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Noise of a quantum dot system in the cotunneling regime

Eugene V. Sukhorukov, Guido Burkard, and Daniel Loss
Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

~Received 30 October 2000; published 7 March 2001!

We study the noise of the cotunneling current through one or several tunnel-coupled quantum dots in the
Coulomb blockade regime. The various regimes of weak and strong, elastic and inelastic cotunneling are
analyzed for quantum dot systems~QDS! with few-level, nearly degenerate, and continuous electronic spectra.
We find that in contrast to sequential tunneling, where the noise is either Poissonian~due to uncorrelated
tunneling events! or sub-Poissonian~suppressed by charge conservation on the QDS!, the noise in inelastic
cotunneling can be super-Poissonian due to switching between QDS states carrying currents of different
strengths. In the case of weak cotunneling we prove a nonequilibrium fluctuation-dissipation theorem, which
leads to a universal expression for the noise-to-current ratio~Fano factor!. In order to investigate strong
cotunneling we develop a microscopic theory of cotunneling based on the density-operator formalism and
using the projection operator technique. The master equation for the QDS and the expressions for current and
noise in cotunneling in terms of the stationary state of the QDS are derived and applied to QDS with a nearly
degenerate and continuous spectrum.

DOI: 10.1103/PhysRevB.63.125315 PACS number~s!: 73.23.Hk, 72.70.1m, 73.63.Kv
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I. INTRODUCTION

In recent years, there has been great interest in trans
properties of strongly interacting mesoscopic systems.1 As a
rule, the electron interaction effects become stronger with
reduction of the system size, since the interacting electr
have a smaller chance to avoid each other. Thus it is
surprising that an ultrasmall quantum dot connected to le
in the transport regime, being under additional control
metallic gates, provides a unique possibility to study stro
correlation effects both in the leads and in the dot itse2

This has led to a large number of publications on quant
dots, which investigate situations where the current acts
probe of correlation effects. Historically, the nonequilibriu
current fluctuations~shot noise! were initially considered as
a serious problem for device applications of quantum dots3–5

rather than as a fundamental physical phenomenon. Lat
became clear that shot noise is an interesting phenomen
itself,6 because it contains additional information about c
relations, which is not contained, e.g., in the linear-respo
conductance and can be used as a further approach to
transport in quantum dots, both theoretically4,5,7–22 and
experimentally.23

Similarly, the majority of papers on the noise of quantu
dots consider the sequential~single-electron! tunneling re-
gime, where a classical description~the so-called ‘‘ortho-
dox’’ theory! is applicable.24 We are not aware of any dis
cussion in the literature of the shot noise induced by
cotunneling~two-electron, or second-order! current,25,26 ex-
cept Ref. 21, where the particular case of weak cotunne
~see below! through a double-dot~DD! system is considered
Again, this might be because until very recently cotunnel
has been regarded as a minor contribution to the seque
tunneling current, which spoils the precision of sing
electron devices due to leakage.27 However, it is now well
understood that cotunneling is interesting in itself, since i
responsible for strongly correlated effects such as the Ko
0163-1829/2001/63~12!/125315~19!/$15.00 63 1253
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effect in quantum dots,28,29 or can be used as a probe
two-electron entanglement and nonlocality,21 etc.

In this paper we present a thorough analysis of the s
noise in the cotunneling regime. Since the single-elect
‘‘orthodox’’ theory cannot be applied to this case, we fir
develop a microscopic theory of cotunneling suitable for
calculation of the shot noise in Secs. III and IV.@For an
earlier microscopic theory of transport through quantum d
see Refs. 30–32.# We consider the transport through a qua
tum dot system~QDS! in the Coulomb blockade~CB! re-
gime, in which the quantization of charge on the QDS lea
to a suppression of the sequential tunneling current exc
under certain resonant conditions. We consider the trans
away from these resonances and study the next-order co
bution to the current, the so-called cotunneling current.25,26

In general, the QDS can contain several dots, which can
coupled by tunnel junctions, the double dot~DD! being a
particular example.21 The QDS is assumed to be weak
coupled to external metallic leads that are kept at equilibri
with their associated reservoirs at the chemical potentialsm l ,
l 51,2, where the currentsI l can be measured and the ave
age currentI through the QDS is defined by Eq.~2.7!.

Before proceeding with our analysis we briefly review t
results available in the literature on noise of sequential t
neling. For doing this, we introduce right from the beginni
all relevant physical parameters, namely the bath temp
ture T, bias Dm5m12m2, charging energyEC , average
level spacingdE, and the level widthG5G11G2 of the
QDS, where the tunneling ratesG l5pnuTl u2 to the leadsl
51,2 are expressed in terms of tunneling amplitudesTl and
the density-of-statesn evaluated at the Fermi energy of th
leads. In Fig. 1 the most important parameters are sho
schematically. This variety of parameters shows that m
different regimes of the CB are possible. In the linea
response regime,Dm!kBT, the thermal noise30 is given by
the equilibrium fluctuation-dissipation theorem~FDT!.31 Al-
though the crossover from the thermal to nonequilibriu
noise is of our interest~see Sec. III!, in this section we dis-
©2001 The American Physical Society15-1
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cuss the shot noise alone and setT50. Then the noise a
zero frequencyv50, whendI 252dI 1, can be character
ized by one single parameter, the dimensionless Fano fa
F5S(0)/euI u, where the spectral density of the noiseS(0)
[S22(0) is defined by Eq.~2.7!. The Fano factor acquire
the valueF51 for uncorrelated Poissonian noise.

Next we discuss the different CB regimes.~1! In the limit
of large biasDm@EC , when the CB is suppressed, the QD
can be viewed as being composed of two tunnel junction
series, with the total conductanceG5G1G2 /(G11G2),
where Gl5pe2nnDuTl u2 is the conductance of the tunn
junctions to leadl, andnD is the density of dot states. The
the Fano factor is given byF5(G1

21G2
2)/(G11G2)2, as it

has been found in Refs. 4, 5, and 7. Thus, the shot nois
suppressed,F,1, and reaches its minimum value for th
symmetric QDS,G15G2, whereF51/2. ~2! The low bias
regime,dE!Dm!EC . The first inequalitydE!Dm allows
to assume a continuous spectrum of the QDS and guaran
that the single-electron ‘‘orthodox’’ theory based on a cla
sical master equation can be applied. The second inequ
Dm!EC means that the QDS is in the CB regime, where
energy costD6( l ,N)5E(N61)2E(N)7m l for the electron
tunneling from the Fermi level of the leadl to the QDS
(1) and vice versa (2) oscillates as a function of gate vol
age between its minimum valueD6,0 ~where the energy
deficit turns into a gain,uD6u;Dm) and its maximum value
D6;EC . Here,E(N) denotes the ground-state energy of t
N-electron QDS. Thus the currentI as a function of the gate

FIG. 1. Schematic representation of the QDS coupled to
external leads 1 and 2~light gray! via tunneling barriers~dark
gray!, where the energy scale is drawn vertically. The tunnel
between the QDS and the leadsl 51,2 is parametrized by the tun
neling amplitudesTl , where the lead and QDS quantum numberk
andp have been dropped for simplicity, see Eq.~2.3!. The leads are
at the chemical potentialsm1,2, with an applied biasDm5m1

2m2. The ~many-particle! eigenstates of the QDS with one add
electron (N11 electrons in total! are indicated by their energie
E1 , E2, etc., with average level spacingdE. The energy cost for
adding a particle from the Fermi level of leadl to the N-electron
QDS is denoted byD1( l ,N).0 and is strictly positive in the CB
regime. Note that the energiesD2( l ,N) for removing particles from
the QDS containingN electrons are positive as well, and are n
drawn here. The cotunneling process is visualized by two arro
leading from the initial state in, say, lead 1~full circle!, via a virtual
state on the QDS~open circle!, to the final state in lead 2~full
circle!.
12531
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voltage consists of the CB peaks, which are at the deg
eracy pointsD6,0, where the number of electrons on th
QDS fluctuates betweenN and N11 due to single-electron
tunneling. The peaks are separated by plateaus, where
single-electron tunneling is blocked because of the finite
ergy costD6.0 and thus the sequential tunneling curre
vanishes. At the peaks the current is given byI
5eg1g2 /(g11g2), while the Fano factor has bee
reported5,7–10 to be equal toF5(g1

21g2
2)/(g11g2)2, 1/2

,F,1, where g15e22G1uD1(1,N)u and g2

5e22G2uD2(2,N11)u are the tunneling rates to the QD
from lead 1 and from the QDS to lead 2, respectively. With
the ‘‘orthodox’’ theory tunneling is still possible between th
peaks at finite temperature due to thermal activation p
cesses, and then the Fano factor approaches the Poiss
valueF51 from below.~3! Finally, the limitG!Dm!dE is
similar to the previous case, with the only difference that
dot spectrum is discrete. The sequential tunneling picture
still be applied; the result for the Fano factor at the curr
peak isF5(G1

21G2
2)/(G11G2)2, so that again 1/2,F,1.16

We would like to emphasize the striking similarity of th
Fano factors in all three regimes, where they also resem
the Fano factor of the noninteracting double-barrier syste6

The Fano factors in the first and second regimes beco
even equal if the ground-state level of the QDS lies exac
in the middle between the Fermi levels of lead 1 and
uD1u5uD2u. We believe that this ‘‘ubiquitous’’7 double-
barrier character of the Fano factor can be interpreted
being the result of the natural correlations imposed by cha
conservation rather than by interaction effects. Indeed, in
transport through a double-barrier tunnel junction each b
rier can be thought of as an independent source of Poisso
noise. And although in the second regime the CB is exp
itly taken into account, the stronger requirement of cha
conservation at zero frequency,dI 11dI 250, has to be sat-
isfied, which leads to additional correlations between the t
sources of noise and to a suppression of the noise below
Poissonian value. At finite frequency~but still in the classical
range defined asv!Dm,EC) temporary charge accumula
tion on the QDS is allowed, and for frequencies larger th
the tunneling rate,v@g1,2, the conservation of charge doe
not need to be satisfied, while the noise powerS22 ap-
proaches its Poissonian value from below, and the cross
relations vanish,S1250.32 Based on this observation we ex
pect that the direct measurement of interaction effects
noise is only possible either in the quantum~coherent! CB
regime16 Dm;G or in the Kondo regime,17–19 where both
charge conservation and many-electron effects lead to a
pression of the noise. Another example is the noise in
quantum regime,Dm<v;EC , where it contains singulari-
ties associated with the ‘‘photoassisted transitions’’ abo
the Coulomb gapD6 .20,21,33

To conclude our brief review we would like to emphasi
again that while the zero-frequency shot noise in the sequ
tial tunneling regime is always suppressed below its f
Poissonian value as a result of charge conservation~interac-
tions suppressing it further!, we find that, in the present wor
the shot noise in the cotunneling regime37 is either Poisso-
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NOISE OF A QUANTUM DOT SYSTEM IN THE . . . PHYSICAL REVIEW B 63 125315
nian F51 ~elastic or weak inelastic cotunneling! or, rather
surprisingly, non-PoissonianFÞ1 ~strong inelastic cotunnel
ing!. Therefore the non-Poissonian noise in QDS can be c
sidered as being a fingerprint of inelastic cotunneling. T
difference of course stems from the different physical ori
of the noise in the cotunneling regime, which we discu
next. Away from the sequential tunneling peaks,D6.0,
single-electron tunneling is blocked, and the only element
tunneling process, which is compatible with energy cons
vation is the simultaneous tunneling of two electrons cal
cotunneling.25,26 In this process one electron tunnels, sa
from lead 1 into the QDS, and the other electron tunn
from the QDS into lead 2 with a time delay on the order
D6

21 ~see Ref. 21!. This means that in the range of freque
cies,v!D6 , ~which we assume in our paper! the charge on
the QDS does not fluctuate, and thus in contrast to the
quential tunneling, the correlation imposed by charge con
vation is not relevant for cotunneling. Furthermore, in t
case of elastic cotunneling (Dm,dE), where the state of the
QDS remains unchanged, the QDS can be effectively
garded as a single barrier. Therefore, subsequent elasti
tunneling events are uncorrelated, and the noise is Poisso
with F51. On the other hand, this is not so for inelas
cotunneling(Dm.dE), where the internal state of the QD
is changed, thereby changing the conditions for the sub
quent cotunneling event. Thus, in this case the QDS switc
between different current states, and this creates a corre
to noiseDS, so that the total noise is non-Poissonian, a
can become super-Poissonian. The other mechanism un
lying super-Poissonian noise is the excitation of high-ene
levels ~heating! of the QDS caused by multiple inelastic c
tunneling transitions and leading to the additional no
DSh . Thus the total noise can be written asS5eI1DSh
1DS. For other cases exhibiting super-Poissonian noise~in
the strongly nonlinear bias regime! see Ref. 6.

According to this picture we consider the following di
ferent regimes of the inelastic cotunneling. We first disc
the weak cotunneling regime w!win , where w
;G1G2Dm/D6

2 is the average rate of the inelastic cotunn
ing transitions on the QDS@see Eqs.~4.23–4.26!#, andwin is
the intrinsic relaxation rate of the QDS to its equilibriu
state due to the coupling to the environment. In this regi
the cotunneling happens so rarely that the QDS always
laxes to its equilibrium state before the next electron pas
through it. Thus we expect no correlations between cotun
ing events in this regime, and the zero-frequency noise
going to take on its Poissonian value with Fano factorF
51, as first obtained for a special case in Ref. 21. This re
is generalized in Sec. III, where we find a universal relat
between noise and current of single-barrier tunnel juncti
and, more generally, of the QDS in the first nonvanish
order in the tunneling perturbationV. Because of the univer
sal character of the results, Eqs.~3.10! and ~3.21!, we call
them the nonequilibrium FDT in analogy with linea
response theory.

Next, we considerstrong cotunneling, i.e., w@win . The
microscopic theory of the transport and noise in this regi
based on a projector operator technique is developed in
12531
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IV. In the case of afew-levelQDS, dE;EC ,34 noise turns
out to be non-Poissonian, as we have discussed above
this effect can be estimated as follows. The QDS is switch
between states with the different currentsI;ew, and we find
dI;ew. The QDS stays in each state for the timet;w21.
Therefore, for the positive correction to the noise power
get DS;dI 2t;e2w, and the estimate for the correction
the Fano factor follows asDS/eI;1. A similar result is
expected for the noise induced by heating,DSh , which can
roughly be estimated by assuming an equilibrium distrib
tion on the QDS with the temperaturekBT;Dm and consid-
ering the additional noise as being thermal,30 DSh;GkBT
;(eI/Dm)kBT;eI. The characteristic frequency of th
noise correctionDS is v;w, with DS vanishing forv@w
~but still in the classical range,v!Dm). In contrast to this,
the additional noise due to heating,DSh , does not depend on
the frequency.

In Sec. V we consider the particular case of nearly deg
erate dot states, in which only few levels with an ener
distance smaller thandE participate in transport, and thu
heating on the QDS can be neglected. Specifically, fo
two-level QDS we predict giant~divergent! super-Poissonian
noise if the off-diagonal transition rates vanish. The QD
goes into an unstable mode where it switches between s
1 and 2 with~generally! different currents. We consider th
transport through a DD system as an example to illustr
this effect@see Eq.~5.12! and Fig. 3#.

Finally, we discuss the case of amulti-level QDS, dE
!EC . In this case the correlations in the cotunneling curr
described above do not play an essential role. In the reg
of low bias,Dm!(dEEC)1/2, elastic cotunneling dominate
transport,25,35 and thus the noise is Poissonian. In the opp
site case of large bias,D6@Dm@(dEEC)1/2, the transport is
governed by inelastic cotunneling, and in Sec. VI we stu
heating effects that are relevant in this regime. For this
use the results of Sec. IV and derive a kinetic equation
the distribution functionf («). We find three universal re
gimes whereI;Dm3, and the Fano factor does not depe
on bias theDm. The first is the regime of weak cotunnelin
t in!tc , wheret in andtc are time scales characterizing th
single-particle dynamics of the QDS. The energy relaxat
time t in describes the strength of the coupling to the en
ronment whiletc;enDDm/I is the cotunneling transition
time. Then we obtain for the distributionf («)5u(2«), re-
producing the result of Ref. 25. We also find thatF51, in
agreement with the FDT proven in Sec. III. The other tw
regimes of strong cotunnelingt in@tc are determined by the
electron-electron scattering timetee. For the cold-electron
regime,tc!tee, we find the distribution function by solving
the integral equations~6.11! and ~6.12!, while for hot elec-
trons,tc@tee, f is given by the Fermi distribution function
with an electron temperature obtained from the energy b
ance equation~6.15!. We usef («) to calculate the Fano fac
tor, which turns out to be very close to 1. On the other ha
the current depends not only onG1G2 but also on the ratio,
G1 /G2, depending on the cotunneling regime@see Fig. 4#.
Details of the calculations are deferred to four appendice
5-3
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II. MODEL SYSTEM

The quantum-dot system~QDS! under study is weakly
coupled to two external metallic leads that are kept in eq
librium with their associated reservoirs at the chemical
tentialsm l , l 51,2, where the currentsI l can be measured
Using a standard tunneling Hamiltonian approach,36 we write

H5H01V, H05HL1HS1H int , ~2.1!

HL5 (
l 51,2

(
k

«kclk
† clk , HS5(

p
«pdp

†dp , ~2.2!

V5 (
l 51,2

~Dl1Dl
†!, Dl5(

k,p
Tlkpclk

† dp , ~2.3!

where the termsHL and HS describe the leads and QDS
respectively~with k and p from a complete set of quantum
numbers!, and tunneling between leads and QDS is descri
by the perturbationV. The interaction termH int is specified
below. TheN-electron QDS is in the cotunneling regim
where there is a finite energy costD6( l ,N).0 for the elec-
tron tunneling from the Fermi level of the leadl to the QDS
(1) and vice versa (2), so that only processes of secon
order inV are allowed.

To describe the transport through the QDS we apply s
dard methods36 and adiabatically switch on the perturbatio
V in the distant past,t5t0→2`. The perturbed state of th
system is described by the time-dependent density ma
r(t)5exp@2 iH (t2t0)#r0 exp@ iH (t2t0)#, which can be
written as

r~ t !5exp@2 iL ~ t2t0!#r0 , LA[@H,A#, ;A, ~2.4!

with the help of the Liouville operatorL5L01LV .37 Here
r0 is the grand canonical density matrix of the unperturb
system,

r05Z21exp@2K/kBT#, ~2.5!

where we setK5H02( lm lNl .
Because of tunneling the total number of electrons in e

lead Nl5(kclk
† clk is no longer conserved. For the outgoin

currentsÎ l5eṄl we have

Î l5ei@V,Nl #5ei~Dl
†2Dl !. ~2.6!

The observables of interest are the average currentI[I 25
2I 1 through the QDS, and the spectral density of the no
Sll 8(v)5*dtSll 8(t)exp(ivt),

I l5Trr~0! Î l , Sll 8~ t !5Re Trr~0!dI l~ t !dI l 8~0!, ~2.7!

wheredI l5 Î l2I l . Below we will use the interaction repre
sentation where Eq.~2.7! can be rewritten by replacing
r(0)→r0 and Î l(t)→U†(t) Î l(t)U(t), with

U~ t !5TexpF2 i E
2`

t

dt8V~ t8!G . ~2.8!

In this representation, the time dependence of all operato
governed by the unperturbed HamiltonianH0.
12531
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III. NON-EQUILIBRIUM FLUCTUATION-DISSIPATION
THEOREM FOR TUNNEL JUNCTIONS

In this section we prove the universality of noise of tunn
junctions in the weak cotunneling regimew!win keeping
the first nonvanishing order in the tunneling HamiltonianV.
Since our final results Eqs.~3.10!, ~3.12!, ~3.13!, and~3.21!
can be applied to quite general systems out-of-equilibriu
we call this result the nonequilibrium FDT. In particular, th
geometry of the QDS and the interactionH int are completely
arbitrary for the discussion of the nonequilibrium FDT in th
section. Such a nonequilibrium FDT was derived for sing
barrier junctions long ago.38 We will need to briefly review
this case, which allows us then to generalize the FDT
QDS considered here in the most direct way.

A. Single-barrier junction

The total Hamiltonian of the junction@given by Eqs.
~2.1!–~2.3!# and the currents Eq.~2.6! have to be replaced by
H5HL1H int1V, where

V5A1A†, A5(
k,k8

Tkk8c2k
† c1k8 , ~3.1!

Î 252 Î 15ei@V,N2#5ei~A†2A!. ~3.2!

For the sake of generality, we do not specify the interact
H int in this section, nor the electron spectrum in the lea
and the geometry of our system.

Applying the standard interaction representati
technique,36 we expand the expression~2.8! for U(t) and
keep only first nonvanishing contributions inV, obtaining

I ~ t !5 i E
2`

t

dt8^@V~ t8!, Î 2~ t !#&, ~3.3!

where we use the notation^ . . . &5Trr0( . . . ). Analogously,
we find that the first nonvanishing contribution to the no
powerS(v)[S22(v) is given by

S~v!5
1

2E2`

`

dteivt^$ Î 2~ t !, Î 2~0!%&, ~3.4!

where$ . . . % stands for anticommutator, andI 2
250 in lead-

ing order.
We notice that in Eqs.~3.3! and~3.4! the termŝ AA& and

^A†A†& are responsible for Cooper pair tunneling and van
in the case of normal~interacting! leads. Taking this into
account and using Eqs.~3.1! and ~3.2! we obtain

I 5eE
2`

`

dt^@A†~ t !,A~0!#&, ~3.5!

S~v!5e2E
2`

`

dt cos~vt !^$A†~ t !,A~0!%&, ~3.6!
5-4
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NOISE OF A QUANTUM DOT SYSTEM IN THE . . . PHYSICAL REVIEW B 63 125315
where we also used̂A†(t)A(0)&5^A†(0)A(2t)&.
Next we apply the spectral decomposition to the corre

tors Eqs.~3.5! and ~3.6!, a similar procedure to that whic
also leads to the equilibrium fluctuation-dissipation theore
The crucial observation is that@H0 ,Nl #50, l 51,2 ~we
stress that it is only the tunneling HamiltonianV that does
not commute withNl , while all interactions do not chang
the number of electrons in the leads!. Therefore, we are al
lowed to use for our spectral decomposition the basisun&
5uEn ,N1 ,N2& of eigenstates of the operatorK5H0
2( lm lNl , which also diagonalizes the grand-canonical d
sity matrix r0 @given by Eq.~2.5!#, rn5^nur0un&5Z21exp
@2En /kBT#. Next we introduce the spectral function,

A~v!52p(
n,m

~rn1rm!u^muAun&u2d~v1En2Em!,

~3.7!

and rewrite Eqs.~3.5! and ~3.6! in the matrix form in the
basisun& taking into account that the operatorA creates~an-
nihilates! an electron in the lead 2~1! @see Eq.~3.1!#. We
obtain the following expressions

I ~Dm!5etanhF Dm

2kBTGA~Dm!, ~3.8!

S~v,Dm!5
e2

2 (
6

A~Dm6v!, ~3.9!

whereDm5m12m2. From these equations our main res
follows

S~v,Dm!5
e

2 (
6

cothFDm6v

2kBT G I ~Dm6v!, ~3.10!

where we have neglected contributions of ord
Dm/«F ,v/«F!1. We call the relation~3.10! nonequilibrium
fluctuation-dissipation theorem because of its general va
ity ~we recall that no assumptions on geometry or inter
tions were made!.

The fact that the spectral function Eq.~3.7! depends only
on one parameter can be used to obtain further useful r
tions. Suppose that in addition to the biasDm a small per-
turbation of the formdme2 ivt is applied to the junction. This
perturbation generates an ac currentdI (v,Dm)e2 ivt through
the barrier, which depends on both parameters,v and Dm.
The quantity of interest is the linear-response conducta
G(v,Dm)5edI (v,Dm)/dm. The perturbationdm can be
taken into account in a standard way by multiplying the tu
neling amplitudeA(t) by a phase factor exp@2 if(t)#, where
ḟ5dme2 ivt. Substituting the new amplitude into Eq.~3.3!
and expanding the current with respect todm, we arrive at
the following result,

ReG~v,Dm!5
ie2

v E
2`

`

dt sin~vt !^@A†~ t !,A~0!#&.

~3.11!

Finally, applying the spectral decomposition to this equat
we obtain
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~2/e!v ReG~v,Dm!5I ~Dm1v!2I ~Dm2v!,
~3.12!

which holds for a general nonlinearI vs Dm dependence.
From this equation and from Eq.~3.10! it follows that the
noise power at zero frequency can be expressed through
conductance at finite frequency as follows

S~0,Dm!1S~0,2Dm!52vcothF v

2kBTGReG~v,0!uv→Dm .

~3.13!

And for the noise power at zero bias we obtainS(v,0)
5vcoth(v/2kBT)ReG(v,0), which is the standard equilib
rium FDT.31 Equation~3.10! reproduces the result of Re
38. The current is not necessary linear inDm ~the case of
tunneling into a Luttinger liquid39 is an obvious example!,
and in the limit T,v→0 we find the Poissonian noise,S
5eI. In the limit T,Dm→0, the quantum noise become
S(v)5e@ I (v)2I (2v)#/2. If I (2Dm)52I (Dm), we get
S(v)5eI(v), and thusS(v) can be obtained fromI (Dm
→v).

B. Quantum dot system

We consider now tunneling through a QDS. In this ca
the problem is more complicated: In general, the two c
rentsÎ l are not independent, because@ Î 1 , Î 2#Þ0, and thus all
correlators Sll 8 are nontrivial. In particular, it has bee
proven in Ref. 21 that the cross correlations ImS12(v) are
sharply peaked at the frequenciesv5D6 , which is caused
by a virtual charge imbalance on the QDS during the cot
neling process. The charge accumulation on the QDS fo
time of orderD6

21 leads to an additional contribution to th
noise at finite frequencyv. Thus, we expect that forv
;D6 the correlatorsSll 8 cannot be expressed through th
steady-state currentI only and thusI has to be complemente
by some other dissipative counterparts, such as differen
conductancesGll 8 ~see Sec. III A!.

On the other hand, at low enough frequency,v!D6 , the
charge conservation on the QDS requiresdI s5(dI 2
1dI 1)/2'0. Below we concentrate on the limit of low fre
quency and neglect contributions of order ofv/D6 to the
noise power. In Appendix A we prove thatSss;(v/D6)2,
and this allows us to redefine the current and the noise po
as I[I d5(I 22I 1)/2 and S(v)[Sdd(v).40 In addition we
require that the QDS is in the cotunneling regime, i.e.,
temperature is low enough,kBT!D6 , although the biasDm
is arbitrary~i.e., it can be of the order of the energy cost! as
soon as the sequential tunneling to the dot is forbidden,D6

.0. In this limit the current through a QDS arises due to t
direct hopping of an electron from one lead to anoth
~through a virtual state on the dot! with an amplitude that
depends on the energy costD6 of a virtual state. Although
this process can change the state of the QDS, the fast en
relaxation in the weak cotunneling regime,w!win , imme-
diately returns it to the equilibrium state~for the opposite
case, see Secs. IV–VI!. This allows us to apply a perturba
tion expansion with respect to tunnelingV and to keep only
first nonvanishing contributions, which we do next.
5-5
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It is convenient to introduce the notationD̄ l(t)
[*2`

t dt8Dl(t8). We notice that all relevant matrix ele
ments, ^NuDl(t)uN11&;e2 iD1t, ^N21uDl(t)uN&;eiD2t,
are fast oscillating functions of time. Thus, under the abo
conditions we can writeD̄ l(`)50, and even more genera
*2`

1`dtDl(t)e
6 ivt50 ~note that we have assumed earlier th

v!D6). Using these equalities and the cyclic property
the trace we obtain the following result~for details of the
derivation, see Appendix A!,

I 5eE
2`

`

dt^@B†~ t !,B~0!#&, ~3.14!

B5D2D̄1
†1D1

†D̄2 . ~3.15!

Applying a similar procedure~see Appendix A!, we arrive at
the following expression for the noise powerS5S22, see Eq.
~2.7!,

S~v!5e2E
2`

`

dt cos~vt !^$B†~ t !,B~0!%&, ~3.16!

where we have dropped a small contribution of orderv/D6 .
Thus, we have arrived at Eqs.~3.14! and~3.16! which are

formally equivalent to Eqs.~3.5! and~3.6!. Similarly to A in
the single-barrier case, the operatorB plays the role of the
effective tunneling amplitude, which annihilates an electr
in lead 1 and creates it in lead 2. Similar to Eqs.~3.7!, ~3.8!,
and ~3.9! we can express the current and the noise powe

I ~Dm!5etanhF Dm

2kBTGB~Dm!, ~3.17!

S~v,Dm!5
e2

2 (
6

B~Dm6v!, ~3.18!

in terms of the spectral function

B~v!52p(
n,m

~rn1rm!u^muBun&u2d~v1En2Em!.

~3.19!

The difference, however, becomes obvious if we notice t
in contrast to the operatorA @see Eq.~3.1!# which is a prod-
uct of two fermionic Schro¨dinger operators with an equilib
rium spectrum, the operatorB contains an additional time
integration with the time evolution governed byH05K
1( lm lNl . Applying a further spectral decomposition to th
operatorB @given by Eq.~3.15!# we arrive at the expressio

i ^muBun&5(
n8

^muD2un8&^n8uD1
†un&

En82En2m1

1(
n9

^muD1
†un9&^n9uD2un&

En92En1m2

, ~3.20!

where the two sums overn8 andn9 on thelhs are different by
the order of tunneling sequence in the cotunneling proc
Thus we see that the current and the noise power depen
12531
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f
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both chemical potentialsm1,2 separately~in contrast to the
one-parameter dependence for a single-barrier junction,
Sec. III A!, and therefore the shift ofDm in Eq. ~3.18! by
6v will also shift the energy denominators of the matr
elements on thelhs of Eq. ~3.20!. However, since the energ
denominators are of orderD6 the last effect can be neglecte
and we arrive at the final result

S~v,Dm!5
e

2 (
6

cothFDm6v

2kBT G I ~Dm6v!1O~v/D6!.

~3.21!

This equation represents our nonequilibrium FDT for t
transport through a QDS in the weak cotunneling regime
special case withT,v50, giving S5eI, has been derived in
Ref. 21. To conclude this section we would like to list aga
the conditions used in the derivation. The universality
noise to current relation, Eq.~3.21!, proven here is valid in
the regime in which it is sufficient to keep the first nonva
ishing order in the tunnelingV, which contributes to trans
port and noise. This means that the QDS is in the we
cotunneling regime withv,kBT!D6 andwin@w.

IV. MICROSCOPIC THEORY OF STRONG
COTUNNELING

A. Formalism

In this section, we give a systematic microscopic deriv
tion of the master equation, Eq.~4.22!, the average current
Eq. ~4.37!, and the current correlators, Eqs.~4.52!–~4.54! for
the QDS coupled to leads, as introduced in Eqs.~2.1!–~2.3!,
in the strong cotunneling regime,win!w. Under this as-
sumption the intrinsic relaxation in the QDS is very slow a
will in fact be neglected. Thermal equilibration can only ta
place via coupling to the leads, see Sec. IV B. Due to t
slow relaxation in the QDS we find that there are no
Poissonian correlationsDS in the current through the QDS
because the QDS has a ‘‘memory’’; the state of the Q
after the transmission of one electron influences the tra
mission of the next electron. A basic assumption for the f
lowing procedure is that the system and bath are coup
only weakly and only via the perturbationV, Eq. ~2.3!. The
interaction partH int of the unperturbed HamiltonianH0, Eq.
~2.1!, must therefore be separable into a QDS and a lead p
H int5HS

int1HL
int . Moreover, H0 conserves the number o

electrons in the leads,@H0 ,Nl #50, whereNl5(kclk
† clk .

We assume that in the distant past,t0→2`, the system is
in an equilibrium state

r05rS^ rL , rL5
1

ZL
exp@2KL /kBT#, ~4.1!

whereZL5Tr exp@2KL /kBT#, KL5HL2( lm lNl , and m l is
the chemical potential of leadl. Note that both leads are kep
at the same temperatureT. Physically, the product form ofr0
in Eq. ~4.1! describes the absence of correlations between
QDS and the leads in the initial state att0. Furthermore, we
assume that the initial stater0 is diagonal in the eigenbasi
5-6
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of H0, i.e. that the initial state is an incoherent mixture
eigenstates of the free Hamiltonian.

In systems that can be divided into a~small! system~like
the QDS! and a~possibly large! external ‘‘bath’’ at thermal
equilibrium ~here, the leads coupled to the QDS! it turns out
to be very useful to make use of the superopera
formalism,37,41,42 and of projectors PT5rLTrL , which
project on the ‘‘relevant’’ part of the density matrix.43 We
obtain PTr by taking the partial trace TrL of r with respect
to the leads and taking the tensor product of the resul
reduced density matrix with the equilibrium staterL . Here,
we will consider the projection operators

P5~PDPN^ 1L!PT , Q512P, ~4.2!

satisfying P25P, Q25Q, and PQ5QP50, where P is
composed ofPT and two other projectors46 PD and PN ,
where PD projects on operators diagonal in the eigenba
$un&% of HS , i.e., ^nuPDAum&5dnm^nuAum&, and PN
projects on the subspace withN particles in the QDS. The
particle numberN is defined by having minimal energy i
equilibrium ~with no applied bias!; all other particle numbers
have energies larger by at least the energy deficit37 D. The
above assumptions about the initial state Eq.~4.1! of the
system att0→2` can now be rewritten as

Pr05r0 . ~4.3!

For the purpose of deriving the master equation we t
the Laplace transform of the time-dependent density ma
Eq. ~2.4!, with the result

r~z!5R~z!r0 . ~4.4!

Here,R(z) is the resolvent of the Liouville operatorL, i.e.,
the Laplace transform of the propagator exp(2itL),

R~z!5E
0

`

dt exp@ i t ~z2L !#5 i ~z2L !21[
i

z2L
,

~4.5!

wherez5v1 ih. We chooseh.0 in order to ensure con
vergence (L has real eigenvalues! and at the end of the cal
culation take the limith→0. We can split the resolvent int
four parts by multiplying it with the unity operatorP1Q
from the left and the right,

R5PRP1QRQ1PRQ1QRP. ~4.6!

Inserting the identity operator2 i (z2L)R(z)52 i (z2L)
3(P1Q)R(z) between the two factors on the left-hand si
of QP50, PQ50, Q25Q, andP25P, we obtain

QR~z!P5Q
1

z2QLQ
QLVPR~z!P, ~4.7!

PR~z!Q52 iPR0~z!PLVQR~z!Q, ~4.8!

QR~z!Q5Q
i

z2QLQ1 iQLVPR0~z!PLVQ
Q, ~4.9!
12531
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PR~z!P5P
i

z2S~z!
P, ~4.10!

where we define theself-energysuperoperator

S~z!5PLVQ
1

z2QLQ
QLVP, ~4.11!

and the free resolventR0(z)5 i (z2L0)21. Here, we have
used the identities

TrL~clkrL!5TrL~clk
† rL!50, ~4.12!

PTLVPT5PTÎ l PT50, ~4.13!

@P,L0#5@Q,L0#50, ~4.14!

L0P5PL050. ~4.15!

Equation ~4.13! follows from Eq. ~4.12!, while Eq. ~4.14!
holds becauseH0 neither mixes the QDS with the leads n
does it change the diagonal elements or the particle num
of a state. Finally, Eq.~4.15! can be shown with Eq.~4.14!
and using thatP containsPD .

For an expansion in the small perturbationLV in Eqs.
~4.7!, ~4.9!, and~4.11! we use the von Neumann series

1

z2QLQ
Q5

1

z2L02QLVQ
Q

52 iR0~z!Q(
n50

`

@2 iL VR0~z!Q#n.

~4.16!

B. Master equation

Using Eqs.~4.3!, ~4.4!, and~4.10! the diagonal part of the
reduced density matrixrS(z)5PDPNTrLr(z) can now be
written as

rS~z!5TrLPR~z!Pr05
i

z2S~z!
rS . ~4.17!

This equation leads to ṙS(z)52 izrS(z)2rS5
2 iS(z)rS(z). The probabilityrn(z)5^nurS(z)un& for the
QDS being in stateun& then obeys the equation

ṙn~z!5(
m

Wnm~z!rm~z!, ~4.18!

Wnm~z!52 iTrSpnS~z!pm52 iSnnumm~z!, ~4.19!

with pn5un&^nu which is a closed equation for the densi
matrix in the subspace defined byP ~with fixed N!. In the
cotunneling regime,37 the sequential tunneling contributio
~second order inLV) to Eq. ~4.19! vanishes. The leading
contribution@using Eqs.~4.11! and~4.16!# is of fourth order
in LV ,

Wnm5Tr pn~LVQR0!3LVpmrL . ~4.20!
5-7
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Note that since we study the regime of small frequenc
Rez5v!uuL0Quu'uEn2Emu, wheremÞn, we can take the
limit v→0 here. In addition to this, we have assumed f
relaxation in the leads and have taken the Markovian li
z5 ih→0, i.e., we have replacedWnm(z) in Eq. ~4.19! by
Wnm[ limz→0Wnm(z) in Eq. ~4.20!. The trace ofr is pre-
served under the time evolution Eq.~4.18! since(nWnm has
the form TrPNLVA5Tr @V,A#2TrQN@V,A# where the first
term vanishes exactly and the second term involvingQN
512PN is O(k). After some calculation, we find thatWnm
is of the form

Wnm5wnm2dnm(
m8

wm8n , ~4.21!

with wnm.0 for all n andm. Substituting this equation into
Eq. ~4.18! we can rewrite the master equation in t
manifestly trace-preserving formṙn(z)5(m@wnmrm(z)
2wmnrn(z)#, or in real time,

ṙn~ t !5(
m

@wnmrm~ t !2wmnrn~ t !#. ~4.22!

This ‘‘classical’’ master equation describes the dynamics
the QDS, i.e., it describes the rates with which the probab
ties rn for the QDS being in stateun&, change. After some
algebra~retaining only47 O(k0), cf. Appendix B!, we find

wnm5wnm
1 1wnm

2 1wnm
0 , ~4.23!

where~in the cotunneling regime!

wnm
1 5wnm~2,1!, wnm

2 5wnm~1,2!, ~4.24!

wnm
0 5 (

l 51,2
wnm~ l ,l !, ~4.25!

with the ‘‘golden rule’’ rate from leadl to leadl 8,

wnm~ l 8,l !52p(
m̄,n̄

u^nu~Dl
† ,Dl 8!um&u2

3d~Em2En2Dm l l 8!rL,m̄ . ~4.26!

In this expression,Dm l l 85m l2m l 8 denotes the chemical po
tential drop between leadl and lead l 8, and rL,m̄

5^m̄urLum̄&. We have defined the second-order hopping
erator

~Dl
† ,Dl 8!5Dl

†R0Dl 81Dl 8R0Dl
†52~Dl

†D̄ l 81Dl 8D̄ l
†!,
~4.27!

whereDl is given in Eq.~2.3!, D̄ l5*2`
0 Dl(t)dt. Note, that

(Dl
† ,Dl 8) is the amplitude of cotunneling from the leadl to

the leadl 8 ~in particular, we can writeB52(D1
† ,D2), see

Eq. ~3.15!!. The combined indexm5(m,m̄) contains both
the QDS indexm and the lead indexm̄. Correspondingly, the
basis states used above areum&5um&um̄& with energyEm
5Em1Em̄ , where um& is an eigenstate ofHS1HS

int with

energyEm , and um̄& is an eigenstate ofHL1HL
int2( lm lNl
12531
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with energyEm̄ . The termswnm
6 account for the change o

state in the QDS due to a current going from lead 1 to 2~2 to
1!. In contrast to this, the cotunneling ratewnm

0 involves ei-
ther lead 1 or lead 2 and, thus, it does not contribute dire
to transport. However,wnm

0 contributes to thermal equilibra
tion of the QDS via particle-hole excitations in the lea
and/or QDS~see Secs. VI A and VI B!.

C. Stationary state

In order to make use of the standard Laplace transform
finding the stationary stater̄ of the system, we shift the
initial state to t050 and define the stationary state asr̄
5 limt→`r(t)5 limt→`e2 iLtr0. This can be expressed i
terms of the resolvent,

r̄52 i lim
z→0

zR~z!r0 , ~4.28!

using the property limt→` f (t)52 i limz→0z f(z) of the
Laplace transform. The stationary stater̄S of the QDS can be
obtained in the same way from Eq.~4.17!,

r̄S5 lim
z→0

z

z2S~z!
rS . ~4.29!

Multiplying both sides withz2S(z) and taking the limitz
→0, we obtain the condition

S0r̄S50, ~4.30!

whereS05 limz→0S(z). Using Eq.~4.19!, this condition for
the stationary state can also be expressed in terms ofWnm ,

(
m

Wnmr̄m5(
m

~wnmr̄m2wmnr̄n!50, ~4.31!

which is obviously the stationarity condition for the mast
equation, Eq.~4.22!.

D. Average current

The expectation valueI l(t)5Tr Î lr(t) of the currentÎ l in
lead l @Eq. ~2.7!# can be obtained via its Laplace transform

I l~z!5Tr Î lr~z!5Tr Î l~P1Q!R~z!Pr0 , ~4.32!

where we have insertedP1Q51 and used Eqs.~4.3! and
~4.4! for r(z). According to Eq.~4.13! the first term van-
ishes. The second term can be rewritten using Eqs.~4.7! and
~4.17!, with the result

I l~z!5Tr Î lQ
1

z2QLQ
QLVrS~z!rL5TrS WI~z!rS~z!

5(
nm

Wnm
I ~z!rm~z!. ~4.33!

Using the projector method, we have thus managed to
press the expectation value of the current~acting on both the
QDS and the leads! in terms of the linear superoperatorWI
5-8
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which acts on thereducedQDS density matrixrS only. Tak-
ing z→0 in Eq. ~4.33!, the average current in leadl in the
stationary limit becomes

I l5 lim
z→0

Tr Î lQ
1

z2QLQ
QLVr̄SrL . ~4.34!

Up to now this is exact, but next we use again the pertur
tion expansion Eq.~4.16!. In the cotunneling regime,37,47i.e.,
away from resonances, the second-order tunneling curre

I l
(2)52 iTr Î lR0LVr̄SrL ~4.35!

is negligible@O(k)#, and the leading contribution is the co
tunneling current

I l
(4)5 iTr Î l~QR0LV!3r̄SrL . ~4.36!

After further calculation we find in leading order~cf. Appen-
dix B!

I 252I 15e(
mn

wnm
I r̄m , ~4.37!

wnm
I 5wnm

1 2wnm
2 , ~4.38!

wherewnm
6 are defined in Eq.~4.24!. Note again thatwnm

0 in
Eq. ~4.25! does not contribute to the current directly, b
indirectly via the Master equation Eq.~4.31!, which deter-
minesr̄m ~note thatr̄m is nonperturbative inV). We finally
remark that for Eqs.~4.34!–~4.37! we do not invoke the Mar-
kovian approximation.

E. Current correlators

Now we study the current correlators in the stationa
limit. We let t0→2`, thereforer(t50)→ r̄. The symme-
trized current correlator@cf. Eq. ~2.7!#,

Sll 8~ t !5Re TrdI l~ t !dI l 8r̄, ~4.39!

wheredI l5 Î l2I l , can be rewritten using the cyclic proper
of the trace as

Sll 8~ t !5Re TrdI le
2 i tLdI l 8r̄, ~4.40!

where e2 i tL acts on everything to its right. Taking th
Laplace transform and using Eq.~4.28! for the stationary
stater̄, we obtain

Sll 8~z!5 lim
z8→0

Re~2 iz8!Tr dI lR~z!dI l 8R~z8!Pr0 ,

~4.41!

where z5v1 ih and h→01. We insert P1Q51 twice
and use Eq.~4.12! with the result

Sll 8~z!5Sll 8
P

~z!1Sll 8
Q

2~ i /z!I l I l 8 , ~4.42!

where Sll 8
Q

5Sll 8
QQ

1Sll 8
QP . We further evaluate the contribu

tions toSll 8(z) using Eqs.~4.7! and ~4.29!, and we obtain
12531
a-

y

Sll 8
P

~z!5Re TrÎ lRQLVPR~z!PÎl 8RQLVr̄, ~4.43!

whereRQ5 limz→0(z2QLQ)21, and

Sll 8
QQ

52Re TrÎ lR0LVQR0Î l 8R0LVr̄

2Re TrÎ lR0Î l 8QR0LVR0LVr̄, ~4.44!

Sll 8
QP

52Re TrÎ lR0LVQR0LVR0Î l 8r̄. ~4.45!

While Sll 8
P (z) as given in Eq.~4.43! is a nonperturbative

result, we have used Eq.~4.16! to find the leading contribu-
tion in the tunneling amplitudeTlkp for Sll 8

QQ andSll 8
QP in Eqs.

~4.44! and ~4.45!. Also note thatQR(z)Q was replaced by
QR0Q in Eqs. ~4.44! and ~4.45!, sincev!uEn2Emu for n
Þm and thereforeSll 8

QQ andSll 8
QP do not depend onz, i.e., they

do not depend on the frequencyv.
In order to analyze Eq.~4.43! further, we insert the reso

lution of unity (mpm51S next to theP operators in Eq.
~4.43! with the resultS11

P 5S22
P 52S12

P 52S21
P where

S11
P 5DS1~ i /z!I 1

2 , ~4.46!

with the non-Poissonian part

DS~z!5e2 (
n,m,n8,m8

wnm
I drmn8~z!wn8m8

I r̄m8 . ~4.47!

The conditional density matrix is defined as

drnm~z!5rnm~z!2~ i /z!r̄n , ~4.48!

rnm~z!5Tr pnR~z!pmrL . ~4.49!

Equation~4.17! shows thatrnm(z) must be a solution of the
master equation Eq.~4.22! for the initial conditionrS(0)
5pm , or rn(0)5dnm . We now turn to the remaining con
tribution Sll 8

Q to Sll 8(z) in Eq. ~4.42!. The Fourier transform
Sll 8

FT(v) of the noise spectrum can be obtained from
Laplace transformSll 8

LT(z) by symmetrizing the latter,

Sll 8
FT

~v!5Sll 8
LT

~v!1Sl 8 l
LT

~2v!. ~4.50!

We find S11
Q 5S22

Q 52S12
Q 52S21

Q [SQ, where

SQ5e2(
mn

~wnm
1 1wnm

2 !r̄m . ~4.51!

Finally, we can combine Eqs.~4.47! and ~4.51!, using Eq.
~4.42! and we obtain the final result for the current corre
tors,

S11~v!5S22~v!52S12~v!52S21~v![S~v!,
~4.52!

S~v!5e2(
mn

~wnm
1 1wnm

2 !r̄m1DS~v!, ~4.53!

DS~v!5e2 (
n,m,n8,m8

wnm
I drmn8~v!wn8m8

I r̄m8 , ~4.54!
5-9
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wheredrnm(v)5rnm(v)22pd(v) r̄n . Here,rnm(v) is the
Fourier-transformed conditional density matrix, which is o
tained from thesymmetrizedsolution rn(t)5rn(2t) of the
master equation, Eq.~4.22!, with the initial conditionrn(0)
5dnm . Note thatrnm(v) is related to the Laplace transform
Eq. ~4.49! via the relationrnm(v)5rnm

LT(v)1rnm
LT(2v).

For a few-level QDS,dE;EC , with inelastic cotunneling
the noise will be non-Poissonian, since the QDS is switch
between states with different currents. An explicit result
the noise in this case can be obtained by making furt
assumptions about the QDS and the coupling to the le
and then evaluating Eq.~4.54!, see the following sections
For the general case, we only estimateDS. The current is of
the orderI;ew, with w some typical value of the cotunne
ing ratewnm , and thusdI;ew. The time between switching
from one dot state to another due to cotunneling is appr
mately t;w21. The correctionDS to the Poissonian nois
can be estimated asDS;dI 2t;e2w, which is of the same
order as the Poissonian contributioneI;e2w. Thus the cor-
rection to the Fano factor is of order unity. In contrast to th
we find that for elastic cotunneling the off-diagonal rat
vanish, wnm}dnm , and thereforedrnn50 and DS50.
Moreover, at zero temperature, eitherwnn

1 or wnn
2 must be

zero ~depending on the sign of the biasDm). As a conse-
quence, for elastic cotunneling we find Poissonian noisF
5S(0)/euI u51.

In summary, we have derived the master equation,
~4.22!, the stationary state Eq.~4.29! of the QDS, the average
current, Eq.~4.37!, and the current correlators, Eqs.~4.52!–
~4.54! for the QDS system coupled to leads in the cotunn
ing regime under the following assumptions.~1! strong co-
tunneling regime,win!w, i.e., negligible intrinsic relaxation
in the QDS compared to the cotunneling rate,~2! the weak
perturbationV is the only coupling between the QDS and t
leads, in particularH int5HS

int1HL
int , whereHS

int acts on the
QDS andHL

int on the leads only,~3! no quantum correlations
~either between the QDS and the leads or within the QDS
the leads! in the initial state,r05Pr0; ~4! no degeneracy in
the QDS,EnÞEm for nÞm, and ~5! small frequencies,v
!uEm2Enu. For the master equation Eq.~4.22! ~but not for
the other results! we have additionally used the Markovia
approximation, assuming fast relaxation in the leads co
pared to the tunneling rate.

V. COTUNNELING THROUGH NEARLY DEGENERATE
STATES

Suppose the QDS has nearly degenerate states with
gies En , and level spacingDnm5En2Em , which is much
smaller than the average level spacingdE. In the regime,
Dm,kBT,Dnm!dE, the only allowed cotunneling process
are the transitions between nearly degenerate states.
noise power is given by Eqs.~4.53! and~4.54!, and below we
calculate the correlation correction to the noiseDS. To pro-
ceed with our calculation we rewrite Eq.~4.22! for dr(t)
@see Eq.~4.48!# as a second-order differential equation
matrix form

dr̈~ t !5W2dr~ t !, dr~0!512 r̄, ~5.1!
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whereW is defined in Eq.~4.21!. We solve this equation by
Fourier transformation,

dr~v!52
2W

W21v21
, ~5.2!

where we have usedWr̄50. We substitutedr from this
equation into Eq.~4.54! and write the result in a compac
matrix form,

DS~v!52e2(
n,m

FwI
2W

W21v21
wI r̄G

nm

. ~5.3!

This equation gives the formal solution of the noise probl
for nearly degenerate states. As an example we consid
two-level system.

Using the detailed balance equation,w21r15w12r2, we
obtain for the stationary probabilitiesr15w12/(w121w21)
andr25w21/(w121w21). From Eq.~4.37! we get

I 5e
w12~w11

I 1w21
I !1w21~w22

I 1w12
I !

w121w21
. ~5.4!

A straightforward calculation with the help of Eq.~5.2! gives
for the correction to the Poissonian noise

DS~v!5
2e2~w11

I 1w21
I 2w22

I 2w12
I !

~w121w21!@v21~w121w21!
2#

3@w11
I w12w211w12

I w21
2 2~1↔2!#. ~5.5!

In particular, the zero-frequency noiseDS(0) diverges if the
‘‘off-diagonal’’ rates wnm vanish. This divergence has to b
cut atv, or at the relaxation ratewin due to coupling to the
bath ~since w12 in this case has to be replaced withw12
1win). The physical origin of the divergence is rather tran
parent: If the off-diagonal ratesw12,w21 are small, the QDS
goes into an unstable state where it switches between sta
and 2 with different currents in general.44 The longer the
QDS stays in the state 1 or 2 the larger the zero-freque
noise power is. However, ifw11

I 1w21
I 5w22

I 1w12
I , then

DS(v) is suppressed to 0. For instance, for the QDS in
spin-degenerate state with an odd number of electr
DS(v)50, since the two statesu↑& and u↓& are physically
equivalent. The other example of such a suppression of
correlation correctionDS to noise is given by a multileve
QDS,dE!EC , where the off-diagonal rates are small com
pared to the diagonal~elastic! rates.25 Indeed, since the main
contribution to the elastic rates comes from transitio
through many virtual states, which do not participate in
elastic cotunneling, they do not depend on the initial con
tions, w11

I 5w22
I , and cancel in the numerator of Eq.~5.5!,

while they are still present in the current. Thus the correct
DS/I vanishes in this case. Later, in this section, we consi
a few-level QDS,dE;EC , whereDSÞ0.

To simplify further analysis we consider for a moment t
case, where the singularity in the noise is most pronounc
namely,v50 and uD12u!Dm,kBT, so thatw12

I 5w21
I , and

w125w21. Then, from Eqs.~5.4! and ~5.5! we obtain
5-10
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I 5
1

2
~ I 11I 2!, I n5e (

m51,2
wmn

I , ~5.6!

DS~0!5
~ I 12I 2!2

4w12
, ~5.7!

where I n is the current through thenth level of the QDS.
Thus in caseuD12u!Dm,kBT the following regimes have to
be distinguished:~1! If kBT&Dm, then I n}Dm, w12}Dm,
and thus both, the total currentI 5e21GDDm, and the total
noiseS5FGDDm are linear in the biasDm ~hereGD is the
conductance of the QDS!. The total shot noise in this regim
is super-Poissonian with the Fano factorF;I /(ew12)@1.
~2! In the regimeDm&kBT&F1/2Dm the noise correction
~5.7! arises because of the thermal switching the QDS
tween two statesn51,2, where the currents are linear in th
bias, I n;GDDm/e. The rate of switching isw12}kBT, and
thus DS;FGDDm2/(kBT). SincekBT/Dm&F1/2, the noise
correctionDS is the dominant contribution to the noise, an
thus the total noiseS can be interpreted as being a therm
telegraph noise.45 ~3! Finally, in the regimeF1/2Dm&kBT,
the first term on the right-hand side of Eq.~4.53! is the domi-
nant contribution, and the total noise becomes an equilibr
Nyquist noise,S52GDkBT.

We notice that for the noise power to be divergent
off-diagonal ratesw12 and w21 have to vanish simulta
neously. However, the matrixwnm is not symmetric since the
off-diagonal rates depend on the bias in a different way.
the other hand, both rates contain the same matrix eleme
the cotunneling amplitude (Dl

† ,Dl 8), see Eqs.~4.26! and
~4.27!. Although in general this matrix element is not sma
it can vanish because of different symmetries of the t
states. To illustrate this effect we consider the transp
through a DD system~see Ref. 21 for details! as an example
Two leads are equally coupled to two dots in such a way
a closed loop is formed, and the dots are also connected
Fig. 2. Thus, in a magnetic field the tunneling is described
the Hamiltonian Eq.~2.3! with

Dl5(
s, j

Tl j cls
† djs , l , j 51,2, ~5.8!

T115T225T12* 5T21* 5eif/4T, ~5.9!

where the last equation expresses the equal coupling of
and leads andf is the Aharonov-Bohm phase. Each d
contains one electron, and weak tunnelingtd between the
dots causes the exchange splitting46 J;td

2/U ~with U being
the on-site repulsion! between one spin singlet and three tri
lets

uS&5
1

A2
@d1↑

† d2↓
† 2d1↓

† d2↑
† #u0&,

uT0&5
1

A2
@d1↑

† d2↓
† 1d1↓

† d2↑
† #u0&, ~5.10!

uT1&5d1↑
† d2↑

† u0&, uT2&5d1↓
† d2↓

† u0&.
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In the case of zero magnetic field,f50, the tunneling
HamiltonianV is symmetric with respect to the exchange
electrons, 1↔2. Thus the matrix element of the cotunnelin
transition between the singlet and three triplets^SuV(E
2H0)21VuTi&, i 50,6, vanishes because these states h
different orbital symmetries. A weak magnetic field brea
the symmetry, contributes to the off-diagonal rates, a
thereby reduces noise.

The fact that in the perturbationV all spin indices are
traced out helps us to map the four-level system to only t
statesuS& and uT& classified according to the orbital symm
try ~since all triplets are antisymmetric in orbital space!. In
Appendix C we derive the mapping to a two-level syste
and calculate the transition rateswnm

1 andwnm
0 (n,m51 for a

singlet andn,m52 for all triplets! using Eqs.~4.26! and
~4.27! with the operatorsDl given by Eq.~5.8!. Doing this
we obtain the following result

wnm
0 50,

wnm
1 5

p

2 S nT 2

D2
D 2

3H ~11cosf!Dm ~12cosf!~Dm1J!

3~12cosf!~Dm2J! 3~11cosf!Dm J ,

~5.11!

which holds close to the sequential tunneling peak,D2

!D1;U ~but still D2@J,Dm), and forDm.J. We substi-
tute this equation into the Eq.~5.5! and write the correction
DS(v) to the Poissonian noise as a function of normaliz
bias v5Dm/J and normalized frequencyV5ev/@G(2Dm
2J)#

DS~v!56eGJ
~v221!@11~v21!cosf#2~12cosf!

~2v21!3@V21~12cosf!2#
,

~5.12!

whereG5pe(nT 2/D2)2 is the conductance of a single do
in the cotunneling regime.47 From Eq.~5.12! it follows that
the noise power has singularities as a function ofv for zero
magnetic field, and it has singularities atf52pm ~wherem
is integer! as a function of the magnetic field~see Fig. 3!. We
would like to emphasize that the noise is singular even if
exchange between the dots is weak,J!Dm. Note however,
that our classical approach, which neglects the off-diago
elements of the density matrixr(t), can only be applied for
weak enough tunneling,wnm!J. In the caseDm,J, the
transition from the singlet to the triplet is forbidden by co
servation of energy,w21

1 50, and we immediately obtain
from Eq. ~5.5! thatDS(v)50, i.e., the total noise is Poisso
nian ~as it is always the case for elastic cotunneling!. In the
case of large bias,Dm@J, two dots contribute independentl
to the currentI 52e21GDm, and from Eq.~5.12! we obtain
the Fano factor

F511
3

8

cos2f~12cosf!

V21~12cosf!2
, Dm@J. ~5.13!
5-11
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This Fano factor controls the transition to the telegraph no
and then to the equilibrium noise at high temperature,
described above. We notice that if the coupling of the dot
the leads is not equal, thenwnm

0 Þ0 serves as a cutoff of th
singularity inDS(v).

Finally, we remark that the Fano factor is a periodic fun
tion of the phasef ~see Fig. 3!; this is nothing but an
Aharonov-Bohm effect in the noise of the cotunneling tra
port through the DD. However, in contrast to the Aharono
Bohm effect in the cotunneling current through the D
which has been discussed earlier in Ref. 21, the noise e
does not allow us to probe the ground state of the DD, si
the DD is already in a mixture of the singlet and three trip
states.

VI. COTUNNELING THROUGH CONTINUUM OF
SINGLE-ELECTRON STATES

We consider now the transport through a multilevel QD
with dE!EC . In the low bias regime,Dm!(dEEC)1/2, the
elastic cotunneling dominates transport,25 and according to
the results of Secs. IV and V the noise is Poissonian. H
we consider the opposite regime of inelastic cotunneli
Dm@(dEEC)1/2. Since a large numberM of levels partici-
pate in transport, we can neglect the correlations that
have studied in the previous section, since they becom
1/M effect. Instead, we concentrate on the heating eff
which is not relevant for the two-level system consider
before. The condition for strong cotunneling has to be rew
ten in a single-particle form,t in@tc , wheret in is the single-
particle energy relaxation time on the QDS due to the c
pling to the environment, andtc is the time of the
cotunneling transition, which can be estimated astc
;enDDm/I ~wherenD is the density of QDS states!. Since
the energy relaxation rate on the QDS is small, the multi
cotunneling transitions can cause high-energy excitations
the dot, and this leads to a nonvanishing backward tunne
wnm

2 Þ0. In the absence of correlations between cotunne
events, Eqs.~4.37!, ~4.38! and ~4.53! can be rewritten in
terms of forward and backward tunneling currentsI 1 and
I 2 ,

FIG. 2. DD system containing two electrons and being wea
coupled to metallic leads 1, 2, each of which is at the chem
potentialm1 , m2. The tunneling amplitudes between dots and lea
are denoted byT. The tunneling (td) between the dots results in
singlet-triplet splittingJ;td

2/U with the singlet being a ground
state.~Ref. 46! The tunneling path between dots and leads 1 an
forms a closed loop~shown by arrows! so that the Aharonov-Bohm
phasef will be accumulated by an electron traversing the DD.
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I 5I 12I 2 , S5e~ I 11I 2!, ~6.1!

I 65e(
n,m

wnm
6 r̄m , ~6.2!

where the transition rates are given by Eqs.~4.24! and~4.26!.
It is convenient to rewrite the currentsI 6 in a single-

particle basis. To do so we substitute the rates Eq.~4.26! into
Eq. ~6.2! and neglect the dependence of the tunneling am
tudes Eq.~2.3! on the quantum numbersk andp, Tlkp[Tl ,
which is a reasonable assumption for QDS with a large nu
ber of electrons. Then we define the distribution function
the QDS as

f ~«!5nD
21(

p
d~«2«p!Tr r̄dp

†dp ~6.3!

and replace the summation overp with an integration over«.
Doing this we obtain the following expressions forT50

I 65C6

G1G2

2pe3 S 1

D1
1

1

D2
D 2

~Dm!3, ~6.4!

C65
1

Dm3E E d«d«8Q~«2«86Dm! f ~«!@12 f ~«8!#,

~6.5!

whereG1,25pe2nnDuT1,2u2 are the tunneling conductance
of the two barriers, and where we have introduced the fu
tion Q(«)5«u(«) with u(«) being the step function. In par
ticular, using the propertyQ(«1Dm)2Q(«2Dm)5«
1Dm and fixing

E d«@ f ~«!2u~2«!#50, ~6.6!

~sinceI 6 given by Eqs.~6.4! and ~6.5! does not depend on
the shift «→«1const) we arrive at the following genera
expression for the cotunneling current

I 5L
G1G2

12pe3 S 1

D1
1

1

D2
D 2

~Dm!3, ~6.7!

L51112Y/~Dm!2, ~6.8!

Y5E d««@ f ~«!2u~2«!#>0, ~6.9!

where the valuenDY has the physical meaning of the ener
acquired by the QDS due to the cotunneling current throu
it.

We have deliberately introduced the functionsC6 in Eq.
~6.4! to emphasize the fact that if the distributionf («) scales
with the biasDm ~i.e., f is a function of«/Dm), then C6

become dimensionless universal numbers. Thus both,
prefactorL @given by Eq.~6.8!# in the cotunneling current
and the Fano factorF5S/(eI), whereS5eI1DSh ,

y
l

s
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F5
C11C2

C12C2
, ~6.10!

take their universal values, which do not depend on the b
Dm. We consider now such universal regimes. The first
ample is the case of weak cotunneling,t in!tc , when the
QDS is in its ground state,f («)5u(2«), and the thermal
energy of the QDS vanishes,Y50. Then L51, and Eq.
~6.7! reproduces the results of Ref. 25. As we have alre
mentioned, the backward current vanishes,I 250, and the
Fano factor acquires its full Poissonian valueF51, in agree-
ment with our nonequilibrium FDT proven in Sec. III B. I
the limit of strong cotunneling,t in@tc , the energy relax-
ation on the QDS can be neglected. Depending on
electron-electron scattering timetee two cases have to b
distinguished: The regime of cold electronstee@tc and re-
gime of hot electronstee!tc on the QDS. Below we discus
both regimes in detail and demonstrate their universality

A. Cold electrons

In this regime the electron-electron scattering on the Q
can be neglected and the distributionf («) has to be found
from the master equation Eq.~4.22!. We multiply this equa-
tion by nD

21(pd(«2«p)^nudp
†dpun&, sum overn, and use the

tunneling rates from Eq.~4.26!. Doing this we obtain the
standard stationary kinetic equation, which can be written
the following form

E d«8s~«82«! f ~«8!@12 f ~«!#

5E d«8s~«2«8! f ~«!@12 f ~«8!#, ~6.11!

s~«!52lQ~«!1(
6

Q~«6Dm!, ~6.12!

wherel5(G1
21G2

2)/(2G1G2)>1 arises from the equilibra
tion ratewmn

0 , see Eq.~4.25!. ~We assume that if the limits o

FIG. 3. The Fano factorF5S(v)/I , with the noise powerS(v)
given in Eqs.~4.53! and ~5.12!, and with the current through th
DD, I, given in Eqs.~5.4! and~5.11!, is plotted as a function of the
Aharonov-Bohm phasef for the normalized biasv[Dm/J52 and
for four different normalized frequenciesV[v/@G(2Dm2J)#
50.1, 0.25, 0.5, and 1. Inset: the same, but with fixed freque
V50.1, where the biasv takes the values 1.5, 3, and̀.
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the integration over energy« are not specified, then the in
tegral goes from2` to 1`.! From the form of this equation
we immediately conclude that its solution is a function
«/Dm, and thus the cold-electron regime is universal as
fined in the previous section. It is easy to check that
detailed balance does not hold, and in additions(«)Þs
(2«). Thus we face a difficult problem of solving Eq.~6.11!
in its full nonlinear form. Fortunately, there is a way to avo
this problem and to reduce the equation to a linear fo
which we show next.

We group all nonlinear terms on the right-hand side
Eq. ~6.11!: *d«8s(«82«) f («8)5h(«) f («), where h(«)
5*d«8$s(«82«) f («8)1s(«2«8)@12 f («8)#%. The trick
is to rewrite the functionh(«) in terms of known functions.
For doing this we split the integral inh(«) into two integrals
over «8.0 and«8,0, and then use Eq.~6.6! and the prop-
erty of the kernels(«)2s(2«)52(11l)« to regroup
terms in such a way thath(«) does not containf («) explic-
itly. Taking into account Eq.~6.9! we arrive at the following
linear integral equation

E d«8s~«82«! f ~«8!5@~11l!~«212Y!1~Dm!2# f ~«!,

~6.13!

where the parameterY is the only signature of the nonlin
earity of Eq.~6.11!.

Since Eq.~6.13! represents an eigenvalue problem for
linear operator, it can in general have more than one s
tion. Here we demonstrate that there is only one phys
solution, which satisfies the conditions

0< f ~«!<1, f ~2`!51, f ~1`!50. ~6.14!

Indeed, using a standard procedure one can show that
solutions of the integral equation~6.13!, f 1 and f 2, corre-
sponding to different parametersY1ÞY2 should be orthogo-
nal, *d« f 1(«) f 2(2«)50. This contradicts the condition
Eq. ~6.14!. The solution is also unique for the sameY, i.e., it
is not degenerate~for a proof, see Appendix D!. From Eq.
~6.11! and conditions Eq.~6.14! it follows that if f («) is a
solution then 12 f (2«) also satisfies Eqs.~6.11! and~6.14!.
Since the solution is unique, it has to have the symme
f («)512 f (2«).

We solve Eqs.~6.13! and~6.14! numerically and use Eqs
~6.5! and~6.10! to find that the Fano factor is very close to
~it does not exceed the valueF'1.006). Next we use Eqs
~6.8! and~6.9! to calculate the prefactorL and plot the result
as a function of the ratio of tunneling conductances,G1 /G2,
@Fig. 4, solid line#. For equal coupling to the leads,G1
5G2, the prefactorL takes its maximum value 2.173, an
thus the cotunneling current is approximately twice as la
compared to its value for the case of weak cotunneling,t in
!tc . L slowly decreases with increasing asymmetry of co
pling and tends to its minimum valueL51 for the strongly
asymmetric coupling caseG1 /G2 or G2 /G1@1.

y
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B. Hot electrons

In the regime of hot electrons,tee!tc , the distribution is
given by the equilibrium Fermi functionf F(«)5@1
1exp(«/kBTe)#

21, while the electron temperatureTe has to be
found self-consistently from the kinetic equation. Equati
~6.11! has to be modified to take into account electro
electron interactions. This can be done by adding the e
tron collision integralI ee(«) to the right-hand side of~6.11!.
Since the form of the distribution is known we need only t
energy balance equation, which can be derived by multip
ing the modified equation~6.11! by « and integrating it over
«. The contribution from the collision integralI ee(«) van-
ishes, because the electron-electron scattering conserve
energy of the system. Using the symmetryf F(«)512 f F
(2«) we arrive at the following equation

E E d«d«8 f F~«8!@12 f F~«!#s~«82«!«50.

~6.15!

Next we regroup the terms in this equation such that it c
tains only integrals of the form*0

`d« f F(«)( . . . ). This al-
lows us to get rid of nonlinear terms, and we arrive at
following equation,

E d««3@ f F~«!2u~2«!#13Y25
~Dm!4

8~11l!
, ~6.16!

which holds also for the regime of cold electrons. Finally,
calculate the integral in Eq.~6.16! and express the result i
terms of the dimensionless parametera5Dm/kBTe ,

a5p@8~11l!/5#1/4. ~6.17!

Thus, since the distribution again depends on the ratio«/Dm,
the hot-electron regime is also universal.

The next step is to substitute the Fermi distribution fun
tion with the temperature given by Eq.~6.17! into Eq. ~6.5!.
We calculate the integrals and arrive at the closed analy
expressions for the values of interest,

L511
2p2

a2
511A 5

2~11l!
, ~6.18!

F511
12

2p21a2 (
n51

` F 1

n2
1

2

an3Ge2an, ~6.19!

where againl5(G1
21G2

2)/2G1G2>1. It turns out that simi-
lar to the case of cold electrons, Sec. VI A, the Fano fac
for hot electrons is very close to 1~namely, it does not ex-
ceed the valueF'1.007). Therefore, we do not expect th
the super-Poissonian noise considered in this section~i.e., the
one which is due to heating of a large QDS caused by
elastic cotunneling through it! will be easy to observe in
experiments. On the other hand, the transport-induced h
ing of a large QDS can be observed in the cotunneling c
rent through the prefactorL, which according to Eq.~6.18!
takes its maximum valueL511A5/4'2.118 for G15G2
and slowly reaches its minimum value 1 with increasing~or
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decreasing! the ratioG1 /G2 @see Fig. 4, dotted line#. Surpris-
ingly, the two curves ofL vs G1 /G2 for the cold- and hot-
electron regimes lie very close, which means that the ef
of the electron-electron scattering on the cotunneling tra
port is rather weak.

VII. CONCLUSIONS

The physics of the noise of cotunneling is discussed in
Introduction. Here we give a short summary of our result

In Sec. III, we have derived the nonequilibrium FDT, i.e
the universal relations Eqs.~3.10! and ~3.21! between the
current and the noise, for single-barrier junctions and
QDS in the weak cotunneling regime, respectively. Tak
the limit T,v→0, we show that the noise is Poissonian, i.
F51.

In Sec. IV, we have derived the master equation, E
~4.22!, the stationary state Eq.~4.29! of the QDS, the average
current, Eq.~4.37!, and the current correlators, Eqs.~4.52!–
~4.54! for a nondegenerate QDS system (EnÞEm , nÞm!
coupled to leads in the strong cotunneling regimewin!w at
small frequencies,v!Dmn . In contrast to sequential tunne
ing, where shot noise is either Poissonian (F51) or sup-
pressed due to charge conservation (F,1), we find that the
noise in the inelastic cotunneling regime can be sup
Poissonian (F.1), with a correction being as large as th
Poissonian noise itself. In the regime of elastic cotunnel
F51.

While the amount of super-Poissonian noise is merely
timated at the end of Sec. IV, the noise of the cotunnel
current is calculated for the special case of a QDS w
nearly degenerate states, i.e.,Dnm!dE, in Sec. V, where we
apply our results from Sec. IV. The general solution E
~5.3! is further analyzed fortwo nearly degenerate levels
with the result Eq.~5.5!. More information is gained in the
specific case of a DD coupled to leads, where we determ
the correction to noise Eq.~5.12! as a function of frequency
bias, and the Aharonov-Bohm phase threading the tunne
loop, finding signatures of the Aharonov-Bohm effect in t
cotunneling noise.

Finally, in Sec. VI, another important situation is studie
in detail, the cotunneling through a QDS with a continuo
energy spectrum,dE!Dm!EC . Here, the correlation be
tween tunneling events plays a minor role as a source
super-Poissonian noise, which is now caused by heating
fects opening the possibility for tunneling events in the
verse direction and thus to an enhanced noise power. In
~6.10!, we express the Fano factorF in the continuum case in
terms of the dimensionless numbersC6 , defined in Eq.
~6.5!, which depend on the electronic distribution functio
f («) in the QDS~in this regime, a description on the single
electron level is appropriate!. The current Eq.~6.7! is ex-
pressed in terms of the prefactorL, Eq. ~6.8!. Both F andL
are then calculated for different regimes. For weak cotunn
ing, we immediately findF51, as anticipated earlier, while
for strong cotunneling we distinguish the two regimes
cold (tee@tc) and hot (tee!tc) electrons. For cold elec
trons, we derive the linear integral equation Eq.~6.13! for
f («) which is shown to have a unique solution, and which
5-14
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solved numerically. We find that the Fano factor is ve
close to one, 1,F,1.006, whileL is given in Fig. 4. For
hot electrons,f («) is the equilibrium Fermi distribution, and
the Fano factor Eq.~6.19! andL @Eq. ~6.18! and Fig. 4# can
be computed analytically. Again, the Fano factor is ve
close to one, 1,F,1.007, which leads us to the conclusio
that heating will hardly be observed in noise, but should
well measurable in the cotunneling current.
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APPENDIX A:

In this Appendix we present the derivation of Eqs.~3.14!
and~3.16!. First we would like to mention that the operatorB
in these equations is just the second-order tunneling am
tude, which also appears in the tunneling Hamiltonian a
the Schrieffer-Wolff transformation. Therefore, one mig
think that the Schrieffer-Wolff transformation is the mo
simple way to derive Eqs.~3.14! and ~3.16!. On the other
hand, it is obvious that the Schrieffer-Wolff procedure, be
a unitary transformation, gives exactly the same amoun
terms in the fourth-order expression for the current and no
as that of the regular perturbation expansion. The Schrief
Wolff procedure is useful in the Kondo regime where t
energy scale is given by the Kondo temperatureTK and
where theB terms in the Hamiltonian lead to a divergen
for T,TK , while the other terms can be treated by pert
bation theory~see Ref. 48!. In our cotunneling regime such
divergence does not exist~since the QDS is weakly couple
to leads, i.e.,Dm,kBT@kBTK!, and we have to analyze a
contributions. We do this below using perturbation theory

In order to simplify the intermediate steps, we use
notationŌ(t)[*2`

t dt8O(t8) for any operatorO, andO(0)

FIG. 4. The prefactorL in the expression~6.7! for the cotun-
neling current characterizes a universal cotunneling transport in
regime of weak cotunneling,t in!tc , (L51, see Ref. 25!, and in
the regime of strong cotunneling,t in@tc (L.1). HereL is plotted
as a function ofG1 /G2 ~same as a function ofG2 /G1) for the
strong cotunneling, for the cold-electron case,tee@tc ~solid line!
and for the hot-electron case,tee!tc ~dotted line!. G1,2 are the
tunneling conductances of a junctions connecting leads 1 and 2
the QDS.
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[O. We notice that, if an operatorO is a linear function of

operatorsDl and Dl
† , then Ō(`)50 ~see the discussion in

Sec. III B!. Next, the currents can be represented as the
ference and the sum ofÎ 1 and Î 2,

Î d5~ Î 22 Î 1!/25 ie~X†2X!/2, ~A1!

Î s5~ Î 11 Î 2!/25 ie~Y†2Y!/2, ~A2!

whereX5D21D1
† andY5D11D2. While for the perturba-

tion we have

V5X1X†5Y1Y†. ~A3!

First we concentrate on the derivation of Eq.~3.14! and re-
define the average current Eq.~2.7! asI 5I d ~which gives the
same result anyway, because the average number of
trons on the QDS does not changeI s50).

To proceed with our derivation, we make use of Eq.~2.8!
and expand the current up to fourth order inTlkp :

I 5 i E
2`

0

dtE
2`

t

dt8^ Î dV~ t !V~ t8!V̄~ t8!&

2 i E
2`

0

dt^V̄Î dV~ t !V̄~ t !&1c.c. ~A4!

Next, we use the cyclic property of trace to shift the tim
dependence toÎ d . Then we complete the integral over timet

and useĪ d(`)50. This procedure allows us to combine th
first and second term in Eq.~A4!,

I 52 i E
2`

0

dt^@ Ī dV1V̄Î d#V~ t !V̄~ t !&1c.c. ~A5!

Now, using Eqs.~A1! and ~A3! we replace operators in Eq
~A5! with X and X† in two steps: I 5e*2`

0 dt^@X̄†X†

2XX̄#V(t)V̄(t)&1H.c., where some terms cancel exact
Then we work withV(t)V̄(t) and notice that some term
cancel, because they are linear inclk andclk

† . Thus we obtain

I 5eE
2`

0

dt^@X̄†X†2X̄X#@X†~ t !X̄†~ t !1X~ t !X̄~ t !#&1c.c.

~A6!

Two termsX̄XXX̄ andX̄†X†X†X̄† describe tunneling of two
electrons from the same lead, and therefore they do not c
tribute to the normal current. We then combine all oth
terms to extend the integral to1`,

I 5eE
2`

`

dt^X̄†~ t !X†~ t !XX̄2X̄XX†~ t !X̄†~ t !&. ~A7!

Finally, we use*2`
` dtX(t)X̄(t)52*2`

` dtX̄(t)X(t) @since

X̄(`)50# to get Eq.~3.14! with B5XX̄. Here, again, we
drop termsD1

†D̄1
† andD2D̄2 responsible for tunneling of two

electrons from the same lead, and obtainB as in Eq.~3.15!.
Next, we derive Eq.~3.16! for the noise power. At smal

frequenciesv!D6 , fluctuations ofI s are suppressed be

he

ith
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cause of charge conservation~see below!, and we can replace
Î 2 in the correlator Eq.~2.7! with Î d . We expandS(v) up to
fourth order inTlkp , use*2`

1`dtÎd(t)e6 ivt50, and repeat the
steps leading to Eq.~A5!. Doing this we obtain,

S~v!52E
2`

`

dt cos~vt !^@V̄~ t !, Î d~ t !#@V̄, Î d#&. ~A8!

Then, we replaceV and Î d with X and X†. We again keep
only terms relevant for cotunneling, and in addition we n
glect terms of orderv/D6 @applying the same arguments
before, see Eq.~A9!#. We then arrive at Eq.~3.16! with the
operatorB given by Eq.~3.15!.

Finally, in order to show that fluctuations ofI s are sup-
pressed, we replaceÎ d in Eq. ~A8! with Î s , and then use the
operatorsY and Y† instead ofX and X†. In contrast to Eq.
~A7! terms such asȲ†Y†YȲ do not contribute, because the
contain integrals of the form*2`

` dt cos(vt)Dl(t)D̄l8(t)50.
The only nonzero contribution can be written as

Sss~v!5
e2v2

4 E
2`

`

dt cos~vt !^@Ȳ†~ t !,Ȳ~ t !#@Ȳ†,Ȳ#&,

~A9!

where we have used integration by parts and the prop
Ȳ(`)50. Compared to Eq.~3.16! this expression contain
an additional integration overt, and thereby it is of order
(v/D6)2.

APPENDIX B:

We evaluate the matrix elements of the superoper
WI(z) given in Eq.~4.33!, which are used to calculate th
average currentI l , see Eq.~4.37!. The derivation for the
master equation~4.22! is very similar. As for the noise, the
Sll 8

Q term, Eq.~4.51!, is again obtained in a similar way as th
current, whereas theSll 8

P term, Eq.~4.46!, is different and is
analyzed in Sec. IV E. SinceWI(z) is obtained by taking the
partial trace over the leads, its matrix elements can be
pressed as the sum over lead indices

Wnm
I ~z!5(

n̄m̄

W nm
I ~z!rL,m̄~z!, ~B1!

where n5(n,n̄), with n and n̄ enumerating the QDS an
lead eigenstates. For convenience, we will use the eigens
of H0 in this Appendix, and not the eigenstates ofK as in the
main text. Accordingly, hereEn5En1En̄ are the eigenener
gies ofH0. Taking the stationary limitz→0, using the defi-
nition Eq. ~4.33! and introducing the projectorspn5un&^nu,
we can write

W nm
I 5 lim

z→0
Tr pnÎ lQ

1

z2QLQ
QLVPpm . ~B2!

Note that whilen denotes a free dummy index in Eq.~B2!,
the stateum& is restricted to the subspace wherePNpmÞ0
with fixed particle numberN on the QDS. Expanding this
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expression inV, we obtain for the lowest nonvanishing ord
~sequential tunneling! the contribution2 i ( n̄m̄( Î lR0LVpm)nn
to the rateWnm

I , which can be expressed as

2pe(
n̄m̄

~ u^nuDl um&u22u^nuDl
†umu&u2!rL,m̄d~Dmn!,

~B3!

where Dmn5Em2En . Using Eq. ~2.3! and assuming tha
Tlkp5T is independent ofp andk, we obtain the expression
for the contribution toWnm

I due to sequential tunneling,

2pnT 2(
p

$u^nudpum&u2@12 f l~Dmn!#

2u^nudp
†um&u2f l~Dnm!%, ~B4!

where f l(«) is the Fermi distribution andn the density-of-
states in the leads. In the cotunneling regime,37 this contri-
bution is proportional tok5e2D/kBT, therefore we drop it47

and expandWnm
I to the next nonvanishing, i.e., fourth orde

in V. Doing this, we obtain the cotunneling contribution

W nm
I 5 i ~ Î lR0LVR0QLVR0LVpm!nn . ~B5!

Stepwise evaluation of the operators and superoperator
this expression by the insertion of the identity( iu i&^ iu leads
to

W nm
I 5 i(

i,j
~ I niRinVijRjnU jn

m2I niRinRijU ij
mVjn !,

U ij
m5~LVR0LVpm! ij 5(

k
@VikRkj ~LVpm!kj

2Rik~LVpm! ikVkj #,

~LVpm! ij 5Vimdmj2Vmjd im , ~B6!

whereI ij 5^ iu Î l u j &, and similarly forVij . Note that

Rij 5 lim
h→0

i

ih2~Ei2Ej !
52 iP

1

Ei2Ej
1pd~Ei2Ej !,

~B7!

where P stands for the principal value. The currentI l is ob-
tained fromW nm

I by multiplying with the full density matrix
rm and then summing overm andn. By explicit evaluation,
using the fact that we can choose the basisun& on the QDS
such that all expectation values of the for
^nudp1

† dp2
dp3

† dp4
un&, etc., are real, we find that four out o

the eight terms in Eq.~B6! cancel, while the remaining fou
terms contributing to the currentI l can be combined into
~retaining onlyO(k0) terms!
5-16
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(
n

W nm
I 522pIm (

f
@~ Î lRm

† V!mf~VRm
† V! fm

1~VRmV!mf~ Î lRf
†V! fm#d~Ef2En!, ~B8!

whereRm52 iP(H02Em)] 21. All other d-function contri-
butions vanish inO(k0).47 In the presence of an Aharonov
Bohm phase, when the phases in the tunneling amplitu
Eq. ~5.9! have to be taken into account, we again find E
~B8! by explicit analysis. We note here that exactly the sa
procedure as above can be applied in the derivation of
master equation and the noise, leading to a reduction
terms and finally to the ‘‘golden rule’’ expressions Eq
~4.23! and ~4.51!. By substituting Eqs.~2.3! and ~2.6! for V

and Î l , and settingl 52 for concreteness, we finally obtain

(
n

W nm
I 52pe(

f
@~D2

† ,D1!mf~D1
† ,D2! fm

2~D1
† ,D2!mf~D2

† ,D1! fm#d~D fm!, ~B9!

where (Dl
† ,Dl 8) is defined in Eq.~4.27!. Using Eqs.~4.33!

and ~B1! and the definitions Eqs.~4.24! and ~4.26!, we find
for the cotunneling current

I 25(
nm

W nm
I r̄mrL,m̄5e(

nm
~wnm

1 2wmn
2 !r̄m , ~B10!

which concludes the derivation of Eqs.~4.37! and ~4.38!.
Note that in Eq.~4.26! the expressionDmn5Em2En is re-
placed byEm2En2Dm l l 8 because there,un& are eigenstates
of K ~instead ofH0). The currentI 1 in lead 1 can be ob-
tained by interchanging the lead indices 1 and 2 in Eq.~B9!,
which obviously leads toI 152I 2.

APPENDIX C:

In this Appendix we calculate the transition rates E
~4.26! for a DD coupled to leads with the coupling describ
by Eqs.~5.8! and~5.9! and show that the four-level system
the singlet-triplet basis, Eq.~5.10!, can be mapped to a two
level system. For the moment we assume that the indicn
and m enumerate the singlet-triplet basis,n,m
5S,T0 ,T1 ,T2 . Close to the sequential tunneling pea
D2!D1 , we keep only terms of the formDl

†R0Dl . Calcu-
lating the trace over the leads explicitly, we obtain atT50,

wnm~ l 8,l !5
pn2

2D2
2

Q~m l2m l 82Dnm!

3(
j , j 8

Tl j* Tl j 8Tl 8 j 8
* Tl 8 jMnm~ j , j 8!, ~C1!

Mnm~ j , j 8!5(
s,s8

^nuds j
† ds8 j um&^muds8 j 8

† ds j8un&, ~C2!

with Q(«)5«u(«), andDnm50,6J, and we have assume
td!D2 so thatR051/D2 .
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Since the quantum dots are the same we getMnm(1,1)
5Mnm(2,2) andMnm(1,2)5Mnm(2,1). We calculate these
matrix elements in the singlet-triplet basis explicitly,

M ~1,1!5
1

2 S 1 1 1 1

1 1 1 1

1 1 2 0

1 1 0 2

D , ~C3!

M ~1,2!5
1

2 S 1 21 21 21

21 1 1 1

21 1 2 0

21 1 0 2

D . ~C4!

Assuming now equal coupling of the form Eq.~5.9! we find
that for l 5 l 8 the matrix elements of the singlet-triplet tran
sition vanish~as we have expected, see Sec. V!. On the other
hand the triplets are degenerate, i.e.,Dnm50 in the triplet
sector. Then from Eq. ~C1! it follows that wnm

0

5( lwnm( l ,l )50. Next, we haveQ(m22m12Dnm)50,
since for nearly degenerate states we assumeDm.uDnmu,
and thuswnm

2 5wnm(1,2)50. Finally, for wnm
1 5wnm(2,1)

we obtain,

wSS
1 5

p

2 S nT 2

D2
D 2

Dm~11cosf!, ~C5!

wST
1 5

p

2 S nT 2

D2
D 2

~Dm1J!~12cosf!, ~C6!

wTS
1 5

p

2 S nT 2

D2
D 2

~Dm2J!~12cosf!, ~C7!

wTT
1 5

p

2 S nT 2

D2
D 2

DmS 11cosf 11cosf 11cosf

11cosf 212cosf 0

11cosf 0 212cosf
D .

~C8!

Next we prove the mapping to a two-level system. Fi
we notice that because the matrixwTT

1 is symmetric, the de-

tailed balance equation for the stationary state givesr̄n / r̄m

5wmn
1 /wnm

1 51, n,mPT. Thus we can setr̄n→ r̄2/3, for n
PT. The specific form of the transition matrix Eqs.~C5
–C8! helps us to complete the mapping b
setting (1/3)(m52

4 w1m
1 →w12

1 , (n52
4 wn1

1 →w21
1 , and

(1/3)(n,m52
4 wnm

1 →w22
1 , so that we get the new transitio

matrix Eq. ~5.11!, while the stationary master equation fo
the new two-level density matrix does not change its form
in addition we set (1/3)(m52

4 dr1m(t)→dr12(t),
(n52

4 drn1(t)→dr21(t), and (1/3)(n,m52
4 drnm(t)→dr22(t),

then the master equation Eq.~4.22! for drnm(t) and the ini-
tial condition drnm(0)5dnm2 r̄n do not change either. Fi
nally, one can see that under this mapping, Eq.~4.54! for the
correction to the noise powerDS(v) remains unchanged
5-17
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Thus we have accomplished the mapping of our sing
triplet system to the two-level system with the new transit
matrix given by Eq.~5.11!.

APPENDIX D:

Here we prove that the solution of Eqs.~6.13!, ~6.9!, and
~6.14! is not degenerate. Suppose the opposite is true,
there are two functions,f 1(«) and f 2(«), which satisfy these
equations. Then the functionf d(«)5 f 1(«)2 f 2(«) satisfies
Eq. ~6.13! with the conditions

E d« f d~«!5E d«« f d~«!50, ~D1!

f d~1`!5 f d~2`!50, 21< f d~«!<1. ~D2!

According to Eqs.~6.13!, and~6.9!, the integral*d«u« f d(«)u
is convergent. This allows us to symmetrize the kernels in
Eq. ~6.13!: s(«)5sS(«)1(11l)«1Dm, where sS(«)
5@lQ(«)1Q(«2Dm)#1@«→2«#, and thussS(«)5sS
(2«). Using the condition Eq.~D1! we arrive at the new
integral equation forf d ,

E d«8sS~«82«! f d~«8!

5@~11l!~«212Y!1~Dm!2# f d~«!. ~D3!

Next we apply Fourier transformation to both sides of t
equation and introduce the function
5

ur

es
b

M

rt
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t-

e.,

w~x!5
1

2pE d«e2 i«xf d~«!. ~D4!

Here we have to be careful because, strictly speaking
Fourier transform ofsS(«) does not exist~this function is
divergent at6`). On the other hand, since the integral o
the left-hand side of Eq.~D3! is convergent, we can regular
ize the kernel assS(«)→sS(«)e2hu«u and later take the limit
h→10. Then for the Fourier transform of Eq.~D3! we find

~11l!w9~x!5@u~x!1~Dm!212~11l!Y#w~x!, ~D5!

u~x!5E d«e2 i«xsS~«!52@l1cos~Dmx!#/x2, ~D6!

whereu(x) is real, becausesS is an even function of«. Thus
we have obtained a second-order differential~Schrödinger!
equation for the functionw(x). We conclude from Eq.~D1!
that w(0)5w8(0)50, and the condition Eq.~D2! ensures
that the solution of Eq.~D5! is localized,w(x)ux→6`50 and
finite everywhere. All these requirements can be satis
only if w(x)50 for all x. Indeed, since the functionu(x)
1(Dm)212(11l)Y is positive for allx ~we recall thatY
.0), thenw is a monotonous function, and therefore it ca
not be localized. In other words, the Schro¨dinger equation
with repulsive potentialu(x).0 does not have localized so
lutions. Thus we have proven thatf 1(«)5 f 2(«) for all «,
and the solution of Eq.~6.13! is not degenerate.
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