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Noise of a quantum dot system in the cotunneling regime
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We study the noise of the cotunneling current through one or several tunnel-coupled quantum dots in the
Coulomb blockade regime. The various regimes of weak and strong, elastic and inelastic cotunneling are
analyzed for quantum dot systert@@DS) with few-level, nearly degenerate, and continuous electronic spectra.
We find that in contrast to sequential tunneling, where the noise is either Poisgdo®rio uncorrelated
tunneling eventsor sub-Poissoniaisuppressed by charge conservation on the Q& noise in inelastic
cotunneling can be super-Poissonian due to switching between QDS states carrying currents of different
strengths. In the case of weak cotunneling we prove a nonequilibrium fluctuation-dissipation theorem, which
leads to a universal expression for the noise-to-current &amo factoy. In order to investigate strong
cotunneling we develop a microscopic theory of cotunneling based on the density-operator formalism and
using the projection operator technique. The master equation for the QDS and the expressions for current and
noise in cotunneling in terms of the stationary state of the QDS are derived and applied to QDS with a nearly
degenerate and continuous spectrum.
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. INTRODUCTION effect in quantum dot®2° or can be used as a probe of
two-electron entanglement and nonlocafityetc.

In recent years, there has been great interest in transport In this paper we present a thorough analysis of the shot
properties of strongly interacting mesoscopic systéis.a  noise in the cotunneling regime. Since the single-electron
rule, the electron interaction effects become stronger with théorthodox” theory cannot be applied to this case, we first
reduction of the system size, since the interacting electrongevelop a microscopic theory of cotunneling suitable for the
have a smaller chance to avoid each other. Thus it is notalculation of the shot noise in Secs. Il and INFor an
surprising that an ultrasmall quantum dot connected to leadgarlier microscopic theory of transport through quantum dots
in the transport regime, being under additional control bySee Refs. 30—3PWe consider the transport through a quan-
metallic gates, provides a unique possibility to study strongum dot systemQDS) in the Coulomb blockad€CB) re-
correlation effects both in the leads and in the dot itdelf. 9iMe, in which the quantization of charge on the QDS leads
This has led to a large number of publications on quantunjio a suppression of the sequential tunneling current except

dots, which investigate situations where the current acts as é\r;v(;er ffggﬂae;ejfgsgggﬁgg:gﬁ'S\tlxg C?hnslr?g;tfgf dg?gig%f
probe of correlation effects. Historically, the nonequilibrium y y

current fluctuationgshot nois¢ were initially considered as bution to the current, the so-called cotunneling curfert.

. blem for devi licati ¢ 3Bt In general, the QDS can contain several dots, which can be
a Serious problem for device applications of quantum-uiots coupled by tunnel junctions, the double d@D) being a

rather than as a fundameptaliphys.ical phgnomenon. Later Harticular examplé! The QDS is assumed to be weakly
pecazne clear that shot noise is an interesting phenomenon i, e to external metallic leads that are kept at equilibrium
|tself_, becau_se |_t contains a_ddltlonal m_formatl_on about cor-yitn their associated reservoirs at the chemical potentials
relations, which is not contained, e.g., in the linear-responsg_ 1,2, where the currents can be measured and the aver-
conductanf:e and can be used as a further_app;(_)zazch to stugg'e current through the QDS is defined by E(®.7).
transport in quantum dots, both theoreticafly** and Before proceeding with our analysis we briefly review the
experimentally’® results available in the literature on noise of sequential tun-
Similarly, the majority of papers on the noise of quantumneling. For doing this, we introduce right from the beginning
dots consider the sequentigingle-electron tunneling re-  all relevant physical parameters, namely the bath tempera-
gime, where a classical descriptigthe so-called “ortho- ture T, bias Au=u;— u,, charging energyE., average
dox” theory) is applicablé®* We are not aware of any dis- level spacingsE, and the level width[=T';+T", of the
cussion in the literature of the shot noise induced by &QDS, where the tunneling ratd§= 7v|T|? to the leadd
cotunneling(two-electron, or second-ordecurrent®>? ex- ~ =1,2 are expressed in terms of tunneling amplituieand
cept Ref. 21, where the particular case of weak cotunnelinghe density-of-states evaluated at the Fermi energy of the
(see belowthrough a double-dqiDD) system is considered. leads. In Fig. 1 the most important parameters are shown
Again, this might be because until very recently cotunnelingschematically. This variety of parameters shows that many
has been regarded as a minor contribution to the sequentidlfferent regimes of the CB are possible. In the linear-
tunneling current, which spoils the precision of single-response regime) u<kgT, the thermal nois8 is given by
electron devices due to leakatjeHowever, it is now well  the equilibrium fluctuation-dissipation theoreiDT).3! Al-
understood that cotunneling is interesting in itself, since it isshough the crossover from the thermal to nonequilibrium
responsible for strongly correlated effects such as the Kondooise is of our interesfsee Sec. ll), in this section we dis-
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T T, voltage consists of the CB peaks, which are at the degen-
eracy pointsA. <0, where the number of electrons on the

i QDS fluctuates betweeN andN+1 due to single-electron

. | T OE tunneling. The peaks are separated by plateaus, where the

L O E,— single-electron tunneling is blocked because of the finite en-

Ei ergy costA_.>0 and thus the sequential tunneling current
AL(1,N) /\ AL(2,N) vanishes. At the peaks the current is given by

=ey,y,/(y1+v,), while the Fano factor has been
reported’ " to be equal toF =(y5+ y3)/(y1+ ¥2)?, 1/2
) ¢ " " <F<1, where y;=e 2G4JA.(1N)] and y,
it QDS il =e 2G,|A_(2N+1)| are the tunneling rates to the QDS
from lead 1 and from the QDS to lead 2, respectively. Within

FIG. 1. Schematic representation of the QDS coupled to twothe orthodox™ theory wnneling is still possible between the

external leads 1 and Zlight gray via tunneling barriersdark peaks at finite temperature due to thermal actlvatlop prof
gray), where the energy scale is drawn vertically. The tunnelingt€SSes, and then the Fano factor approaches the Poissonian
between the QDS and the lealds 1,2 is parametrized by the tun- ValueF =1 from below.(3) Finally, the limitI'<Ax<JE is
neling amplituded, , where the lead and QDS quantum numbers Similar to the previous case, with the only difference that the
andp have been dropped for simplicity, see E2.3). The leads are  dot spectrum is discrete. The sequential tunneling picture can
at the chemical potentialg,,, with an applied biasAu= u; still be applied; the result for the Fano factor at the current
— po. The (many-particle gigenstates .of .the QDS With. one ad.ded peak isF = (1*%4_ F%)/(Fl‘l- I',)?, so that again 12 F<1.1°
electron N+1 _electrons in totalare mdlcated by their energies We would like to emphasize the striking similarity of the
Edl éjirlfgbzft:;rt\iﬁllteh é‘;’g?gg :fg%f@glr%'Igi‘:oiﬂzrgyelceocstggr Fano factors in all three regimes, where they also resemble
. . . L the Fano factor of the noninteracting double-barrier sy$tem.
QDS is denoted by, (I,N)>0 and is strictly positive in the CB . . .
regime. Note that the energids (I,N) for removing particles from The Fano f‘?‘CtorS in the first and second regimes become
' even equal if the ground-state level of the QDS lies exactly

the QDS containing\ electrons are positive as well, and are not . . .
drawn here. The cotunneling process is visualized by two arrow: ,n the middle between the Fermi levels of lead 1 and 2,

leading from the initial state in, say, leadfill circle), via a virtual |2 +|=|A-|. We believe that this “ubqu|t0us_7’ double-
state on the QDSopen circlg, to the final state in lead #ull ~ Darrier character of the Fano factor can be interpreted as
circle). being the result of the natural correlations imposed by charge
conservation rather than by interaction effects. Indeed, in the
cuss the shot noise alone and 3et0. Then the noise at transport through a double-barrier tunnel junction each bar-
zero frequencyw=0, when él,=—4l,, can be character- rier can be thought of as an independent source of Poissonian
ized by one single parameter, the dimensionless Fano facteiise. And although in the second regime the CB is explic-
F=5(0)/ell|, where the spectral density of the noiS@) itly taken into account, the stronger requirement of charge
=S,,(0) is defined by Eq(2.7). The Fano factor acquires conservation at zero frequenc§l,;+ 8l,=0, has to be sat-
the valueF=1 for uncorrelated Poissonian noise. isfied, which leads to additional correlations between the two
Next we discuss the different CB regimés) In the limit  sources of noise and to a suppression of the noise below the
of large biasA u>E¢, when the CB is suppressed, the QDS Poissonian value. At finite frequenéyut still in the classical
can be viewed as being composed of two tunnel junctions imange defined am<Au,Ec) temporary charge accumula-
series, with the total conductanc8=G;G,/(G;+G,),  tion on the QDS is allowed, and for frequencies larger than
where G,=me’vwp|T||* is the conductance of the tunnel the tunneling ratew> v », the conservation of charge does
junctions to lead, andvp, is the density of dot states. Then not need to be satisfied, while the noise pov@s ap-
the Fano factor is given bEz(G'er G%)/(GlJr G,)?, as it  proaches its Poissonian value from below, and the cross cor-
has been found in Refs. 4, 5, and 7. Thus, the shot noise iglations vanishS;,=0.3? Based on this observation we ex-
suppressedi-<1, and reaches its minimum value for the pect that the direct measurement of interaction effects in
symmetric QDS G,;=G,, whereF=1/2. (2) The low bias noise is only possible either in the quantyooherent CB
regime, SE<Au<E. The first inequalitySE<Au allows  regimé® Au~T or in the Kondo regimé’~'° where both
to assume a continuous spectrum of the QDS and guaranteelsarge conservation and many-electron effects lead to a sup-
that the single-electron “orthodox” theory based on a clas-pression of the noise. Another example is the noise in the
sical master equation can be applied. The second inequaliguantum regimeA u<w~E¢, where it contains singulari-
A u<<E: means that the QDS is in the CB regime, where theties associated with the “photoassisted transitions” above
energy cost .. (I,N)=E(N+1)—E(N) ¥ u, for the electron  the Coulomb gap\ , 202133
tunneling from the Fermi level of the leddto the QDS To conclude our brief review we would like to emphasize
(+) and vice versa{) oscillates as a function of gate volt- again that while the zero-frequency shot noise in the sequen-
age between its minimum valuk. <0 (where the energy tial tunneling regime is always suppressed below its full
deficit turns into a gainlA .. |~Au) and its maximum value Poissonian value as a result of charge conservdtidarac-
A.~E¢. Here,E(N) denotes the ground-state energy of thetions suppressing it furthgrwe find that, in the present work
N-electron QDS. Thus the currehais a function of the gate the shot noise in the cotunneling regithés either Poisso-
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nian F=1 (elastic or weak inelastic cotunnelingr, rather V. In the case of dew-levelQDS, SE~E,3 noise turns
surprisingly, non-Poissonidh+# 1 (strong inelastic cotunnel- out to be non-Poissonian, as we have discussed above, and
ing). Therefore the non-Poissonian noise in QDS can be corthis effect can be estimated as follows. The QDS is switching
sidered as being a fingerprint of inelastic cotunneling. Thidetween states with the different currehtsew, and we find
difference of course stems from the different physical originsl ~ew. The QDS stays in each state for the timew 1.

of the noise in the cotunneling regime, which we discussTherefore, for the positive correction to the noise power we
next. Away from the sequential tunneling peaks, >0, getAS~él27~e?w, and the estimate for the correction to
single-electron tunneling is blocked, and the only elementaryhe Fano factor follows aaS/el~1. A similar result is
tunneling process, which is compatible with energy conserexpected for the noise induced by heatidg,, which can
vation is the simultaneous tunneling of two electrons calledoughly be estimated by assuming an equilibrium distribu-
cotunneling?®>?® In this process one electron tunnels, say,tion on the QDS with the temperatukgT~ A . and consid-
from lead 1 into the QDS, and the other electron tunnelsring the additional noise as being therrffald S,~GkgT
from the QDS into lead 2 with a time delay on the order of ~(el/Au)kgT~el. The characteristic frequency of the
A7 (see Ref. 21 This means that in the range of frequen- noise correctiom S is w~w, with AS vanishing foro>w
cies,w<A ., (which we assume in our papehe charge on (but still in the classical rangey<<A ). In contrast to this,
the QDS does not fluctuate, and thus in contrast to the sdhe additional noise due to heatingS;,, does not depend on
guential tunneling, the correlation imposed by charge consetthe frequency.

vation is not relevant for cotunneling. Furthermore, in the In Sec. V we consider the particular case of nearly degen-
case of elastic cotunneling\(w < SE), where the state of the erate dot states, in which only few levels with an energy
QDS remains unchanged, the QDS can be effectively redistance smaller thadE participate in transport, and thus
garded as a single barrier. Therefore, subsequent elastic cheating on the QDS can be neglected. Specifically, for a
tunneling events are uncorrelated, and the noise is Poissoniano-level QDS we predict giartlivergenj super-Poissonian
with F=1. On the other hand, this is not so for inelastic noise if the off-diagonal transition rates vanish. The QDS
cotunneling@ x> SE), where the internal state of the QDS goes into an unstable mode where it switches between states
is changed, thereby changing the conditions for the subset and 2 with(generally different currents. We consider the

quent cotunneling event. Thus, in this case the QDS switchegansport through a DD system as an example to illustrate
between different current states, and this creates a correctinis effect[see Eq.(5.12 and Fig. 3.

to noiseAS, so that the total noise is non-Poissonian, and  Finally, we discuss the case of raulti-level QDS, SE

can become super-Poissonian. The other mechanism undegg . |n this case the correlations in the cotunneling current
lying super-Poissonian noise is the excitation of high-energyjescribed above do not play an essential role. In the regime
levels (heating of the QDS caused by multiple inelastic co- ¢ 0. bias, A u<(SEEL)Y2 elastic cotunneling dominates

tunneling transitions and leading to the additional noise[ransponzs,ssand thus the noise is Poissonian. In the oppo-
AS; . Thus the total noise can be written 8 el+AS;, site case of large biad... > A u> (SEEL) 2 the transport is

+AS. For other cases exhibiting super-Poissonian n@ise ) . . .
the strongly nonlinear bias regimnsee Ref. 6 governed by inelastic cotunneling, and in Sec. VI we study
According to this picture we consider'th.e following dif- heating effects that are relevant in this regime. For this we
se the results of Sec. IV and derive a kinetic equation for

ferent regimes of the inelastic cotunneling. We first discuss’! A i ) )
the weak cotunneling regime w<w,, where w the distribution functionf(e). We find three universal re-

~T',T,Au/A? is the average rate of the inelastic cotunnel-9imes wherd NA"Ls'_am_j the Fano factor does not depend
ing transitions on the QDRsee Eqs(4.23-4.26], andw;, is ~ ©" bias theA n. The first is the_ regime of weak cotu_n_nellng,
the intrinsic relaxation rate of the QDS to its equilibrium 7in<7c, Wherer;, and 7. are time scales characterizing the
state due to the coupling to the environment. In this regiméingle-particle dynamics of the QDS. The energy relaxation
the cotunneling happens so rarely that the QDS always rdime 7, describes the strength of the coupling to the envi-
laxes to its equilibrium state before the next electron passg®nment while 7.~evpAu/l is the cotunneling transition
through it. Thus we expect no correlations between cotunnetime. Then we obtain for the distributiof{e) = 6(—¢), re-
ing events in this regime, and the zero-frequency noise iproducing the result of Ref. 25. We also find tifat1, in
going to take on its Poissonian value with Fano fadfor agreement with the FDT proven in Sec. Ill. The other two
=1, as first obtained for a special case in Ref. 21. This resultegimes of strong cotunneling,> 7. are determined by the
is generalized in Sec. Ill, where we find a universal relationelectron-electron scattering time,.. For the cold-electron
between noise and current of single-barrier tunnel junctionsegime,7.< 7., We find the distribution function by solving
and, more generally, of the QDS in the first nonvanishingthe integral equation&.11) and(6.12, while for hot elec-
order in the tunneling perturbation Because of the univer- trons, 7.> 7., f is given by the Fermi distribution function
sal character of the results, Eq8.10 and (3.21), we call  with an electron temperature obtained from the energy bal-
them the nonequilibrium FDT in analogy with linear- ance equatiofi6.15. We usef(¢) to calculate the Fano fac-
response theory. tor, which turns out to be very close to 1. On the other hand,
Next, we considestrong cotunnelingi.e., w>w;,. The the current depends not only @G, but also on the ratio,
microscopic theory of the transport and noise in this regimes; /G,, depending on the cotunneling regifeee Fig. 4.
based on a projector operator technique is developed in SePetails of the calculations are deferred to four appendices.
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Il. MODEL SYSTEM I1l. NON-EQUILIBRIUM FLUCTUATION-DISSIPATION

. THEOREM FOR TUNNEL JUNCTIONS
The quantum-dot syste@QDS) under study is weakly

coupled to two external metallic leads that are kept in equi- In this section we prove the universality of noise of tunnel
librium with their associated reservoirs at the chemical pojunctions in the weak cotunneling reginve<w;, keeping
tentials u;, 1=1,2, where the currents can be measured. the first nonvanishing order in the tunneling HamiltonMn
Using a standard tunneling Hamiltonian approdtwe write  Since our final results Eq$3.10), (3.12), (3.13, and(3.21)
can be applied to quite general systems out-of-equilibrium,
H=Ho+V, Ho=H_ +HstHiny, (2. we call this result the nonequilibrium FDT. In particular, the
geometry of the QDS and the interactiblr,; are completely
- T — t arbitrary for the discussion of the nonequilibrium FDT in this
AL 2;',2 Ek: eicikn, Hs=2, epdpdp. (22 sectionYSuch a nonequilibrium FDT WCJ:IS derived for single-
barrier junctions long ag® We will need to briefly review
this case, which allows us then to generalize the FDT to
QDS considered here in the most direct way.

V=2 (D;+D/), D|=2 Tyecidp, (2.3
=12 k,p

where the termdd; and Hg describe the leads and QDS,

respectively(with k and p from a complete set of quantum

numbers$, and tunneling between leads and QDS is described The total Hamiltonian of the junctiofigiven by Egs.

by the perturbatiorV. The interaction ternH,,, is specified (2.1)—(2.3)] and the currents E@2.6) have to be replaced by

below. TheN-electron QDS is in the cotunneling regime H=H +H;,+V, where

where there is a finite energy cast. (I,N)>0 for the elec-

tron tunneling from the Fermi level of the leddo the QDS

A. Single-barrier junction

(+) and vice versa {), so that only processes of second V=A+AT, A=2 Tkk,cgkclk, , (3.1
order inV are allowed. Kk’

To describe the transport through the QDS we apply stan-
dard method®€ and adiabatically switch on the perturbation 1,=—1,=ei[V,N,]=ei(AT-A). (3.2

V in the distant past,=t,— — . The perturbed state of the
system is described by the time-dependent density matrigor the sake of generality, we do not specify the interaction
p(t)=exd —iH (t—to)]po exp[iH (t—to)], which can be H,, in this section, nor the electron spectrum in the leads,
written as and the geometry of our system.

. Applyin the standard interaction representation

p()=exd —iL(t=to)]po, LA=[H,A], VA, (24 techﬁ%ﬁeg,g we expand the expressid2.8) for LFJJ(t) and

with the help of the Liouville operatok=L,+L, .3 Here  keep only first nonvanishing contributions ¥ obtaining
po 1S the grand canonical density matrix of the unperturbed
system,

t ~
I(t)=if dt’([V(t"),15()]), (3.3
po=2"texgd —K/kgT], (2.5 -

where we seK=Ho—ZuN; . where we use the notatign . . )=Trpg( . .. ). Analogously,

Because of tunneling the total number of electrons in eaclye find that the first nonvanishing contribution to the noise

lead N,=Ekcfkc|k is no longer conserved. For the outgoing power S(w)=S,,(®) is given by

currents; =eN, we have

R L=
i,=ei[V,N,]=ei(D/ - D)). (2.6) S(w)=Ef_mdte""‘({lZ(t),IZ(O)}>, (3.9

The observables of interest are the average cutrerit=
—1, through the QDS, and the spectral density of the noisevhere{ ...} stands for anticommutator, and=0 in lead-

Sir(w)=[dtS; () expwt), ing order.
. We notice that in Eq93.3) and(3.4) the termg/AA) and
LL=Trp(0)I,, S, (t)=ReTrp(0)4l,(t)5l,(0), (2.7 (ATAT) are responsible for Cooper pair tunneling and vanish

in the case of normalfinteracting leads. Taking this into

wheredl|=1,—1,. Below we will use the interaction repre- account and using Eq€3.1) and (3.2) we obtain

sentation where Eq(2.7) can be rewritten by replacing
p(0)—po and T, (t)—UT(t)T,(H)U(t), with

t I:eJl dt([AT(t),A(0)]), (3.5
U(t)zTexp{—iJ dt’Vv(t’)|. (2.8
In this representation, the time dependence of all operators is S(w)=e2fw dtcod wt)({AT(1),A(0)}) (3.6
governed by the unperturbed Hamiltonielg. _e ' ' '
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where we also usetAT(t)A(0))=(AT(0)A(—t)). (2/e)w ReG(w,Ap)=1(Au+w)— 1 (Ap—w),

Next we apply the spectral decomposition to the correla- (3.12
tors Egs.(3.5 and (3.6), a similar procedure to that which
also leads to the equilibrium fluctuation-dissipation theorem
The crucial observation is thdtHy,N;]=0, 1=1,2 (we
stress that it is only the tunneling Hamiltonidhthat does
not commute withN,, while all interactions do not change
the number of electrons in the lead3herefore, we are al-
lowed to use for our spectral decomposition the bésjs S(O,A,u)+S(0,—A,u):2wcot>—{ ReG(w,0)[,au-
=|E,,N1,N,) of eigenstates of the operatoK=H, (3.13
— 2N, which also diagonalizes the grand-canonical den- '
sity matrix po [given by Eq.(2.5)], p,=(n|po/n)=Z"lexp  And for the noise power at zero bias we obt&tw,0)
[—E,/kgT]. Next we introduce the spectral function, = wcoth(/2kgT)ReG(w,0), which is the standard equilib-

rium FDT3! Equation(3.10 reproduces the result of Ref.
. 2 _ 38. The current is not necessary linearAm (the case of
A(w)—ZW;m (pnt pm) (MIAIM)[*6(w+Eq—Ep), tunneling into a Luttinger liquit is an obvious examp)e
(3.7 and in the limitT,o—0 we find the Poissonian nois§,
=el. In the limit T,Au—0, the quantum noise becomes
S(w)=¢[l(w)—1(—w)]/2. If I(=Au)=—1(Aw), we get
S(w)=el(w), and thusS(w) can be obtained fron(Au
—w).

which holds for a general nonlinearvs Au dependence.
From this equation and from E@3.10 it follows that the
noise power at zero frequency can be expressed through the
conductance at finite frequency as follows

(O]

2KgT

and rewrite Eqs(3.5 and (3.6) in the matrix form in the
basis|n) taking into account that the operatarcreategan-
nihilateg an electron in the lead 21) [see Eq.(3.1)]. We
obtain the following expressions
Au B. Quantum dot system
H(Aw) Etan}{ZkBT}A(A’u)’ 38 We consider now tunneling through a QDS. In this case
, the problem is more complicated: In general, the two cur-
_€ . rentsl, are not independent, becayse,i,]#0, and thus all
S(o,Au) 2 ; Aldpz o), S correlators S, are nontrivial. In particular, it has been
proven in Ref. 21 that the cross correlationsSipiw) are
sharply peaked at the frequencies-A .., which is caused
by a virtual charge imbalance on the QDS during the cotun-
e Ap= neling process. The charge accumulation on the QDS for a
S(w,Ap)= > > cotf{w l(Ap+w), (3.10 time of orderA ! leads to an additional contribution to the
= B noise at finite frequencyw. Thus, we expect that fow
where we have neglected contributions of order~A-= the correlatorsS,, cannot be expressed through the
Auleg ,wlep<1. We call the relatiori3.10 nonequilibrium ~ Steady-state curreonly and thud has to be complemented
fluctuation-dissipation theorem because of its general validdy Some other dissipative counterparts, such as differential
ity (we recall that no assumptions on geometry or interacconductances,, (see Sec. Il A.
tions were made On the other hand, at low enough frequeneyA . , the
The fact that the spectral function E@®.7) depends only charge conservation on the QDS requiréds=(4l,
on one parameter can be used to obtain further useful relat 611)/2~0. Below we concentrate on the limit of low fre-
tions. Suppose that in addition to the biag a small per- quency and neglect contributions of order ofA . to the
turbation of the formsue ! is applied to the junction. This Noise power. In Appendix A we prove th&{s~(w/A.)?,
perturbation generates an ac curréntw,Ax)e” ! through ~ and this allows us to redefine the current and the noise power
the barrier, which depends on both parametersindAg. @S 1=1q=(I12—11)/2 and S(w)=Sy4(@).* In addition we
The quantity of interest is the linear-response conductancéquire that the QDS is in the cotunneling regime, i.e., the
G(w,Au)=edl (w,Au)/Su. The perturbationsy can be temperature is low enougkgT<A. , although the biad u
taken into account in a standard way by multiplying the tun-is arbitrary(i.e., it can be of the order of the energy goas$
ne]ing amp“tud@(t) by a phase factor egp_ i d)(t)]’ where soon as t.he.S(.Equential tunneling to the dot |S forbidm_n,
&= Spe 1t Substituting the new amplitude into E€8.3) >0. In this limit the current through a QDS arises due to the

and expanding the current with respectda, we arrive at direct hopp"_‘g of an electron from one Iead_ to anather
the following result ' (through a virtual state on the dotvith an amplitude that

depends on the energy cast. of a virtual state. Although
ie2 (= this process can change the state of the QDS, the fast energy
ReG(a),A,u,)ij dtsin(wt)([AT(t),A(0)]). relaxation in the weak cotunneling regimes<w;,, imme-
o (3.19) diately returns it to the equilibrium staigor the opposite
' case, see Secs. IV-NIThis allows us to apply a perturba-
Finally, applying the spectral decomposition to this equatiortion expansion with respect to tunnelivgand to keep only
we obtain first nonvanishing contributions, which we do next.

where A u= w1— u,. From these equations our main result
follows

*Tw
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It is convenient to introduce the notatiorﬁ,(t)

PHYSICAL REVIEW B63 125315

both chemical potentialg.; , separately(in contrast to the

=[' _dt'D,(t’). We notice that all relevant matrix ele- One-parameter dependence for a single-barrier junction, see

ments, (N|D(t)|N+1)~e 2+{, (N—1|D,(t)|N)~e'*-,

Sec. Il A), and therefore the shift chu in Eq. (3.18 by

are fast oscillating functions of time. Thus, under the above®™ @ Will also shift the energy denominators of the matrix

conditions we can writeﬁ,(oo)zo, and even more general
JT2dtD,(t)e"'“'=0 (note that we have assumed earlier that

elements on théhs of Eq. (3.20. However, since the energy
denominators are of ordér.. the last effect can be neglected
and we arrive at the final result

w<<A.). Using these equalities and the cyclic property of

the trace we obtain the following resulfior details of the
derivation, see Appendix A

|=efidt<[BT(t),B(0)]>, (3.14

B=D,D!+DID,. (3.19

Applying a similar procedurésee Appendix A we arrive at
the following expression for the noise powsg* S,,, see Eq.

(2.7),

S(w)=ezficdtcos(wt)({BWt),B(O)}), (3.16

where we have dropped a small contribution of ordéA .. .
Thus, we have arrived at Eg8.14) and(3.16 which are

formally equivalent to Eq9.3.5) and(3.6). Similarly to A in

the single-barrier case, the opera®plays the role of the

effective tunneling amplitude, which annihilates an electron

in lead 1 and creates it in lead 2. Similar to E(&7), (3.9),

*Tw

A
S(w,Ap)= ; ) Cotl‘{zlr(T}l(A,u,iw)%—O(w/Aq.
(3.21

This equation represents our nonequilibrium FDT for the
transport through a QDS in the weak cotunneling regime. A
special case witi,w=0, giving S=el, has been derived in
Ref. 21. To conclude this section we would like to list again
the conditions used in the derivation. The universality of
noise to current relation, Eq43.21), proven here is valid in
the regime in which it is sufficient to keep the first nonvan-
ishing order in the tunnelingy, which contributes to trans-
port and noise. This means that the QDS is in the weak
cotunneling regime witho, kg T<<A . andw;,>w.

IV. MICROSCOPIC THEORY OF STRONG
COTUNNELING

A. Formalism

In this section, we give a systematic microscopic deriva-

and(3.9) we can express the current and the noise power tion of the master equation, EG.22), the average current,

Ap
I(AM)=etan}{2kBT B(Aw), (3.1
ez
S<w,Am=5§ BAp* w), (3.18

in terms of the spectral function

B<w>=2w§ (Pat pm)[(M[BIN)[?8(w+En—Ep).
' (3.19

Eq. (4.37), and the current correlators, E@4.52—(4.54) for

the QDS coupled to leads, as introduced in Egsl)—(2.3),

in the strong cotunneling regimey;,<w. Under this as-
sumption the intrinsic relaxation in the QDS is very slow and
will in fact be neglected. Thermal equilibration can only take
place via coupling to the leads, see Sec. IV B. Due to this
slow relaxation in the QDS we find that there are non-
Poissonian correlationAS in the current through the QDS
because the QDS has a “memory”; the state of the QDS
after the transmission of one electron influences the trans-
mission of the next electron. A basic assumption for the fol-
lowing procedure is that the system and bath are coupled

The difference, however, becomes obvious if we notice tha‘t')nIy weakly and only via the perturbation Eq. (2.3). The

in contrast to the operatadk [see Eq(3.1)] which is a prod-

uct of two fermionic Schrdinger operators with an equilib-
rium spectrum, the operatd contains an additional time

integration with the time evolution governed by =K

+ 2N, . Applying a further spectral decomposition to the

interaction parH;,; of the unperturbed HamiltoniaH, Eq.
(2.1), must therefore be separable into a QDS and a lead part,
Hin=H%“+H™. Moreover, H, conserves the number of
electrons in the lead$Hq,N,]=0, WhereN|=Ekc,ch|k.

We assume that in the distant pagt,» — o0, the system is

operatorB [given by Eq.(3.15] we arrive at the expression in an equilibrium state

(m[Dy|n")(n’|D]|n)

(m{Bln) =

En—En—nm1
(m[D]|n")(n"|Dln)

+2 ,

n” En//_ En+ Mo

(3.20

where the two sums over andn” on thelhs are different by

1
Po=ps®pL, PL:Z_LeXF[_KL/kBT], 4.1)

whereZ, =Trexd —K_ /kgT], K| =H_ —Z,«/N;, and y, is

the chemical potential of ledd Note that both leads are kept
at the same temperatufe Physically, the product form gf,

in Eq. (4.1) describes the absence of correlations between the

the order of tunneling sequence in the cotunneling proces®QDS and the leads in the initial statetgt Furthermore, we
Thus we see that the current and the noise power depend @ssume that the initial stajg, is diagonal in the eigenbasis
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of Hy, i.e. that the initial state is an incoherent mixture of i

eigenstates of the free Hamiltonian. PR(z)P= Pmp, (4.10
In systems that can be divided intdsmal) system(like

the QDS and a(possibly largg external “bath” at thermal where we define theelf-energysuperoperator

equilibrium (here, the leads coupled to the QOSturns out

to be ver seful to make use of the superoperator 1
Ve e Y uperop 3(2)=PLQ;— g QLvP .11

formalism; and of projectors Pt=p Tr_, which
project on the “relevant” part of the density matikx.We and the free resolverRy(2)=i(z—Lg) L. Here, we have
élsed the identities

obtain P1p by taking the partial trace Trof p with respect
to the leads and taking the tensor product of the resultin
reduced density matrix with the equilibrium staie. Here, Tr (¢ =Tr (¢t p)=0 4.1
we will consider the projection operators LCwp) =Tr(Cicp1) =0, (4.12

P=(PpPy®1 )Py, Q=1-P, (4.2 PrLyPr=P+l,Pr=0, (4.13
satisfying P?=P, Q?=Q, and PQ=QP=0, whereP is [P,Lo]=[Q,Lo]=0, (4.19
composed ofP; and two other projectof$ P, and Py,
where Py projects on operators diagonal in the eigenbasis LoP=PLy=0. (4.19

{In)} of Hg, i.e., (n|PpAlm)y=5,(n|Alm), and Py
projects on the subspace wibh particles in the QDS. The
particle numbem is defined by having minimal energy in
equilibrium (with no applied biag all other particle numbers
have energies larger by at least the energy dé&figit The
above assumptions about the initial state B4l of the
system at,— —o° can now be rewritten as

Equation (4.13 follows from Eq. (4.12, while Eq. (4.14)
holds becausel, neither mixes the QDS with the leads nor
does it change the diagonal elements or the particle number
of a state. Finally, Eq(4.15 can be shown with Eq4.14)
and using thaP containsPp .

For an expansion in the small perturbatibg in Egs.
(4.7, (4.9, and(4.11) we use the von Neumann series

Ppo=po- (4.3 1 o 1 0

For the purpose of deriving the master equation we take z-QLQ ™ z-L,—QL\Q
the Laplace transform of the time-dependent density matrix o
Eq (24), with the result — _ |R0(Z)QE [_ iL\/Ro(Z)Q]n.

n=0
p(2)=R(2)po. (4.4) (4.16

Here,R(2) is the resolvent of the Liouville operatady, i.e.,
the Laplace transform of the propagator exfil), B. Master equation

i Using Egs.(4.3), (4.4), and(4.10 the diagonal part of the

R(z)=j dtexp[it(z—L)]=i(z—L) = reduced density matripg(z) =PpPnTr p(z) can now be
0

z—L’ :
written as
(4.9
wherez=w+i7n. We choosern>0 in order to ensure con- 2V =Tr PR(2)Ppn= _ ) 4.1
vergence [ has real eigenvalugand at the end of the cal- ps(2) LPR(2)Ppo z—-3(2) Ps 412
culation take the limity— 0. We can split the resolvent into . . . .
This equation leads to pg(2)=—izpg(2)—ps=

four parts by multiplying it with the unity operatd?+Q

from the Ieft and the I’Ight, _|E(Z)ps(2) The probabllltypn(z)=<n|ps(Z)|n> f0r the

QDS being in statén) then obeys the equation

R=PRP+QRQ+PRQ+QRP. (4.6
Inserting the identity operator-i(z—L)R(z)=—i(z—L) Pn(z):% Wim(2) pm(2), (4.18
X(P+ Q)R(z) between the two factors on the left-hand side
—_ _ 2_ 2_ P . .
of QP=0, PQ=0, Q°=Q, andP~=P, we obtain Won(2)=—iTrspp2(z)pm= _|§nn‘mm(z), (4.19
1 with p,=|n){n| which is a closed equation for the density
QR(Z)PZQmQLvP R(2)P, (4.7 matrix in the subspace defined B (with fixed N). In the
cotunneling regimé’ the sequential tunneling contribution
PR(2)Q= — iPRy(2)PLyQR(2)Q, 4.9 (second order irLy) to Eq. (4.19 vanishes. The leading

contribution[using Eqs(4.11 and(4.16] is of fourth order
. in Ly,
i

z—QLQ+IQLyPRy(2)PLVQ

QR(2)Q=Q Q, (4.9

Whn=Tr pn(LVQRO)SLmepL - (4.20
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Note that since we study the regime of small frequenciesith energyE;,. The termsw,,, account for the change of
Rez=w<||LoQ||~|E,—En|, wherem#n, we can take the state in the QDS due to a current going from lead 1 (@ &
limit @—0 here. In addition to this, we have assumed fastl). In contrast to this, the cotunneling raAé,’m involves ei-
relaxation in the leads and have taken the Markovian limither lead 1 or lead 2 and, thus, it does not contribute directly
z=in—0, i.e,, we have replaced,(2) in Eq. (4.19 by  to transport. Howevem?® . contributes to thermal equilibra-
Whm=lim,_oWnn(2) in Eq. (4.20. The trace ofp is pre-  tion of the QDS via particle-hole excitations in the leads
served under the time evolution E@.18 since= W, has  and/or QDS(see Secs. VI A and VI B
the form TPyLyA=Tr[V,A]—TrQn\[V,A] where the first
term vanishes exactly and the second term involvipig
=1-Py is O(k). After some calculation, we find tha¥,,,
is of the form In order to make use of the standard Laplace transform for
finding the stationary statp of the system, we shift the

W, =W, — nmE Wi (4.21) initial state tot,=0 and define the stationary state ,as

=lim,_..p(t)=lim, ...e "“'po. This can be expressed in

terms of the resolvent,

C. Stationary state

with w,,>0 for all n andm. Substituting this equation into

Eq. .(4.1& we can rewrite the master equation in the p=—ilimzR(z)po, (4.28
manifestly trace-preserving formp,(z) =2 [WnmPm(2) z-0
- , or in real time, . . .
Wmnpn(2)], or in real time using the property lig...f(t)=—ilim,_ozf(z) of the
. Laplace transform. The stationary stateof the QDS can be
Pn(t):% [Wampm(t) =Wmnon(D)]. (422 optained in the same way from E6h.17),

This “classical” master equation describes the dynamics of —

the QDS, i.e., it describes the rates with which the probabili- s=lim—S— 2( yPs: (4.29

ties p, for the QDS being in statén), change. After some 20

algebra(retaining only” O(«°), cf. Appendix B, we find Multiplying both sides withz—>.(z) and taking the limitz
—0, we obtain the condition

Wom=W, +w o +wl (4.23 B
where(in the cotunneling regime 20ps=0, (4.30
Vil Vw13, 420 S s S 0, o b
Wam= 2 Warr(1.), (4.29 S Worpn= 2 (Wonpm~Wrnop) =0, (43D
with the “golden rule” rate from lead to leadl’, which is obviously the stationarity condition for the master

equation, Eq(4.22.

Wo(l",1)=27 2, [(n|(D],D)[m)|?
m,n D. Average current

XO(En—En—Auy)pLm-  (4.20 The expectation valug(t)=Tr1,p(t) of the current, in
In this expressionA u+ = s — 1, denotes the chemical po- leadl [Eq. (2.7)] can be obtained via its Laplace transform
tential drop between lead and lead I’, and p A A
— S . - | =Trl =Trl(P+Q)R(z2)Ppg, 4.3
=(m|p_|m). We have defined the second-order hopping op- (D=Trlip(2)=Trli(P+QR(2)Ppy (4.32
erator where we have inserteB+ Q=1 and used Eq94.3 and
. . (4.4) for p(z). According to Eq.(4.13 the first term van-
(D ,D;/)=D[RyD, +D,/R,D/=—(D/D,,+D, D/, ishes. The second term can be rewritten using E43) and
(4.27  (4.17), with the result
whereD, is given in Eq.(2.3), D,=/°..D,(t)dt. Note, that i 1
(D[ ,D,/) is the amplitude of cotunneling from the leatb ||(Z)=Tf||QmQLvPs(Z)PL:TrsW'(Z)Ps(Z)
the leadl’ (in particular, we can writ8=—(D1,D,), see
Eq. (3.13.). The combined |n(.je>mj(m,m) conta.lns both —E W (2)p(2). 433
the QDS indexm and the lead inder. Correspondingly, the
basis states used above 4ne)=|m)|m) with energyEp, Using the projector method, we have thus managed to ex-

=En+Eq, where|m) is an eigenstate oH s+ HE' with  press the expectation value of the currétting on both the
energyk,,, andlm) is an eigenstate dfl| + HL =2 N QDS and the leadsn terms of the linear superoperatdf
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which acts on theeducedQDS density matrixypg only. Tak-
ing z—0 in Eq. (4.33, the average current in leddn the
stationary limit becomes

L=limTrl,Q

z—0

1 _
Z—_QLQQLVPSPL- (4.34

PHYSICAL REVIEW B 63 125315

Up to now this is exact, but next we use again the perturba-

tion expansion Eq4.16). In the cotunneling regim&;*’i.e.,
away from resonances, the second-order tunneling current

(4.39

is negligible[ O(«)], and the leading contribution is the co-
tunneling current

1{#= —iTri|RoLypspL

ID=iTrT,(QRoLy)3pepy - (4.36

After further calculation we find in leading ordésf. Appen-
dix B)

|2=—|1=e%] W pm, (4.3

WLm:WrTm_Wr:m! (4-3&

wherew,, ., are defined in Eq4.24). Note again thai®,,, in

Eqg. (4.25 does not contribute to the current directly, but

indirectly via the Master equation E¢4.31), which deter-

minesp,, (note thatp,,, is nonperturbative irv). We finally
remark that for Eqs4.34—(4.37) we do not invoke the Mar-
kovian approximation.

E. Current correlators

S7.(2)=Re Trl|RoL PR(2)P1;:RoLyp,  (4.43
whereRg=1lim,_4(z—QLQ) %, and
Q0= —Re Trl|RoLyQRol | RoLvp
—Re Tri|Ryl ' QRoLyRoLyp, (4.44
OF=—Re Trl|RoLyQRoLyRol | p. (4.45

While SF;,(Z) as given in Eq.(4.43 is a nonperturbative
result, we have used E¢4.16) to find the Ieading contribu-
tion in the tunneling amplitud@,, for Sl, andSI Pin Egs.
(4.44) and (4.45. Also note thatQR(z)Q was replaced by
QRyQ in Egs.(4.44 and (4.49, sincew<|E,—E,,| for n
#m and therefor ?,Q and ?,P do not depend op, i.e., they
do not depend on the frequenay

In order to analyze Eq4.43 further, we insert the reso-
lution of unity = ,pm=15 next to theP operators in Eq.
(4.43 with the resultS};= Sh,= — S,= — S5, where

Sh=AS+(il2)13, (4.46
with the non-Poissonian part
AS(D)=€ 2 WynSpm (DWysmpmr - (447)
n,m,n’,m’
The conditional density matrix is defined as
Spom(2) = pam(2) = (i12)py, (4.49
Prm(Z2)=TrpR(2) PmpL - (4.49

Equation(4.17) shows thaf,(z) must be a solution of the

Now we study the current correlators in the stationaryMaster equation Eq4.22 for the initial condition ps(0)

limit. We let tg— —oo, thereforep(t—O)—>p. The symme-
trized current correlatdrcf. Eq. (2.7)],

S,/ (t)=ReTrdl,(t)8l,p, (4.39

wheredl,|=1,—
of the trace as

I, can be rewritten using the cyclic property

S,/ (t)=ReTrsl,e " 5l,.p, (4.40

where e” "~ acts on everything to its right. Taking the
Laplace transform and using E(.28 for the stationary

statep, we obtain

itL

Sy/(2)=lim Re —iz")Tr 81|R(z) 61,/ R(2")Ppy,
o (4.41)

where z=w+in and »—0+. We insertP+Q=1 twice
and use Eq(4.12 with the result

Si(2)= gl,(z)+§,, (ilz)l)y, (4.42)

where ﬁl, 3?9+ . We further evaluate the contribu-
tions t0 S/ (2) usmg Eqs.(4.7) and(4.29, and we obtain

=P, OF pn(O) Snm- We now turn to the remaining con-
tribution S,,, to S/(2) in Eq. (4.42. The Fourier transform
S,FJ(w) of the noise spectrum can be obtained from its
Laplace transfornS,L,T,(z) by symmetrizing the latter,

S ()= S|L|T,(w +S(—w). (4.50
We find S§ = S5,= —S3=3P, where
sQ=e2;n (Wi Wom) P - (4.5))

Finally, we can combine Eq$4.47) and (4.51), using Eq.
(4.42 and we obtain the final result for the current correla-
tors,

Si(w)=S0w)=—S(w)=—S(w)=S(w),
(4.52
S(w)=€22, (Wit Wopm+AS(w), (453
AS(0)=€" > Wyndpmu (€)W P (454

n,mn’,m’
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Whereépnm(w)=pnm(w)—2775(w);1. Here,p,m(w) is the wher.eW is defined !n Eq(4.21). We solve this equation by

Fourier-transformed conditional density matrix, which is ob-Fourier transformation,

tained from thesymmetrizedolution p,(t) = p,(—1t) of the

master equation, Eq4.22), with the initial conditionp,,(0) _ 2W

=45 N H 5p(w)_ ’ (52)

= 6,m- Note thatp,,(w) is related to the Laplace transform W2+ w21

Eq. (4.49 via the relationp,(w) = ph1 (@) + pLl(— o). _ _ _
For a few-level QDSSE~E, with inelastic cotunneling Where we have useWp=0. We substitutesp from this

the noise will be non-Poissonian, since the QDS is switchingduation into Eq(4.54 and write the result in a compact

between states with different currents. An explicit result formatrix form,

the noise in this case can be obtained by making further

assumptions about the QDS and the coupling to the leads, AS(w)z—eZE

and then evaluating Eq4.54), see the following sections. A

For the general case, we only estimat8. The current is of

the orderl ~ew, with w some typical value of the cotunnel- This equation gives the formal solution of the noise problem

ing ratew,,,, and thussl ~ew. The time between switching for nearly degenerate states. As an example we consider a

from one dot state to another due to cotunneling is approxitwo-level system.

mately 7~w L. The correctiomAS to the Poissonian noise Using the detailed balance equatiomzip;=w,p5, We

can be estimated asS~ 81?7~ e?w, which is of the same obtain for the stationary probabilities, = w1,/ (W1o+Wo1)

order as the Poissonian contributieire?w. Thus the cor-  and p,=Wy1/(W1,+W,,). From Eq.(4.37) we get

rection to the Fano factor is of order unity. In contrast to this, | | | |

we find that for elastic cotunneling the off-diagonal rates I_eW12(W11+W21)+W21(W22+W12)

AW (5.9
W ——W .
W2t o2l F

nm

vanish, W, é,m, and thereforedp,,=0 and AS=0. W1pt Wapp
Moreover, at zero temperature, eith&f, or w,,, must be
zero (depending on the sign of the bidsu). As a conse-
guence, for elastic cotunneling we find Poissonian néise

(5.9

A straightforward calculation with the help of EG.2) gives
for the correction to the Poissonian noise

=5(0)/el|=1. 2,0 I
In summary, we have derived the master equation, Eq. AS(w)= 2€7(WigH War— Wap~ Wio)
(4.22), the stationary state E¢¢.29 of the QDS, the average (Wt Wo))[ @2+ (Wqpot Woq)?]
current, Eq.(4.37), and the current correlators, Eq4.52—
: X W Wi Wo +Wows, — (12)]. (5.5
(4.54) for the QDS system coupled to leads in the cotunnel- 11120217 W12Wo1 : :

ing regime under the following assumptiors) strong co- |y particular, the zero-frequency noidéS(0) diverges if the
Funnellng regimew;,<w, I.e., negl|g|ble. intrinsic relaxation “off-diagonal” ratesw,,, vanish. This divergence has to be
in the QDS compared to the cotunneling re®, the weak ¢t a1, or at the relaxation ratey, due to coupling to the
perturb.atlortx/.ls the only c_otuplln_gt between '_[r:e QDS and the |5ty (since wy, in this case has to be replaced with,
leads, in particulaHiy=Hg'+H[", whereHg" acts on the .y The physical origin of the divergence is rather trans-
QDS andH{™ on the leads only(3) no quantum correlations parent: If the off-diagonal rates,,,w,; are small, the QDS
(either between the QDS and the leads or within the QDS 0ofjoes into an unstable state where it switches between states 1
the leadsin the initial statepo=Ppo; (4) no degeneracy in  and 2 with different currents in genefdl.The longer the
the QDS,E,#E, for n#¥m, and (5) small frequenciesp QDS stays in the state 1 or 2 the larger the zero-frequency
<|Epn—E,|. For the master equation E@.22 (but not for  noise power is. However, ifw};+wh,=wh,+w},, then

the other resultswe have additionally used the Markovian A () is suppressed to 0. For instance, for the QDS in the
approximation, assuming fast relaxation in the leads comgpin-degenerate state with an odd number of electrons

pared to the tunneling rate. AS(w)=0, since the two statdg) and||) are physically
equivalent. The other example of such a suppression of the
V. COTUNNELING THROUGH NEARLY DEGENERATE correlation correctiolAS to noise is given by a multilevel
STATES QDS, SE<E(, where the off-diagonal rates are small com-

Hared to the diagondklastig rates?° Indeed, since the main
contribution to the elastic rates comes from transitions
through many virtual states, which do not participate in in-

smaller than the average level spaciég. In the regime, 3 : T .
Apu,keT,A, < SE, the only allowed cotunneling processes glastlc cotunneling, they do not depend on the initial condi-

[ H
are the transitions between nearly degenerate states. THENS: Wi1=Wz, and cancel in the numerator of EG.9),
noise power is given by Eq&t.53 and(4.54), and below we while they are still present in the current. Thus the correction
calculate the correlation correction to the nois8. To pro- AS/1 vanishes in this case. Later, in this section, we consider
ceed with our calculation we rewrite E¢4.22) for sp(t) @ few-level QDS GE~Ec, whereAS+0.

[see Eq.(4.48] as a second-order differential equation in 10 Simplify further analysis we consider for a moment the
matrix form case, where the singularity in the noise is most pronounced,

) B namely, =0 and|AJ]<Au,kgT, so thatw},=wb,, and
Sp(t)=W?8p(t), p(0)=1—p, (5.2 W1,=W,;. Then, from Eqs(5.4) and (5.5 we obtain

Suppose the QDS has nearly degenerate states with en
giesE,, and level spacing\,,=E,—E,,, which is much
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|=%(|1+|2), lh=e > W, (5.6)
m=1,2
—1 2

AS(O)=( ij , (5.7)

wherel,, is the current through thath level of the QDS.
Thus in caseA 5] <Au,kgT the following regimes have to
be distinguished(1) If kgTsAu, thenl, cAw, wi,xcApu,
and thus both, the total curreht=e 'GpA u, and the total
noiseS=FGpApu are linear in the biad . (hereGy is the

conductance of the QDSThe total shot noise in this regime

is super-Poissonian with the Fano facter-1/(ew;,)>1.
(2) In the regimeAu=<kgT<F2A the noise correction

PHYSICAL REVIEW B 63 125315

In the case of zero magnetic fieldy=0, the tunneling
HamiltonianV is symmetric with respect to the exchange of
electrons, 2. Thus the matrix element of the cotunneling
transition between the singlet and three triplé§V(E
—Hg) " V|T,), i=0,*+, vanishes because these states have
different orbital symmetries. A weak magnetic field breaks
the symmetry, contributes to the off-diagonal rates, and
thereby reduces noise.

The fact that in the perturbatiod all spin indices are
traced out helps us to map the four-level system to only two
stategS) and|T) classified according to the orbital symme-
try (since all triplets are antisymmetric in orbital space
Appendix C we derive the mapping to a two-level system
and calculate the transition rates,, andw?,, (n,m=1 for a

(5.7) arises because of the thermal switching the QDS beSinglet andn,m=2 for all triplety using Egs.(4.26 and
tween two states= 1,2, where the currents are linear in the (4-27 With the operator®, given by Eq.(5.8). Doing this

bias, | ,~GpAu/e. The rate of switching isv,,x<kgT, and
thus AS~FGpA 12/ (kgT). SincekgT/Au<F'? the noise

correctionAS is the dominant contribution to the noise, and
thus the total noisé& can be interpreted as being a thermal

telegraph nois&® (3) Finally, in the regimeFY?A u<kgT,
the first term on the right-hand side of E¢.53 is the domi-

nant contribution, and the total noise becomes an equilibrium

Nyquist noise,S=2GpkgT.

We notice that for the noise power to be divergent the

off-diagonal ratesw,;, and w,; have to vanish simulta-

neously. However, the matrix,,,, is not symmetric since the

we obtain the following result

wl =0,
N _W(VTZ 2
Wom=2 | A"
(1+cosp)Au (1—cose)(Au+J)
X1 3(1—cosgp)(Au—J) 3(1+cos¢)Au ,

(5.11

off-diagonal rates depend on the bias in a different way. Ofynich holds close to the sequential tunneling peak,

the other hand, both rates contain the same matrix element of

the cotunneling amplitudeD(,D,,), see Eqs.4.26 and

A ~U (but still A_>J,Au), and forA u>J. We substi-
tute this equation into the E@5.5 and write the correction

(4.27). Although in general this matrix element is not small, A 5() to the Poissonian noise as a function of normalized

it can vanish because of different symmetries of the tWoyias ;= A 1/J and normalized frequenc = ew/[G(2A 1
states. To illustrate this effect we consider the transport. 3y

through a DD systenfsee Ref. 21 for detailsas an example.

Two leads are equally coupled to two dots in such a way that
a closed loop is formed, and the dots are also connected, seeAS(w)=6eGJ
Fig. 2. Thus, in a magnetic field the tunneling is described by

the Hamiltonian Eq(2.3) with
Q=;1h$%$IJ=LZ (5.9

T1=Ty=TH=Th=€"*T, (5.9

(v2—1)[1+(v—1)cos¢p]?(1—cose)
(2v—1)3[ Q%+ (1—cos¢)?]

(5.12

whereG=me(v7%/A_)? is the conductance of a single dot
in the cotunneling regim&. From Eq.(5.12 it follows that

the noise power has singularities as a functiorudbr zero
magnetic field, and it has singularities &t 27m (wherem

is integel as a function of the magnetic fieldee Fig. 3. We
would like to emphasize that the noise is singular even if the

where the last equation expresses the equal coupling of doexchange between the dots is wedk{ A . Note however,
and leads andp is the Aharonov-Bohm phase. Each dot that our classical approach, which neglects the off-diagonal

contains one electron, and weak tunnelingbetween the
dots causes the exchange splitfﬁ1@~t§/U (with U being

elements of the density matrp(t), can only be applied for
weak enough tunnelingw,,<J. In the caseAu<J, the

the on-site repulsiorbetween one spin singlet and three trip- transition from the singlet to the triplet is forbidden by con-

lets
1 T 4t T 4t
|S>:E[dmdzl_d11d2¢]|o>,
1 T 4t T AT
|To>:E[dndu*‘dudzﬂm)v (5.10

|T+>=dITd£T|0), |T7>:d11d21|0>-

servation of energyw,,=0, and we immediately obtain
from Eq. (5.5 thatAS(w) =0, i.e., the total noise is Poisso-
nian (as it is always the case for elastic cotunnelifg the
case of large biag) u>J, two dots contribute independently
to the current =2e 'GAu, and from Eq(5.12 we obtain
the Fano factor

3 cog¢(1—cos
Foqy o Sosdlizcosd) - oo

T 802+ (1-cosp)?’ 613
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I=1,—1_, S=e(l . +1_), 6.1

W, l.= ean WimPm: (6.2

where the transition rates are given by Eds24) and(4.26).

It is convenient to rewrite the currents. in a single-
particle basis. To do so we substitute the rates(E6 into

FIG. 2. DD system containing two electrons and being weaklyE(. (6.2) and neglect the dependence of the tunneling ampli-
coupled to metallic leads 1, 2, each of which is at the chemicatudes Eq(2.3) on the quantum numbeksandp, T, =T,
potentialuy, u,. The tunneling amplitudes between dots and leadswhich is a reasonable assumption for QDS with a large num-
are denoted by. The tunneling {y) between the dots results in a per of electrons. Then we define the distribution function on
singlet-triplet splittingJ~t3/U with the singlet being a ground the QDS as
state.(Ref. 49 The tunneling path between dots and leads 1 and 2
forms a closed loogshown by arrowsso that the Aharonov-Bohm _
phase¢ will be accumulated by an electron traversing the DD. f(e)= vBlE S(e—gp)Tr pd:;dp (6.3

P

This Fano factor controls the transition to the telegraph noisend replace the summation oyewith an integration oves.

and then to the equilibrium noise at high temperature, a®oing this we obtain the following expressions fbe=0

described above. We notice that if the coupling of the dots to

the leads is not equal, themﬁmaﬁo serves as a cutoff of the G,G,/[ 1 1\2

singularity inAS(w). l.=C. 3 (A_+ A—) (Aw)3, (6.4
Finally, we remark that the Fano factor is a periodic func- - B

tion of the phaseg (see Fig. 3 this is nothing but an

2me

Aharonov-Bohm effect in the noise of the cotunneling trans- 1 , , ,
port through the DD. However, in contrast to the Aharonov- C*_Aﬂaf f dede’O(e—e’*Au)i(e)[1-1(2")],
Bohm effect in the cotunneling current through the DD, (6.5

which has been discussed earlier in Ref. 21, the noise effect

does not allow us to probe the ground state of the DD, sinc&here G, ,= 7re2va|T1,2|2 are the tunneling conductances

the DD is already in a mixture of the singlet and three tripletof the two barriers, and where we have introduced the func-

states. tion O (&) =¢e6(e) with 6(e) being the step function. In par-
ticular, using the property®(e+Au)—0O(c—Au)=¢
+Au and fixing

VI. COTUNNELING THROUGH CONTINUUM OF
SINGLE-ELECTRON STATES

f de[f(e)—0(—¢)]=0, (6.6)

We consider now the transport through a multilevel QDS

with SE<Ec. In the low bias regimed u<(8EEc)"? the  (sincel. given by Eqgs(6.4) and (6.5 does not depend on

elastic cotunneling dominates transporand according t0  the shift ¢ — ¢+ const) we arrive at the following general
the results of Secs. IV and V the noise is Poissonian. Hergypression for the cotunneling current

we consider the opposite regime of inelastic cotunneling,

Au>(SEEC)Y2 Since a large numbev of levels partici- G.G.[ 1 1.2

pate in transport, we can neglect the correlations that we |=A¥(—+—) (Ap)3, 6.7
have studied in the previous section, since they become a 127e3\ A+ A

1/M effect. Instead, we concentrate on the heating effect,

which is not relevant for the two-level system considered A=1+12Y/(Au)?, (6.8

before. The condition for strong cotunneling has to be rewrit-

ten in a single-particle formg;,> 7., wherer;, is the single-

particle energy relaxation time on the QDS due to the cou- Y:J dee[f(e)—0(—¢)]=0, (6.9
pling to the environment, andr. is the time of the

cotunneling transition, which can be estimated @s where the valuepY has the physical meaning of the energy
~evpAul/l (wherevy is the density of QDS statpsSince  acquired by the QDS due to the cotunneling current through
the energy relaxation rate on the QDS is small, the multiplet.

cotunneling transitions can cause high-energy excitations on We have deliberately introduced the functid®s in Eq.

the dot, and this leads to a nonvanishing backward tunneling6.4) to emphasize the fact that if the distributibfe) scales
w,,# 0. In the absence of correlations between cotunnelingvith the biasAu (i.e., f is a function ofe/Au), thenC.
events, Eqs(4.37), (4.389 and (4.53 can be rewritten in become dimensionless universal numbers. Thus both, the
terms of forward and backward tunneling currehtsand  prefactorA [given by Eq.(6.8)] in the cotunneling current,
l_, and the Fano factdf=S/(el), whereS=el+AS,,

125315-12
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4.5 . . . . the integration over energy are not specified, then the in-

4.0 Spr——————— Q=0.1) tegral goes from- to +.) From the form of this equation

a5 4p/ =15 we immediately conclude that its solution is a function of

3i e/Ap, and thus the cold-electron regime is universal as de-

w 3.0 2k fined in the previous section. It is easy to check that the

2.5 detailed balance does not hold, and in additiofe) # o

2.0 (—¢€). Thus we face a difficult problem of solving E@.11)

154 ; in its full nonlinear form. Fortunately, there is a way to avoid

10 this problem and to reduce the equation to a linear form

which we show next.

We group all nonlinear terms on the right-hand side of
Eq. (6.10): [de'o(e'—¢€)f(e’)=h(e)f(e), where h(e)

FIG. 3. The Fano factdf = S(w)/1, with the noise poweS(w) = e/ {0 (s —¢)f(s')+ o(e—&')[1—f(s)]}. The trick
given in Egs.(4.53 (ano)' (5'3?* a]r;d Witr th‘; C“"ef”t thro”grf‘ t:e is to rewrite the functiorh(e) in terms of known functions.
DD, I, given in Egs(5.4) and(5.1)), is plotted as a function of the . . . . ; . .
Aharonov-Bohm phasé for the normalizgd bi_aBEA,u/JZZ and E\%fgigotgzg\f z%hlt g:]% Tﬁggrslsgn(é%é.né)oat\r,]v(? tlr:];egrrgi)s_
for four different normalized frequencieQ=w/[G(2Au—J)] v of the kernel Co(—g)=2(1+\ to reqr
=0.1, 0.25, 0.5, and 1. Inset: the same, but with fixed frequenc Y . o(e)—o(—¢) ( )8. 0 reg o_up
0 =0.1, where the bias takes the values 1.5, 3, and erms in suc_:h a way thai(e) does not Qontami(s) eXp“.C-

itly. Taking into account Eq(6.9) we arrive at the following

linear integral equation

0.0

C.+C_
Fe=o
C.—C_

take their universal values, which do not depend on the bias| de’o(e’'—¢)f(e’)=[(1+N)(e?+2Y)+(Aw)?]f(e),
A . We consider now such universal regimes. The first ex- 6.13
ample is the case of weak cotunneling,<7., when the '
QDS is in its ground statef,(¢)=60(—¢), and the thermal
energy of the QDS vanishe¥,=0. ThenA=1, and Eq. where the parameté¥ is the only signature of the nonlin-
(6.7) reproduces the results of Ref. 25. As we have alreadgarity of Eq.(6.11).

mentioned, the backward current vanishes=0, and the Since Eq.(6.13 represents an eigenvalue problem for a
Fano factor acquires its full Poissonian vafue 1, in agree- linear operator, it can in general have more than one solu-
ment with our nonequilibrium FDT proven in Sec. lll B. In tion. Here we demonstrate that there is only one physical
the limit of strong cotunnelings;,> 7., the energy relax- solution, which satisfies the conditions

ation on the QDS can be neglected. Depending on the

electron-electron scattering time,, two cases have to be

distinguished: The regime of cold electrong> 7. and re- O0<f(e)=<l, f(-»)=1, f(+»)=0. (6.14
gime of hot electrons,.< 7. on the QDS. Below we discuss
both regimes in detail and demonstrate their universality.

(6.10

Indeed, using a standard procedure one can show that two
solutions of the integral equatiof®.13, f, and f,, corre-
A. Cold electrons sponding to different parameteYs # Y , should be orthogo-

In this regime the electron-electron scattering on the QDSal, fdef;(e)f,(—€)=0. This contradicts the conditions
can be neglected and the distributibfe) has to be found Ed.(6.14). The solution is also unique for the saiigi.e., it
from the master equation E¢4.22. We multiply this equa- s not degeneratéfor a proof, see Appendix D From Eqg.
tion by V512p5(8_8p)<n|d;dp|n>, sum ovem, and use the (61]) and conditions Eq(614) '|t fO”OWS that if f(S) IS a
tunneling rates from Eq(4.26). Doing this we obtain the solution then I-f(—¢) also satisfies Eq$6.11) and(6.14).
standard stationary kinetic equation, which can be written in>ince the solution is unique, it has to have the symmetry
the following form f(e)=1-f(—¢).

We solve Eqgs(6.13 and(6.14) numerically and use Egs.

, , ) (6.5 and(6.10 to find that the Fano factor is very close to 1
f de’o(e’—&)f(e")[1-f(e)] (it does not exceed the vallle~1.006). Next we use Egs.
(6.8 and(6.9) to calculate the prefactoY and plot the result

_ , o e as a function of the ratio of tunneling conductandes/G,,

_f de’o(e—2")l(e)[1-1(=")], .19 [Fig. 4, solid lind. For equal coupling to the lead§,
=G,, the prefactorA takes its maximum value 2.173, and
thus the cotunneling current is approximately twice as large
compared to its value for the case of weak cotunnelirg,
<7.. A slowly decreases with increasing asymmetry of cou-
where\ = (G7+G3)/(2G,G,)=1 arises from the equilibra- pling and tends to its minimum valug=1 for the strongly
tion ratew?, ., see Eq(4.25. (We assume that if the limits of asymmetric coupling cas®, /G, or G,/G,>1.

o(e)=2\0(e)+ >, O(e*xAp), (6.12
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B. Hot electrons decreasingthe ratioG, /G, [see Fig. 4, dotted lineSurpris-
ingly, the two curves ofA vs G,/G, for the cold- and hot-
electron regimes lie very close, which means that the effect
of the electron-electron scattering on the cotunneling trans-

In the regime of hot electrons, <., the distribution is
given by the equilibrium Fermi functionfe(e)=[1
+expe/ksTo)] 2, while the electron temperatufie has to be ,
found self-consistently from the kinetic equation. EquationPOrt iS rather weak.

(6.11) has to be modified to take into account electron-

electron interactions. This can be done by adding the elec- VII. CONCLUSIONS
tron collision integral .((¢) to the right-hand side a®6.11).
Since the form of the distribution is known we need only the
energy balance equation, which can be derived by multiply
ing the modified equatiof6.11) by ¢ and integrating it over
e. The contribution from the collision integréL«e) van-
ishes, because the electron-electron scattering conserves
energy of the system. Using the symmefiy(e)=1—f¢
(—¢) we arrive at the following equation

The physics of the noise of cotunneling is discussed in the
Introduction. Here we give a short summary of our results.

In Sec. Ill, we have derived the nonequilibrium FDT, i.e.,
the universal relations Eq$3.10 and (3.21) between the
#yrent and the noise, for single-barrier junctions and for

QDS in the weak cotunneling regime, respectively. Taking
the limit T,0—0, we show that the noise is Poissonian, i.e.,
F=1.

In Sec. IV, we have derived the master equation, Eq.
f f dede’fe(e")[1—fr(e)]o(e' —€)e=0. (4.22), the stationary state E¢4.29 of the QDS, the average
(6.15 current, Eq.(4.37), and the current correlators, Eq4.52—
(4.54 for a nondegenerate QDS systefa,&E,,, n#m)

Next we regroup the terms in this equation such that it Concoup|ed to |eads in the Strong Cotunne”ng regmﬁgw at
tains only integrals of the fornfodefg()(...). This al-  small frequenciesp<A,,. In contrast to sequential tunnel-
lows us to get rid of nonlinear terms, and we arrive at théing, where shot noise is either Poissonidh=(1) or sup-
following equation, pressed due to charge conservatién<(1), we find that the

(Ap) noise in the inelastic cotunneling regime can be super-
f decd[fe(e)— O(—e)]+3Y2= s . (6.16 Po!sson!an IE>_1),_ with a correction being as_large as the
8(1+\) Poissonian noise itself. In the regime of elastic cotunneling
=1.

While the amount of super-Poissonian noise is merely es-
timated at the end of Sec. IV, the noise of the cotunneling
current is calculated for the special case of a QDS with

a=m[8(1+\)/5]Y4 (6.17) nearly degenerate states, i£,,<dJE, in Sec. V, wher.e we
apply our results from Sec. IV. The general solution Eq.
Thus, since the distribution again depends on the edilqu, (5.9 is further analyzed fotwo nearly degenerate levels,
the hot-electron regime is also universal. with the result Eq(5.5). More information is gained in the
The next step is to substitute the Fermi distribution func-specific case of a DD coupled to leads, where we determine
tion with the temperature given by E(.17) into Eq.(6.5).  the correction to noise E@5.12) as a function of frequency,
We calculate the integrals and arrive at the closed analyticdlias, and the Aharonov-Bohm phase threading the tunneling
expressions for the values of interest, loop, finding signatures of the Aharonov-Bohm effect in the
cotunneling noise.
272 5 Finally, in Sec. VI, another important situation is studied
A=1+—=1+1/ 201+ N) (6.18  in detail, the cotunneling through a QDS with a continuous
@ energy spectrumgE<Au<E.. Here, the correlation be-
tween tunneling events plays a minor role as a source of
super-Poissonian noise, which is now caused by heating ef-
fects opening the possibility for tunneling events in the re-
verse direction and thus to an enhanced noise power. In Eq.
where again = (Gf+ G3)/2G,G,=1. It turns out that simi-  (6.10), we express the Fano facteiin the continuum case in

lar to the case of cold electrons, Sec. VI A, the Fano factoterms of the dimensionless numbe@s., defined in Eq.
for hot electrons is very close to (hamely, it does not ex- (6.5), which depend on the electronic distribution function
ceed the valué&~1.007). Therefore, we do not expect that f(¢) in the QDS(in this regime, a description on the single-
the super-Poissonian noise considered in this se@tienthe  electron level is appropriate The current Eq(6.7) is ex-
one which is due to heating of a large QDS caused by inpressed in terms of the prefactar Eq.(6.8). BothF andA
elastic cotunneling through)itwill be easy to observe in are then calculated for different regimes. For weak cotunnel-
experiments. On the other hand, the transport-induced heairg, we immediately find==1, as anticipated earlier, while
ing of a large QDS can be observed in the cotunneling curfor strong cotunneling we distinguish the two regimes of
rent through the prefactok, which according to Eq(6.18  cold (7> 7.) and hot ¢.e<7.) electrons. For cold elec-
takes its maximum value =1+ /5/4~2.118 forG,=G,  trons, we derive the linear integral equation E6.13 for

and slowly reaches its minimum value 1 with increasiog (&) which is shown to have a unique solution, and which is

which holds also for the regime of cold electrons. Finally, WeF
calculate the integral in Eq6.16) and express the result in
terms of the dimensionless parameter A u/kgTe,

o

12

272+ @? n=1

1 2
_J’__

F=1+
n? an®

e ", (6.19

125315-14



NOISE OF A QUANTUM DOT SYSTEM IN THE . .. PHYSICAL REVIEW B 63 125315

22— T T T T T T =0. We notice that, if an operatd is a linear function of
240 — cold electrons operatorsD, and D/, thenO(=)=0 (see the discussion in
ol N_ T hot electrons Sec. Il B). Next, the currents can be represented as the dif-
<19l ference and the sum ¢f andl,,
18+ Tg=(,—1)2=ie(XT=X)/2, (A1)
1.7 ~ PO . T
=0, +1)2=ie(YT=Y)/2, (A2)
1.6 [ [ | [ | | | [
1 2 3 4 5 6 7 8 9 10 whereX=D,+ DI andY=D;+D,. While for the perturba-
G./G, tion we have
FIG. 4. The prefacton\ in the expressiori6.7) for the cotun- V=X+X'=Y+YT. (A3)

neling current characterizes a universal cotunneling transport in the o
regime of weak cotunneling;,<7., (A=1, see Ref. 25 and in  First we concentrate on the derivation of £§.14) and re-

the regime of strong cotunneling,,> 7. (A>1). HereA is plotted ~ define the average current EQ.7) asl =14 (which gives the

as a function ofG,/G, (same as a function oB,/G;) for the =~ same result anyway, because the average number of elec-
strong cotunneling, for the cold-electron casg> 7. (solid line  trons on the QDS does not chanige=0).

and for the hot-electron caseg.<7. (dotted ling. G, , are the To proceed with our derivation, we make use of E3j8)
tunneling conductances of a junctions connecting leads 1 and 2 witand expand the current up to fourth orderTig,, :

the QDS.

0 t _
solved numerically. We find that the Fano factor is very I=|f_wdtf_wdt%ldV(t)V(t’)V(t’))
close to one, ¥F<1.006, whileA is given in Fig. 4. For
hot electronsf(¢) is the equilibrium Fermi distribution, and
the Fano factor Eq6.19 and A [Eq. (6.18 and Fig. 4 can

be computed analytically. Again, the Fano factor is very ) . )
close to one, ¥ F<1.007, which leads us to the conclusion Next, we use the cyclic property of trace to shift the time

that heating will hardly be observed in noise, but should bedependince th. Then we complete the integral over time
well measurable in the cotunneling current. and use 4(2)=0. This procedure allows us to combine the
first and second term in EgA4),

—i fo dt(VigV(t)V(t))+c.c. (A4)
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Science Foundation. Now, using Eqs(Al) and(A3) we replace operators in Eq.
(A5) with X and X' in two steps:1=ef°_ dt([XX"
APPENDIX A: —XX]V(t)V(t))+H.c., where some terms cancel exactly.

In this Appendix we present the derivation of E¢®.14  Then we work withV(t)V(t) and notice that some terms
and(3.16). First we would like to mention that the opera®r cancel, because they are lineacijp andc,Tk . Thus we obtain
in these equations is just the second-order tunneling ampli- .
tude, which also appears in the tunneling Hamiltonian after , G VT V3 T
the Schrieffer-WoIfF;ptransformation. The?efore, one might I—eﬁwdt([XTXT—XX][XT(t)XT(t)+X(t)X(t)]>+c.c.
think that the Schrieffer-Wolff transformation is the most (AB)
simple way to derive Eq9.3.14) and (3.16). On the other _ _ _
hand, it is obvious that the Schrieffer-Wolff procedure, beingTWo termsXXXX andX"X"™X"X" describe tunneling of two
a unitary transformation, gives exactly the same amount oglectrons from the same lead, and therefore they do not con-
terms in the fourth-order expression for the current and nois&ibute to the normal current. We then combine all other
as that of the regular perturbation expansion. The Schrieffeterms to extend the integral te,
Wolff procedure is useful in the Kondo regime where the
energy scale is given by the Kondo temperatiize and |:ef
where theB terms in the Hamiltonian lead to a divergence
for T<Ty, while the other terms can be treated by pertur- " — = )
bation theory(see Ref. 48 In our cotunneling regime such a Finally, we usef”Z..dtX(t)X(t)=—[Z.dtX(t)X(t) [since
divergence does not exitince the QDS is weakly coupled X(«)=0] to get Eq.(3.14 with B=XX. Here, again, we
to leads, i.e.Au,kgT>kgTy), and we have to analyze all drop termsDID! andD,D, responsible for tunneling of two
contributions. We do this below using perturbation theory. electrons from the same lead, and obtBias in Eq.(3.15.

In order to simplify the intermediate steps, we use the Next, we derive Eq(3.16 for the noise power. At small
notationO(t)= ' _.dt’O(t’) for any operatolO, andO(0) frequenciesw<<A ., fluctuations oflg are suppressed be-

) dt(XT()XT()XX= XXX ()XT(1)). (A7)
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cause of charge conservatisee beloy, and we can replace expression iV, we obtain for the lowest nonvanishing order

1, in the correlator Eq(2.7) with Td. We expandS(w) upto  (sequential tunnelingthe contribution—iEm(T,ROLme)nn

fourth order inT,,,, usef “Zdtiy(t)e*'*'=0, and repeat the to the rateWy,,, which can be expressed as

steps leading to EqA5). Doing this we obtain,

2me, (|(n|Dy|m)|2=[(n|D]Im[)?)pL md(Amn),

st == | dtcosot([VID.T0IV.ID. (48 o5

Then, we replac&/ and iy with X and X™. We again keep
only terms relevant for cotunneling, and in addition we ne-
glect terms of ordew/A .. [applying the same arguments as
before, see EqLA9)]. We then arrive at Eq3.16) with the
operatorB given by Eq.(3.15.

Finally, in order to show that fluctuations of are sup-
pressed, we repladg in Eq. (A8) with 1, and then use the
operatorsY and Y instead ofX and X'. In contrast to Eq.

(A7) terms such a¥YTY'Y do not contribute, because they
contain integrals of the forny” _dtcost)D,(t)D;(t)=0.
The only nonzero contribution can be written as

where A,,=E,—E,. Using Eg.(2.3) and assuming that
Tip="7is independent op andk, we obtain the expression
for the contribution toW!, . due to sequential tunneling,

2va2§ {¢n|dy|m) 21—, (Amn)]
_|<n|d;|m>|2fl(Anm)}: (84)

wheref|(g) is the Fermi distribution and the density-of-
states in the leads. In the cotunneling regithéhis contri-
022 (= - bution is proportional tac=e /s, therefore we drop 4t
Sedw)= 2 f dtcos(wt)([YT(t),Y(t)][YT,Y]>, and expandNLm to the next nonvanishing, i.e., fourth order
— (A9) in V. Doing this, we obtain the cotunneling contribution

where we have used integration by parts and the property W =i(1RoLyRoQLyRoLyPm) i - (B5)
Y()=0. Compared to Eq(3.16 this expression contains
an additional integration ove; and thereby it is of order Stepwise evaluation of the operators and superoperators in

(w/AL)? this expression by the insertion of the identlyi)(i| leads
to
APPENDIX B:
W I h ix el f th :
e evaluate the matrix elements of the superoperator )y _; > (1R Vs RnUm — 1 iRaRUIV,)

W!(2) given in Eq.(4.33, which are used to calculate the i
average current;, see Eq.(4.37). The derivation for the
master equatioi4.22 is very similar. As for the noise, the

$Q, term, Eq.(4.5)), isPagain obtained in a similar way as the Ui'=(LyRoLvPm)ij= ; [VikRyi (LyPm) i
current, whereas thg, term, Eq.(4.46), is different and is
analyzed in Sec. IV E. Sinc#/'(2) is obtained by taking the —Ri(LvPm) Vi1,

partial trace over the leads, its matrix elements can be ex-

ressed as the sum over lead indices
P (LvPm)ij=VimSmj— Vi Oim » (B6)

| _ | — -~
an(Z)_nETn Wim(2)pLm(2), (B1) wherel;;=(i|l}|j), and similarly forV; . Note that

where n=(n,n), with n and n enumerating the QDS and i 1
lead eigenstates. For convenience, we will use the eigenstates Rj=lim: “(E~E) IPe—g +mo(Ei—E),
of Hy in this Appendix, and not the eigenstatesods in the 70 AR o
main text. Accordingly, her&,=E,+ E,, are the eigenener- (B7)
gies ofH,. Taking the stationary limiz— 0, using the defi- I .
nition Eq. (4.33 and introducing the projectors, = |n)(n, where P stantljs for the pnngpal .value. The curﬂens ob.—
we can write tained fromW,,,, by multiplying with the full density matrix
pm and then summing oven andn. By explicit evaluation,

| _ . 1 using the fact that we can choose the basjson the QDS
Wim= Im:)Tr Pnl |QmQLvP Pm - (B2)  such that all expectation values of the form
Z—

(n|d£ldp2dg3dp4|n), etc., are real, we find that four out of

Note that whilen denotes a free dummy index in E@2), the eight terms in Eq.B6) cancel, while the remaining four
the statelm) is restricted to the subspace whe?gp,,#0  terms contributing to the currer{ can be combined into
with fixed particle numbeN on the QDS. Expanding this (retaining onlyO(«°) terms
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| N . Since the quantum dots are the same we Mdet,(1,1)
; Wam=—2mIm Ef L(HRRV) mi( VRV ) im =Mpm(2,2) andM ,(1,2)=M_n(2,1). We calculate these
matrix elements in the singlet-triplet basis explicitly,

 (VRV)mi(TRIV)im] (B~ En), (88) L1011
whereR,=—iP(Hy,—E,)] L. All other &function contri- 111 1 1 1
butions vanish irD(«%).*" In the presence of an Aharonov- M(1,1)== , (C3)
Bohm phase, when the phases in the tunneling amplitudes 211120
Eq. (5.9 have to be taken into account, we again find Eq. 1 1 0 2
(B8) by explicit analysis. We note here that exactly the same
procedure as above can be applied in the derivation of the 1 -1 -1 -1
master equation and the noise, leading to a reduction of 1l -1 1 1 1
terms and finally to the “golden rule” expressions Egs. M(1, 2)_ _ (C4)
(4.23 and (4.51). By substituting Eqs(2.3) and(2.6) for V -1 1 2 0
andl,, and settind =2 for concreteness, we finally obtain -1 1 0 2

Assuming now equal coupling of the form E&.9) we find
> Wim=2me>, [(D},D1)mi(D], Do) that forl=1" the matrix elements of the singlet-triplet tran-
" f sition vanish(as we have expected, see Seg.®n the other
_(DIyDZ)mf(DTle)fm]5(Afm)a (B9) hand the triplets are degenerate, i&,,=0 in the triplet

sector. Then from Eq.(C1) it follows that w2,

where @,T,D,,) is defined in Eq(4.27). Using Egs.(4.33 =3 W,m(l,)=0. Next, we have®(u,—u;—Am) =0,
and(B1) and the definitions Eq¢4.24) and(4.26, we find  since for nearly degenerate states we assdme>|A, .,
for the cotunneling current and thusw,,=W,n(1,2)=0. Finally, for w;,=wnn(2,1)
we obtain,
12= 2 Winpmpr =€ (Wan=Win)pm, (10 Y

Wee= Z(A ) Au(l+cose), (CH
which concludes the derivation of Eq&t.37) and (4.38.
Note that in Eq.(4.26) the expressiol\ ,,,=E,—E, is re- o T2\ 2
placed byE,,—E,—Ap,: because therén) are eigenstates WgTz—(—) (Ap+J)(1—cosg), (C6)
of K (instead ofHg). The currentl; in lead 1 can be ob- 21 A
tained by interchanging the lead indices 1 and 2 in(B§), 22
which obviously leads td, 5. Wi 2( ) (Ap—3)(1—cose), 7

APPENDIX C:
1+cosp 1+cosp 1+cosp

In this Appendix we calculate the transition rates Eq. T2\ ?
¥ Aup| 1+cosp 2+2cosp O

(4.26 for a DD coupled to leads with the coupling describedWtt=5| 31—

by Egs.(5.8) and(5.9) and show that the four-level system in 1+cosp O 2+2cosp

the singlet-triplet basis, E¢5.10), can be mapped to a two- (C8)
level system. For the moment we assume that the indices

and m enumerate the singlet-triplet basispn,m Next we prove the mapping to a two-level system. First

=S5,Ty,T,,T_. Close to the sequenual tunneling peak, we notice that because the matvix; is symmetric, the de-

A_<A,, we keep only terms of the for@R,D;. Calcu- tajled balance equation for the stationary state Ve m
lating the trace over the leads explicitly, we obtainTat0, —w; Jw/ =1, n,meT. Thus we can seﬁnﬂp2/3 forn
e T. The specific form of the transition matrix EqEC5
—C8 helps us to complete the mapping by
setting (1/32m 2W1m_>W]J_r21 =4 wi—w,,, and
(1/3)2n m=2Wnm— Wy, SO that we get the new transition
D matrix Eq.(5.11), while the stationary master equation for
X ’ I i y . . .

E T Ty TiiMan(1,0 ", (€ the new two-level density matrix does not change its form. If
in additon we set (1/3_,8pim(t)— SpiAt),
4 8pni(t)— Spoy(t), and (L3R4 . Spnm(t)— Spas(t)

Loy, t n=2¢%Mnl1 21! ' n,m=2¢%nm 22. '
Mnm(is] ):2 (nldfidg;lmy(mldy,;,dspIn), (C2)  then the master equation E@.22 for dp,(t) and the ini-
=8 tial condition 8p,(0)= 6,m— pn do not change either. Fi-
with ®(g)=e0(e), andA,,=0,=J, and we have assumed nally, one can see that under this mapping, 4 for the
tq<<A_ so thatRy=1/A . correction to the noise powekS(w) remains unchanged.

, '7TV2
Wil '|)=2A2, O(u—ppr—Anm)

i’
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Thus we have accomplished the mapping of our singlet- 1 ‘
triplet system to the two-level system with the new transition @(x)= zj dee™"fy(e). (D4)
matrix given by Eq.(5.11).

Here we have to be careful because, strictly speaking the

Fourier transform ofog(e) does not exis{this function is
Here we prove that the solution of E§.13, (6.9), and divergent at+ ?O)- On the other hand, since the integral on

(6.14) is not degenerate. Suppose the opposite is true, i.eNe left-hand side of ED3) is convergent, we can regular-

there are two functiond,y(¢) andf,(e), which satisfy these 12€ the kernel asg(s) — o's(e)e 7l and later take the limit

equations. Then the functiofy(e)=f(e)—f,(¢) satisfies n— +0. Then for the Fourier transform of ED3) we find

Eq. (6.13 with the conditions

APPENDIX D:

(1+N)@"(X)=[u(x)+(Aw)?+2(1+\)Y]e(X), (D5)
f ded(S):deSfd(S)zo, (D1)

_ —iex — 2
(o) = fy(—) =0, —1=fy(e)=1. 02 u(x) fdse og(e)=2[N+cogAux)]/x5, (D6)

According to Egs(6.13, and(6.9), the integralfde[efa(e)|  whereu(x) is real, becauses is an even function of. Thus
is convergent. This allows us to symmetrize the kemnéh we have obtained a second-order different@thralinges
Eq. (6.13: o(e)=og(e) +(1+N)e+Au, where o5(2)  equation for the functior(x). We conclude from Eq(D1)
=[AO(e) +0O(e—Au)]+[e——¢], and thusog(e)=0s  that ¢(0)=¢'(0)=0, and the condition Eq(D2) ensures
(—s). Using 'ghe condition Eq(D1) we arrive at the new that the solution of EqD5) is localized,@(X) | . +.=0 and
integral equation foff4, finite everywhere. All these requirements can be satisfied
only if ¢(x)=0 for all x. Indeed, since the function(x)
f de’ og(e’ —¢)fq(e’) +(Aw)?+2(1+\)Y is positive for allx (we recall thatY
>0), thene is a monotonous function, and therefore it can-
—[(1+N\)(£24+2Y)+(Aup)?]f4(e). (D3)  Not be localized. In other words, the Sctiiger equation
with repulsive potentiali(x) >0 does not have localized so-
Next we apply Fourier transformation to both sides of thislutions. Thus we have proven théi(e)="f,(¢) for all &,
equation and introduce the function and the solution of Eq6.13 is not degenerate.
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