
when stronger confinement strengths are considered. For the
weakest confinement strength calculated here ���=1 meV�
the pure Hartree-Fock approximation gives unphysical wave
functions in the sense that the spin up and the spin down
wave functions differ, resulting in a nonzero �S2�. This shows
up in Fig. 2�a� as a broken trend �all of a sudden an overes-
timation of the energy instead of an underestimation� for the
pure HF+second-order correlation curve at ��=1 meV. For
all other potential strengths �S2� is zero to well below the
numerical precision ��10−6� for both the Hartree-Fock and
second-order MBPT wave functions, while for the ��
=1 meV calculation �S2�=0.33 and 0.26 for the Hartree-
Fock and second-order MBPT calculations, respectively. It
should be noted that at ��=1 meV the energy of the second-
order MBPT calculation is still only 4% larger than the CI
value �although the wave functions are unphysical� and that
probably the state will converge to �S2�=0 when MBPT is
performed to all orders. All other tested starting points yield
�S2�=0 for this confinement strength, but still their energy
estimates after second-order MBPT are worse. This shows

that conserved spin does not necessarily yield good energies
and broken spin symmetry does not necessarily yield bad
energy estimations. We note that the reduced exchange
Hartree-Fock, displayed in Fig. 2�a�, seems to be a fruitful
starting point for perturbation theory although the results af-
ter second order are slightly worse than after the full ex-
change Hartree-Fock+second-order MBPT. For ��=1 meV
the reduced exchange HF with �=0.7 still gives �S2�=0, i.e.,
the onset of spin contamination is delayed on the expense of
proximity to the CI energy. To put it in another way, if we
lower �, the corresponding curve in Fig. 2�a� will be lower
�and thus further from the correct CI curve�, but the spin
contamination onset will appear for a weaker confinement
strength. This freedom could be useful when doing MBPT to
all orders.

From Fig. 2�b� we conclude that LDA with ��1 might
be a useful starting point for perturbation theory calculations
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FIG. 1. �Color online� Second-order perturbation theory correc-
tion to the energy as function of max�n� �squares� and max��m���
�circles� in the second sum of Eq. �13� for the two electron dot with
the confinement strength ��=6 meV. Note that the sum over m�

converges faster than the sum over n.

FIG. 2. �Color online� The quotient between the calculated en-
ergies �of the respective method� and the CI energy as functions of
the confinement strength �� for the ground state in the two electron
dot. In �a� the results from HF, a reduced exchange HF with �
=0.7 and second-order MBPT using wave functions from the re-
spective method are plotted. In �b� the results from LDA calcula-
tions �with two different alphas� � first- and second-order MBPT
are plotted. For reference the results from calculations where we
have used the one electron wave functions as a starting point for the
perturbation expansion �taking the whole electron-electron interac-
tion as the perturbation� have been plotted in both �a� and �b�.
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to all orders but not a good option for second order calcula-
tions, at least not for weak potentials. LDA calculations with
�=1, however, seem to be a bad starting point for MBPT,
at least for the two electron case, since it gives almost iden-
tical results after second order using the pure one electron
wave functions as a starting point. LDA might still work
better as a starting point when more electrons are added to
the dot.

Finally the comparison with the pure one electron wave
functions in Fig. 2 clearly illustrates how much of an im-
provement it is to start the perturbation expansion from wave
functions that already include some of the electron-electron

interaction, especially for weaker potentials. This becomes
even more clear in Fig. 3 where we present the results from
Fig. 2�a� in another way. Here we have plotted EMethod /E0 as
functions of l0 /aB

* where E0=�� is the single particle energy
and l0=�� / �m*�� is the characteristic length of the dot. It
demonstrates what an extraordinary improvement it is to
start from Hartree-Fock compared to starting with the one
electron wave functions when doing second-order MBPT for
low electron densities �high l0 /aB

*�. It also seems that there is
a region where the Hartree-Fock starting point would yield a
convergent perturbation expansion while taking the whole
electron-electron interaction as the perturbation would not.
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FIG. 4. �Color online� Comparison between
our HF and second-order MBPT results for the
six electron dot in the ground state with ML

TOT

=0 and Sz
TOT=0, with the LSDA and CI calcula-

tions by Reimann et al. �Ref. 16�. The second-
order MBPT calculations include the full sum
over the complete radial basis set �corresponding
to all n values� and with max��m���
=1,2 ,3 , . . . ,30 for the two strongest potentials.
For clarity only the curves with max��m���=1, 4,
6, and 30 have been labeled. The HF and the
second-order MBPT with max��m���=30 curves
are plotted for all potential strengths calculated
by Reimann et al. Moreover, the values of �S2�
for the HF and the second-order MBPT with
max��m���=30 have been plotted in the figure.
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FIG. 3. �Color online� E /E0

for the two electron dot and for
different methods as functions of
l0 /aB

* , where l0=�� / �m*�� is the
characteristic dot length, E0=��
is the single particle energy, and
aB

* is the effective Bohr radius.
Small values of l0 /aB

* correspond
to stronger confinement and there-
fore a faster expected convergence
rate of a perturbation expansion.
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B. Six electron dot

In Fig. 4, a comparison between our HF and second-order
MBPT calculations on the ground state of the six electron dot
is made with a DFT calculation in the local spin density
approximation �LSDA� as well as with a CI calculation, both
by Reimann et al.16 They performed their calculations for

seven different electron densities here translated to potential
strengths. Let us first focus on the results for the two highest
densities, corresponding to a Wigner-Seitz radius rs=1.0aB

*

and rs=1.5aB
* which translates to confinement strengths of

���7.58 meV and �4.12 meV, respectively. The reason
that we want to separate the comparison for those confine-
ment strengths is that our Hartree-Fock calculations yield
solutions with �S2��0 for the weaker confinement strengths.
A similar behavior was seen by Sloggett et al.19 in their
unrestricted HF calculations. Therefore the results for the
weaker potentials overestimate the energy in an unphysical
manner; compare the above discussion around Fig. 2�a�. The
CI method, however, always yields �S2�=0 for the closed six
electron shell and consequently a comparison with spin con-
taminated results would here, in some sense, be misleading.
It should be emphasized that the spin contamination is a
feature of our choice of starting point and not a problem with
MBPT in itself.

To make comparison easy all energies are normalized to
the corresponding CI value. The figure clearly illustrates, for
the two stronger confinement strengths, that while the HF
results overshoot the CI energy by between 3.5% and 4.5%
the second-order MBPT calculations improve the results sig-
nificantly. Already for max��m���=1 the energy only over-
shoots the CI value with between 2.5% and 3.5% while the
second-order MBPT energy for max�m��=4 is almost exactly
the CI energy. However, with max�m��=30 the second-order
MBPT gives somewhere between 0.5% and 1% lower energy
than the CI calculation. We note that the CI calculation by
Reimann et al. was made with a truncated basis set consist-
ing of the states occupying the eight lowest harmonic oscil-
lator shells. This means, e.g., that their basis set includes
only two states with ��m���=5 and one with ��m���=6. Within
this space all possible six electron determinants were formed.
After neglecting some determinants with a total energy larger

TABLE I. Energy of the ground and third shell excited state for 7–11 electron dots with ��=5 and 7 meV. The notation ��i=1
N n , �ML � ,S�

to label the state is used. The ground state energy according to Hartree-Fock �HF energy� and to HF+second-order MBPT �correlated energy�
and for respective N and potential strength is marked in bold.

# e− ��=5 meV ��=7 meV

7 State �0,2 , 1
2

� �1,0 , 1
2

� �0,2 , 1
2

� �1,0 , 1
2

�
HF energy �meV� 168.02 168.67 215.80 216.58

Correlated energy �meV� 162.08 162.15 208.96 209.52

8 State �0,0,1� �0,4,0� �1,2,1� �2,0,0� �0,0,1� �0,4,0� �1,2,1� �2,0,0�
HF energy �meV� 210.69 212.33 211.66 214.00 270.66 272.20 271.51 274.32

Correlated energy �meV� 205.2 204.40 204.66 205.02 263.82 263.70 263.85 264.65

9 State �1,0 , 3
2

� �0,2 , 1
2

� �1,4 , 1
2

� �2,2 , 1
2

� �1,0 , 3
2

� �0,2 , 1
2

1
2

� �1,4 , 1
2

� �2,2 , 1
2

�
HF energy �meV� 257.69 259.24 259.28 260.56 330.25 332.17 332.14 333.64

Correlated energy �meV� 250.54 251.35 250.95 251.00 322.27 322.81 323.06 323.37

10 State �1,2,1� �0,0,0� �2,0,1� �2,4,0� �1,2,1� �0,0,0� �2,0,1� �2,4,0�
HF energy �meV� 309.27 310.64 310.17 311.06 395.72 397.20 396.73 397.78

Correlated energy �meV� 300.49 300.00 300.25 300.52 385.92 385.76 386.06 386.49

11 State �1,0 , 1
2

� �2,2 , 1
2

� �1,0 , 1
2

� �2,2 , 1
2

�
HF energy �meV� 363.72 364.49 464.77 465.57

Correlated energy �meV� 353.66 353.19 453.47 453.43
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FIG. 5. �Color online� The chemical potentials for N
=1,2 , . . . ,6 as functions of the external magnetic field according to
HF �dashed curve� and second-order MBPT �full curve� calcula-
tions for the potential strength ��=5 meV. Note the big difference
between the two different models regarding the behavior of the
chemical potentials when the magnetic field varies.
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than a chosen cutoff, the Hamiltonian matrix was constructed
and diagonalized. Figure 4 indicates that the basis set used in
Ref. 16 was not saturated to the extent probed here, since
almost all interactions with �m���4 were neglected. Accord-
ing to Reimann et al. they used a maximum of 108 375
Slater determinants while we, through perturbation theory,
use a maximum of 980 366 Slater determinants. The differ-
ence of our max��m���=30 results and their CI results is thus
not unreasonable. Since Reimann et al. solved the full CI
problem, the matrix to diagonalize is huge and it is, accord-
ing to the authors, not feasible to use an even larger basis set.
An alternative could be to include more basis functions, but
restrict the excitations to single, doubles, and perhaps triples.
The domination of double excitations is well established in
atomic calculations, see, e.g., the discussion in Ref. 27. It
should, however, be noted that the difference between the
results concerns the fine details. Our converged results are
less than one percent lower than those of Reimann et al. and
when using approximately the same basis set as they did
�max��m���=4 the difference between the results is virtually
zero. Moreover, we see for the two strongest potentials the
same trend as we saw in the two electron case, namely that
the HF, MBPT, and CI results tend towards one another with
increasing potential strength. This trend is not seen for the
LSDA approach.

Finally, Fig. 4 shows, for the five weakest potentials, that
our HF results get increasingly spin contaminated when the
potential is weakened. Hereby the HF approximation artifi-
cially lowers its energy and subsequently this leads to an
overestimation of the second-order MBPT energies for these
potential strengths. Surprisingly, however, the energy is
never more than just above 2% over the CI results even when

�S2��2. Note also that MBPT improves the HF value of �S2�
as it should.

C. Correlation in an external magnetic field

The behavior of quantum dots in an external magnetic
field applied perpendicular to the dot has previously been
examined many times both experimentally, e.g., Refs. 7, 24,
and 28, and theoretically, e.g., Refs. 7, 18, and 29. The
chemical potentials ��N�=E�N�−E�N−1� plotted vs the
magnetic field usually show a rich structure, including, e.g.,
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FIG. 6. �Color online� The ground state addition energy spectra
for dots with ��=5 meV �a� and ��=7 meV �b�. The squares
�circles� represent the addition energy spectra according to HF
�second-order MBPT�. It is clear that the second-order MBPT spec-
tra imply closer resemblances to the experimental picture in
Tarucha �Ref. 7� than the HF spectrum.
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FIG. 7. �Color online� Ground state �a� and selected excited
state �b�–�e� addition energy spectra for ��=5 meV according to
second-order MBPT. The notation ��i=7

N ni , ��i=7
N m�

i � ,S� to label the
states is used. Note the big differences between the different spec-
tra. For example, the ground state spectrum �a� has peaks at N
=8,10 while spectrum �b� has a peak at N=8 and the rest have a
peak at N=9. That is, even if the spin is maximized at the half filled
shell �N=9� there is not always a peak there as seen in subfigure �a�
and �b�. Subfigure �e� resembles the experimental results of Ref. 3
best with dips at N=7 and 10 and a peak at N=9. Moreover, com-
bining the addition energies for N=6,7 ,8 of sequence �c� or �d�
with the addition energies for N=10,11,12 of sequence �e� would
give a spectrum that closely resembles the experimental situation in
Ref. 7 with dips at N=8 and 10 and a peak at N=9.
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state switching and occupation of the lowest Landau band at
high magnetic fields.

Figure 5 shows the chemical potentials for N=1,2 , . . . ,6
as functions of the magnetic field according to our HF
�dashed curves� and second-order MBPT with −10m�
10 �full curves� calculations for the potential strength ��
=5 meV. We have here limited ourselves to the first six
chemical potentials calculated at selected magnetic field
strengths �shown by the marks in the figure�. We emphasize
again that our intention here is rather to test the capability of
MBPT in the field of quantum dots than to provide a true
description of the whole experimental situation. With in-
creasing particle number MBPT naturally becomes more
cumbersome, but magnetic field calculations are feasible at
least up to N=20.

First note the significant difference between the HF and
second-order MBPT results. Once again correlation proves to
be extremely important in circular quantum dots. With our
correlated results we also note a close resemblance both to
the experimental work by Tarucha et al.7 and to the current
spin-density calculation by Steffens et al.,29 made with the
same potential and material parameters as used here. �Note
that Ref. 29 defines the chemical potentials as ��N�=E�N
+1�−E�N�, shifting all curves one unit in N. An example of
the importance of correlation is the four electron dot that
switches state from ��i=1

N ni , �ML� ,S�= �0,0 ,1� to �0,2,0� at ap-
proximately 1 T in the HF calculations and at approximately
0.2 T in the correlated calculations. We want to emphasize
that we have found the exact position of this switch to be
very sensitive to the potential strength and to the value of g*.
The big difference concerning the magnetic field where this
switch occurs can probably be attributed to the HF tendency
to strongly favor spin alignment. This is an effect originating
from the inclusion of full exchange, but no correlation. In-
clusion of second-order correlation energy cures this prob-
lem. Finally we note that the N=5 switch from �0,1 , 1

2 � to
�0,4 , 1

2 � in our correlated calculations takes place somewhere
around 1.2 T which is also in agreement with both men-
tioned studies.

IV. RESULTS

Addition energy spectra

The so-called addition energy spectra, with the addition
energy defined as ��N�=E�N+1�−2E�N�+E�N−1�, have
been widely used to illustrate the shell structure in quantum
dots. Main peaks at N=2, 6, 12, and 20, indicating closed
shells, and subpeaks at N=4, 9, and 16, due to maximized
spin at half filled shells, have been interpreted as the signa-
ture for truly circular quantum dots.30 Experimental devia-
tions from this behavior have been interpreted as being due
to nonparabolicities of the confining potential or due to 3D
effects.3 We here show that correlation effects in a true 2D
harmonic potential can in fact generate an addition energy
spectrum with similar deviations.

In this work we limit ourselves to the first three shells
since it seems that the experimental situation is such that the
validity of the 2D harmonic oscillator model becomes ques-
tionable with increasing particle number.3 Calculations of
dots with larger N could, however, readily be made with our
procedure. The addition energy spectra are produced with
−10m�10. The filling order for the first six electrons is
straightforward. When the seventh electron is added to the
dot the third shell starts to fill. With a pure circular harmonic
oscillator potential and no electron-electron interaction the
�0, ±2, ± 1

2 � and �1,0 , ± 1
2 � one particle states are completely

degenerate. This degeneracy is lifted by the electron-electron
interaction, but not more than that the energies have to be
studied in detail in order to determine the filling order. Simi-
lar conclusions, that the filling order is very sensitive to
small perturbations, have been drawn by Matagne et al.,3

who studied the influence of nonharmonic 3D effects. Our
focus is instead the detailed description of the electron-
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FIG. 8. �Color online� Ground state �a� and selected excited
state �b�–�e� addition energy spectra for ��=7 meV according to
second-order MBPT. The notation ��i=7

N ni , ��i=7
N m�

i � ,S� to label the
states is used. Note the big differences between the different spec-
tra. Note also that all spectra have peaks at N=9. Even though the
ground state spectra for N=7, 8, and 9 resemble the experimental
results of Ref. 7, the dip at N=11 is uncharacteristic when com-
pared with the experimental results of Refs. 7 and 3. Subfigure �b�
resembles the experimental result in Ref. 3 the most with a peak at
N=9 and dips at N=7 and 10 while subfigure �c� resembles the
experimental results of Ref. 7 the most with a peak at N=9 and dips
at N=8 and 10.
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electron interaction. For N=7–11 we have thus calculated all
third shell configurations, and for each configuration consid-
ered the maximum spin. The results are found in Table I. For
each number of electrons we can identify a ground state,
which sometimes differs between HF and MBPT. These
ground states are used when creating Figs. 6�a� and 6�b�. The
energy gap to the first excited state is sometimes very small
and the possibility of alternative filling orders will be dis-
cussed in the next section.

Figures 6�a� and 6�b� thus show the ground state addition
energy spectra up to N=12 according to the Hartree-Fock
model as well as to second-order MBPT for ��=5 and
7 meV. Note first the big difference between the HF and
MBPT spectra. These figures clearly illustrate how important
correlation effects are in these systems. Admittedly the HF
spectra show peaks at N=4, 6, 9, and 12 but the relative size
of the addition energy between closed and half filled shells is
not consistent with the experimental picture.3,7 The second-
order MBPT spectra have in contrast clear main peaks at N
=2, 6, and 12, indicating closed shells, and a N=4 subpeak
indicating maximized spin for the half filled shell. For the

��=7 meV spectrum the subpeak at N=9 is also clear but
for the ��=5 meV spectrum the subpeak at N=9 is substi-
tuted by subpeaks at N=8 and 10. The behavior of the addi-
tion energy spectra in this, the third shell, will be discussed
in detail below.

1. Filling of the third shell

The filling of the third shell has previously been examined
by Matagne et al.3 both experimentally and theoretically. In
their theoretical description they use a 3D DFT model with
the possibility to introduce a nonharmonic perturbation that
can change the ground states in the third shell and thereby
alter the addition energy spectra. They then compare their
theoretical description with different experimental addition
energy spectra and claim that they can thereby quantify the
deviation from circular symmetry in different experimental
setups. They conclude that a clear dip at N=7 followed by a
peak at N=8 or 9 is a signature of maximized spin at half
filled shell and that a dip at N=7 and the filling sequence

��
i=7

N

ni,��
i=7

N

m�
i�,S	 = �0,2, 1

2� ⇒ �0,0,1� ⇒ �1,0, 3
2� ⇒ �1,2,1� ⇒ �1,0, 1

2� ⇒ �2,0,0� �16�

for the six electrons to enter the third shell is a signature of a
“near ideal artificial atom.” This is also the filling sequence
we find using the HF approximation. As seen in Figs. 6�a�
and 6�b� there is then indeed also a dip at N=7 and a peak at
N=9. The dip at N=7 is further supported by the DFT cal-
culation by Reimann et al.30 In contrast the experiment by
Tarucha et al.7 did not show the N=7 dip. In Ref. 3 this is
explained by deviations from circular symmetry for the spe-
cific dot used in Ref. 7. As will be seen below our many-
body calculations give in several cases different ground
states and thus favor a different filling order than Eq. �16�.

Table I shows the ground state and excited states energies
of the third shell according to HF and second-order MBPT
for ��=5 meV and ��=7 meV. Notice that the different
methods yield different ground states for the 8, 10, and 11
electron systems although both potential strengths yield the
same ground states. Note also the small excitation gap be-
tween the correlated ground and first excited state that occurs
in some cases. For example, between the �0,2 , 1

2 � and
�1,0 , 1

2 � 7 electron states in the ��=5 meV dot the energy

difference is 0.07 meV, between the �0,0,1� and �0,4,0� 8
electron state in the ��=7 meV dot the energy difference is
0.12 meV and between the �1,0 , 1

2 � and �2,2 , 1
2 � 11 electron

states in the ��=7 meV dot the energy difference is only
0.04 meV. The �1,0 , 3

2
� state at N=9 seems, however, rela-

tively stable for both potential strengths with excitation gaps
of 0.41 and 0.54 meV. Surprisingly for both ��=5 and
7 meV the calculations including correlations indicate the
ground state third shell filling sequence

�0,2, 1
2� ⇒ �0,4,0� ⇒ �1,0, 3

2� ⇒ �0,0,0� ⇒ �2,2, 1
2� ⇒ �2,0,0�

�17�

for N=7–12. Note that this sequence implies a spin flip of
the electrons already in the dot when the ninth and tenth
electrons are added. Only the seven electron dot and the nine
electron dot here have the same ground state as in HF �whose
filling sequence coincides with that preferred in Ref. 3�. Mat-
agne et al. also discuss that the behavior of the dot examined
in Ref. 7 for small magnetic fields implies the sequence

�0,2, 1
2� ⇒ �0,4,0� ⇒ �1,2, 1

2� ⇒ �0,0,0� ⇒ �1,0, 1
2� ⇒ �2,0,0� , �18�

but tend to attribute this to deviations from circular shape.
This filling sequence is indeed much closer to the ground
states we have obtained with a perfect circular potential. This
indicates the possibility that many-body effects usually ne-

glected could have an effect similar to that of imperfections
in the dot construction. We note in passing that Sloggett and
Sushkov19 support our finding of a spin-zero ground state for
ten electrons, although their calculation was done with a
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stronger potential. The different configurations for nine elec-
trons in Eqs. �17� and �18� can be due to the fact that the
experimental situation favors population of an excited state
since population of the ground state would require a spin flip.
However, if we produce a spectrum with this filling se-
quence, we get a large dip at N=9. Similarly, when the 11
electron is injected, the population of our ground state would
require a configuration change of the electrons already in the
dot.

In Figs. 7 and 8 addition energy spectra are shown assum-
ing different filling orders for 5 and 7 meV, respectively. In
each figure the calculated ground state filling sequence is
shown in the uppermost panel, labeled �a�, and then the other
panels, �e� and �f�, show selected excited state filling se-
quences. Note that even though the same filling sequences
are used in Figs. 7 and 8 the addition energy spectra differ

between these rather close potential strengths. We can thus
conclude that a given filling sequence does not yield a
unique addition energy spectra since the relative energies of
the ground and excited states are very sensitive to the exact
form of the potential. Furthermore, we agree with Matagne
et al.3 that full spin alignment for the nine electron ground
state does not guarantee a peak in the addition energy spec-
trum as seen in Figs. 7�a� and 7�b�. Moreover, we see that the
spectra that resemble the experimental one in Fig. 3�a� of
Ref. 3 �a clear dip at N=7 and 10 and a clear peak at N=9�
are Figs. 7�e� and 8�b�. Finally we see that Fig. 8�c� re-
sembles the experimental situation in Ref. 7 �dips at N=8
and 10 with a peak at N=9� the most. We certainly do not
claim that these filling sequences are those really obtained in
the mentioned experiments. However, we want to stress that
great care must be taken when conclusions are drawn from

TABLE II. Expectation values of S2 for the cases where correlation switches ground states in the third shell. The state labeled “Ground
state” is the ground state according to second-order MBPT while the state labeled “Excited state” is the ground state according to Hartree-
Fock but an excited state according to second-order MBPT.

# e−

��=5 meV ��=7 meV

Ground state Excited state Ground state Excited state

E �meV� �S2� E�meV� �S2� E �meV� �S2� E �meV� �S2�

8 HF 212.33 0.00 210.69 2.70 272.20 0.00 270.66 2.30

2nd-ord MBPT 204.40 0.00 205.23 2.58 263.70 0.00 263.82 2.22

Exact 0 2 0 2

10 HF 310.64 0.00 309.27 2.21 397.20 0.00 395.72 2.08

2nd-ord MBPT 300.00 0.00 300.49 2.15 385.76 0.00 385.92 2.05

Exact 0 2 0 2

11 HF 364.49 0.77 363.72 0.99 465.57 0.758 464.77 0.82

2nd-ord MBPT 353.19 0.76 353.66 0.93 453.43 0.755 453.47 0.79

Exact 0.75 0.75 0.75 0.75
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FIG. 9. �Color online� �S2� ac-
cording to Hartree-Fock and
second-order MBPT calculations
as functions of the potential
strength for the seven electron
ground and excited state.

MANY-BODY PERTURBATION THEORY CALCULATIONS ON… PHYSICAL REVIEW B 76, 045314 �2007�

045314-11



comparisons between theoretical and experimental addition
energy spectra.

2. Spin contamination in the third shell

Figure 9 shows the expectation value of the total spin,
�S2�, according to Hartree-Fock and second-order MBPT cal-
culations as functions of the potential strength for the seven
electron ground and excited state. The figure depicts the
drastic onset of spin contamination for weak potentials.
While especially the correlated results, but also the HF re-
sults, converge towards the correct value for potentials
�10 meV the situation is worse for weaker potentials. We
see that for the ground state the examined confinement
strengths in this paper ���=5 or 7 meV� lie on the onset of
the spin density wave. It is hard to say how much this spin
contamination affects the energy values but when compared
with the conclusions drawn from Figs. 2 and 4, the energy
should not be overestimated with more than a couple of per-
cent due to spin contamination. For the excited state the spin
contamination is so small �for the 5- and 7-meV calcula-
tions� that it should not affect the conclusions from this
work. Moreover, we see that, as expected, correlation im-
proves the value of �S2�.

Table II presents the spin contamination for the systems in
the third shell where correlation switched the ground state,
namely the 8, 10, and 11 electron systems. We see that the
ground states, according to our correlated results, are not
spin contaminated to any relevant magnitude. All the excited
states are, however, spin contaminated. As shown in Fig. 4,

spin contamination can lower the HF energy and raise the
second-order MBPT energy. The ground state energy
switches could thus be an artifact of our starting point. En-
ergywise, however, the correlated energies should lie much
closer to the true values than the HF energies.

V. CONCLUSIONS

We have shown that the addition of second-order correla-
tion improves the Hartree-Fock description of two-
dimensional few-electron quantum dots significantly. Our re-
sults indicate that details in the addition energy spectra often
attributed to 3D effects or deviations from circular symmetry
are indeed sensitive to the detailed description of electron
correlation on more or less the same level. Without precise
knowledge of the many-body effects far reaching conclu-
sions about dot properties from the addition energy spectra
might not be correct.

As a next step we want to include pair correlation to
higher orders to be able to determine energies with quantita-
tive errors below 0.1 meV. We will then use several different
starting potentials to be able to address also weak confining
potentials where the Hartree-Fock starting point fails.
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