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threading magnetic field are calculated. The solutions of the Schrödinger equation with Dirichlet boundary
conditions are obtained by a variational separation of variables in curvilinear coordinates. We obtain a width
profile that compensates for the main effects of the curvature variations in the centerline. Numerical results are
shown for circular, elliptical, and limaçon-shaped quantum rings. We also show that smooth and tiny variations
in the width may strongly affect the Aharonov–Bohm oscillations.
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I. INTRODUCTION

Quantum rings �QRs� are promising quantum structures
because of their particular topology, which leads to the
Aharonov–Bohm effect.1 This interference phenomenon is
associated with persistent currents and magnetization, and its
strength can be modulated by tailoring the shape and the size
of the QR.2 In particular, semiconductor QRs have been the
subject of intense experimental3–9 and theoretical10–17 works.

The simplest model of a quantum ring has a circular shape
and uniform width. However, distorted rings must be consid-
ered because imperfections occur in growth and fabrication
processes.3,6 Moreover, distorted rings have interesting elec-
tronic spectra in a threading magnetic field, with anticross-
ings and quenched oscillation of levels as a function of the
field strength. This occurs in elliptic QRs,18,19 in circular
rings with varying widths in the presence of an in-plane elec-
tric field,20,21 and in QRs with structural distortions.22

To gain a deeper understanding of the effects of ring dis-
tortions on the electronic spectrum, researchers have investi-
gated rings of arbitrary shape.23–25 Of course, such work in-
volves the basic concepts of differential geometry. Electronic
states in rings with a uniform width in the absence of mag-
netic fields were calculated.26,27 It was shown that regions
with a larger curvature are more favorable for the electrons.
Recently, we calculated the electronic states of thin QRs with
arbitrary �but smooth� variations in curvature and width and
reported numerical results for elliptical rings.13 Since the
thinner regions of a ring are less favorable for the electron,
we were able to obtain a width profile that compensates for
the effects of the non-uniform curvature of the ellipse.

Rings of arbitrary shape in the presence of a threading
magnetic field have also been considered. Namely, Pershin
and Piermarocchi28 calculated persistent and radiation-
induced currents in QRs of arbitrary shape, uniform width,
and finite-barrier transversal confinement. The calculation of
the electronic states was performed by an approximate sepa-
ration of the longitudinal and transversal motions. This led to
an effective longitudinal equation that contains the tradi-
tional effective potential due to the curvature profile.26,27

Within this approach, it was shown that curvature variations
produce level anticrossings and flattening of the lower levels.

Similar effects were obtained in rings with impurities29 and
rings lacking circular symmetry.9,21

In the present work, the electronic states in QRs of arbi-
trary shape threaded by a magnetic field are investigated.
However, contrasting Ref. 28, the ring width is non-uniform
and the transversal confinement is produced by infinite bar-
riers. Our main motivation is to predict the combined effect
of width and curvature profiles. Noncircular rings may be
intentionally or nonintentionally produced. In both cases, an
accurate knowledge of the width profile is needed for an
appropriate calculation of the electronic states. A one-
dimensional equation is obtained by an appropriate separa-
tion of variables in curvilinear coordinates. The energy spec-
tra as a function of the magnetic flux threading circular,
elliptical, and limaçon-shaped rings are calculated and ana-
lyzed. We highlight interesting effects of the width non-
uniformity that may be relevant for the quantum mechanics
in curved spaces,23–25 for experimental studies of quantum
rings,6,9 and for electronic and matter transmissions through
curved waveguides.30–33 Of course, our ring model is rather
simple. The boundary conditions should be improved, aim-
ing at an accurate quantitative prediction of experimental
results.

The remaining part of the paper is organized as follows:
In Sec. II, we set up the problem and introduce a change
from Cartesian to longitudinal and transversal coordinates.
The approximate separation of variables is performed, within
a variational approach, in Sec. III. The periodicity of the
energy levels is demonstrated in Sec. IV, and the compensa-
tion of the effects of the width and curvature is predicted in
Sec. V. Finally, the numerical results and discussions and the
main conclusions are presented in Secs. VI and VII, respec-
tively.

II. TWO-DIMENSIONAL PROBLEM

We calculate the states of an electron in a closed plane
waveguide in a perpendicular magnetic field. This model is
used to describe GaAs quantum rings, when in-plane and
perpendicular motions can be separated. The vector potential
of the magnetic field is taken as A= �−y ,x ,0�B /2 and the
stationary states satisfy
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where m� is the electron effective mass and �=�� / �eB� is
the cyclotron radius. Since the particle is confined in the
ring, ��x ,y� obeys Dirichlet boundary conditions.

In this work, the overall shape of each quantum ring is
determined by a smooth closed curve, which is called the
centerline of the ring. In terms of its arc length s, such a
curve is given by the following vector equation:

r = rc�s� = xc�s�ex + yc�s�ey , �3�

where 0�s�L and L is the centerline perimeter. The ring
occupies the two-dimensional region swept out by a moving
line segment with a variable length. The motion of the seg-
ment obeys the following conditions: �i� its midpoint de-
scribes the centerline counterclockwise, �ii� it perpendicu-
larly intersects the centerline, �iii� its length w smoothly
depends on the arc length s covered by the midpoint and
gives the local width of the ring, and �iv� different segments
do not intersect. This way, rings with non-uniform widths are
easily designed.

At each point of the centerline, we define the tangent unit
vector

Tc�s� =
drc

ds
�s� = ẋc�s�ex + ẏc�s�ey �4�

and the normal unit vector

Nc�s� = ez � Tc�s� = − ẏc�s�ex + ẋc�s�ey . �5�

Here, each dot over a variable means an ordinary differen-
tiation in the variable s. On the other hand, the signed cur-
vature is defined by

dTc

ds
�s� = k�s�Nc�s� . �6�

Therefore, the curvature satisfies the following equations:

ẍc�s� = − k�s�ẏc�s� , �7�

ÿc�s� = k�s�ẋc�s� , �8�

and

k�s� = − ẏc�s�ẍc�s� + ẋc�s�, ÿc�s� . �9�

Regarding the geometrical characterization of the center-
line, we also consider the distance ��s� of each point to the
origin of coordinates, and the area ��s� that the vector rc�s̄�
sweeps as the arc length s̄ increases from 0 to s. Those mea-
sures are given by

��s� = �rc�s�� = �xc
2�s� + yc

2�s� �10�

and

��s� =
1

2
	

0

s


− yc�s̄�ẋc�s̄� + xc�s̄�ẏc�s̄��ds̄ . �11�

Hence, the area enclosed by the the centerline is S=��L� and
the magnetic flux across this area is

	 =
S	0

2
�2 , �12�

where 	0=h /e is the flux quantum.
To calculate the wave function ��x ,y�, we introduce the

curvilinear coordinates u and s. For this, we remind that the
region of the ring is generated by a moving line segment,
whose position, direction, and length depend on the param-
eter s. Namely, its midpoint is at rc�s�, it is parallel to the
normal unit vector Nc�s�, and its length is w�s�. Hence, the
position r=xex+yey of an arbitrary point of the segment
obeys r−rc�s�=−uw�s�Nc�s�, where −1 /2�u�1 /2. Since
Nc�s� points to the inner region of the centerline, u=−1 /2
corresponds to the inner boundary of the ring and u=1 /2
corresponds to the outer one.

The transformation from curvilinear to Cartesian coordi-
nates is given by

r = rc�s� − uw�s�Nc�s� , �13�

where −1 /2�u�1 /2 and 0�s�L. Then, the Jacobian of
the �u ,s� to �x ,y� mapping is given by

J�u,s� = w�s�
1 + ��s�u� , �14�

where ��s�=w�s�k�s�. This determinant should be positive
when −1 /2�u�1 /2 and 0�s�L. Otherwise, the bound-
aries of the ring would not be well defined.27 Hence, ���s��
�2 should apply for 0�s�L, leading to the condition
w�s� /2�1 / �k�s�� at each point of the centerline. Namely, the
half-width of the ring should be smaller than the curvature
radius of the centerline.

In the new variables �u ,s�, the problem is simplified be-
cause the corresponding domain is a rectangular strip. To
write the differential equation �1� in the variables �u ,s�, we
introduce the function f�u ,s� such that

��x,y� =
ei�u,s�

�J�u,s�
f�u,s� , �15�

where

�u,s� =
e

�
	

0

u

A�ū,s� · Nc�s�w�s�dū =
w�s���s��̇�s�u

2�2

�16�

is a phase introduced to enhance the accuracy of the varia-
tional separation of variables performed below.28 It will also
allow a simple analysis of the periodicity of the Aharonov–
Bohm oscillations and their invariance under translations and
rotations of the ring. Moreover, the probability density obeys

���x,y��2dxdy = �f�u,s��2duds . �17�

Equation �1� is transformed to
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Husf�u,s� = E2Df�u,s� , �18�

with

Hus =
�2

2m��a20
�2

�u2 + a11
�2

�s � u
+ a02

�2

�s2

+ a10
�

�u
+ a01

�

�s
+ a00� . �19�

By omitting the arguments s and u and introducing �=J /w
=1+�u, the coefficients are

a20 = −
1

w2 −
ẇ2u2

w2�2 , �20�

a11 =
2ẇu

w�2 , a02 = −
1

�2 , �21�

a10 =
�wẅ − 3ẇ2�u

w2�2 −
2ẇk̇u2

�3 +
i

�2�u2ẇ�1 + ��
�2 +

2uẇ�̇

w�2 � ,

�22�

a01 =
2uwk̇

�3 +
ẇ

w�2 −
i

�2�uw�1 + ��
�2 +

2�̇

�2 � , �23�

and

a00 = −
k2

4�2 −
3ẇ2

4w2�2 +
ẅ

2w�2 −
uk̇ẇ

�3 +
uwk̈

2�3 −
5u2w2k̇2

4�4

+
i

�2�−
k��̇

2�2 +
ẇ�̇

w�2 +
uẇ�1 + ��

2�2 +
2uwk̇�̇

�3

+
u2w2k̇�2 + ��

2�3 � +
1

�4� �̇2

�2 +
uw�̇

�2 +
uw�̇

�

+
u2w2�1 + ��2

4�2 � . �24�

III. VARIATIONAL SEPARATION OF VARIABLES

We assume that the width of the ring is much smaller than
the cyclotron radius, i.e., w�2�. Hence, for an electron in
the magnetic field, the ring is essentially a one-dimensional
object. We also suppose that the ring is thin enough, so that
according to the Dirichlet boundary conditions, the depen-
dence of f�u ,s� on the transversal coordinate u may be ap-
proximated by a function of the following form:

hn�u� = �2 sin�n
�u +
1

2
�� . �25�

This is a stationary state with an energy �2n2
2 / �2m�w2� in
an infinite quantum well with a width w. Accordingly, the
two-dimensional wave function is written as

fn�u,s� = hn�u�gn�s� , �26�

where gn�s� is a longitudinal mode to be determined. This
approximation was already used by Pershin and
Piermarocchi.28

It is worth noting that Eq. �26� represents a kind of adia-
batic approximation, where f�u ,s� is separated into a trans-
versal mode hn�u� and a longitudinal mode gn�s�. However,
regarding ��x ,y�, one should bear in mind that the factor
�u ,s� in Eq. �15� admixes the transversal and longitudinal
motions. This mixing is due to the magnetic field.

The longitudinal modes gn�s� should minimize the mean
value of Hus. Then, they are obtained through a variational
calculation. By taking the normalization condition �fn � fnus
= �gn �gns=1 into account, one looks for the functions gn�s�,
which make the variation in the following functional:

Ln�gn� = �fn�Hus − E2D�fnus �27�

vanish. This is a necessary condition for the minimization of
Ln�gn� and leads to an ordinary differential equation for gn�s�
with the periodic boundary conditions gn�L�=gn�0� and
ġn�L�= ġn�0�. The indices below the bracket �  define the
integration variables.

For an arbitrary variation �gn, the variation in the func-
tional is

�Ln = �gn�s���n��gn�s�s + ��gn�s���n�gn�s�s, �28�

where

�n = �hn�u��Hus�hn�u�u − E2D =
�2

2m��b2
d2

ds2 + b1
d

ds
+ b0� ,

�29�

where b2= �hn�u��a02�hn�u�u,

b1 = �hn�u��a11
�

�u
+ a01�hn�u�u = �hn�u��a01 −

1

2

�a11

�u
�hn�u�u,

�30�

and

b0 +
2m�E2D

�2 = �hn�u��a20
�2

�u2 + a10
�

�u
+ a00�hn�u�u

= �hn�u��a00 − �n
�2a20 −
1

2

�a10

�u
�hn�u�u.

�31�

Also, by taking into account the periodic boundary condi-
tions for gn�s�, the variation �gn�s� satisfies �gn�L�=�gn�0�
and �̇gn�L�= �̇gn�0�.

The operator �n is Hermitian since it can be written as

�n =
�2

2m��−
d

ds
c2

d

ds
−

i

2
� d

ds
c1 + c1

d

ds
� + c0� , �32�

where c2=−b2,
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c1 = i�b1 −
db2

ds
� =

1

�2 �hn�u��
uw�1 + �� + 2�̇

�2 �hn�u�u,

�33�

and

c0 = b0 +
i

2

dc1

ds
=

n2
2

w2 −
2m�E2D

�2 + �hn�u�� −
k2

4�2 +
3ẇ2

4w2�2

+
uwk̈

2�3 +
ukẅ

�3 +
uk̇ẇ

�3 −
3ukẇ2

w�3 −
5u2w2k̇2

4�4 −
3u2kwk̇ẇ

�4

+
n2
2u2ẇ2

w2�2 + �uw�1 + �� + 2�̇

2��2 �2

�hn�u�u. �34�

The Hermitian character of �n guarantees that

�Ln = 2 Re
��gn�s���n�gn�s�s� . �35�

Therefore, the condition �Ln=0 leads to �ngn�s�=0, i.e.,

�−
d

ds
c2

d

ds
−

i

2
� d

ds
c1 + c1

d

ds
� + vn + �n�gn�s�

=
2m�E1D

�2 gn�s� , �36�

where

E1D = E2D −
�2n2
2

2m�w̄2 �37�

is called the longitudinal energy. It is the difference between
the two-dimensional energy E2D and the mean transversal
energy along the quantum ring. The value w̄ is the root mean
inverse square width, i.e.,

1

w̄2 =
1

L
	

0

L 1

w2�s�
ds . �38�

To express the other coefficients, it is convenient to define
the following auxiliary function:

Ip,q�n,�� = �hn�u��
up

�q �hn�u�u = 	
−1/2

1/2 uphn
2�u�

�1 + �u�qdu . �39�

The coefficient c2= I0,2�n ,�� affects the longitudinal effec-
tive mass,

c1 =
w
I1,1�n,�� + I1,2�n,��� + 2�̇c2

�2 �40�

is related to the threading magnetic flux,

vn = n2
2� 1

w2 −
1

w̄2
� + �−

k2

4
+

3ẇ2

4w2�c2 + �wk̈

2
+ kẅ + k̇ẇ

−
3kẇ2

w
�I1,3�n,�� − �5w2k̇2

4
+ 3kwk̇ẇ�I2,4�n,��

+
n2
2ẇ2

w2 I2,2�n,�� , �41�

is the effective longitudinal potential,34 and

�n =
1

�4��̇2c2 + w�̇
I1,1�n,�� + I1,2�n,��� +
w2

4

I2,0�n�

+ 2I2,1�n,�� + I2,2�n,���� �42�

contains the terms leading to the quadratic dependence of the
energy levels on the magnetic field strength. It is worth re-
marking that I2,0�n�=1 /12−1 / �2n2
2� and I2,0�1��0.0327.

The solutions of Eq. �36� are written as

gn�s� = �
q

Cn,q�q�s� , �43�

where the basis functions are

�q�s� =
e2
iqs/L

�L
, �44�

and the coefficients satisfy the following eigenvalue prob-
lem:

�
q�

Mq,q�
�n� Cn,q� = E1DCn,q. �45�

The matrix elements are given by

2m�

�2 Mq,q�
�n� = ��q�

4
2qq�c2

L2 +

�q + q��c1

L
+ vn + �n��q�s.

�46�

The numerical results in Sec. VI are calculated with q
=−100,−99, . . . ,100, i.e., 201 Fourier terms in Eq. �43�.

IV. PERIODICITY OF THE ENERGY LEVELS

The longitudinal mode gn�s� may be written as

gn�s� = g̃n�s�e−i��s�, �47�

where

��s� =
e

�
	

0

s

A�u, s̄� · Tc�s̄�ds̄ =
��s�
�2 . �48�

Hence, the boundary conditions gn�L�=gn�0� and ġn�L�
= ġn�0� lead to g̃n�L�=ei�g̃n�0� and ġ̃n�L�=ei�ġ̃n�0�, where

� = ��L� =
��L�
�2 =

S

�2 =
2
	

	0
. �49�

When Eq. �47� is set into Eq. �36�, we obtain

�−
d

ds
c2

d

ds
−

i

2
� d

ds
c̃1 + c̃1

d

ds
� + vn + �̃n�g̃n�s�

=
2m�E1D

�2 g̃n�s� , �50�

where

c̃1 =
w
I1,1�n,�� + I1,2�n,���

�2 �51�

and
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�̃n =
w2

4�4 
I2,0�n� + 2I2,1�n,�� + I2,2�n,��� . �52�

At this point, we note that the energy levels are invariant
under translations and rotations of the ring. Moreover, for
����1, we obtain c2�1,

c̃1 � −
3w�I2,0�n�

�2 , and �̃n �
w2

�4 I2,0�n� . �53�

This means that for very thin quantum rings, the coefficients

c̃1 and �̃n are negligible. In this regime, g̃n�s� satisfies

�−
d2

ds2 + vn�s��g̃n�s� =
2m�E1D

�2 g̃n�s� , �54�

and the only dependence of the energy levels on the mag-
netic flux comes from the factor exp�2
i	 /	0� in the
boundary conditions for g̃n�s�. Of course, this factor is peri-
odic in 	 with a period 	0. As pointed out by Pershin and
Piermarocchi,28 such a periodicity is associated with the
Aharonov–Bohm oscillations of the energy levels.

V. COMPENSATION BETWEEN WIDTH AND CURVATURE

Regarding Eq. �54�, the function vn�s� often produces en-
ergy gaps, which reduce the amplitude of oscillation of the
energy levels. However, when w and k have small first- and
second-order derivatives, we obtain

vn�s� � n2
2� 1

w2�s�
−

1

w̄2� −
k2�s�

4
. �55�

Hence, the main effects of a non-uniform width and curva-
ture are compensated for each other, provided vn�s� is a con-
stant. Such a constant is the following mean value:

v̄n =
1

L
	

0

L

vn�s�ds = −
k̄2

4
, �56�

where k̄ is the root mean square of k�s�. This leads to the
following width profile:

w�s� =
1

� 1
w̄2 +

k2�s�−k̄2

4
2n2

. �57�

In this sense, the ring should be thinner when the absolute
value of the curvature of the centerline is larger.13

VI. NUMERICAL RESULTS

A. Rings with uniform width

Here, we study quantum rings with a uniform width w
=15 nm and limit ourselves to the transversal mode with n
=1 and energy �2
2 / �2m�w2��24.94 meV. The longitudi-
nal energy E1 will be given in units of E0=�2
2 / �2m�L2�.
Hence, for a better comparison of the spectra of the different
rings considered here, the perimeter of the centerline is taken
as L=942.5 nm in all of the cases. This corresponds to a

circle with a radius of 150 nm. For conduction electrons in
GaAs rings of this size, E0�0.63 meV.

With a fixed perimeter, the area S=��L� enclosed by the
centerline depends on its shape. Numerical results are dis-
played for energy levels as a function of the magnetic flux 	
in the range 0�	 /	0�5.

We first consider a circular ring whose centerline has a
radius of 150 nm, as shown in Fig. 1�a�. Since the area en-
closed by the centerline is S�0.071 �m2, a threading flux
quantum corresponds to a magnetic field of 58.5 mT. The
typical Aharonov–Bohm oscillations of the energy levels,
with a period 	0, are clearly observed in Fig. 1�b�.

The case of an elliptical quantum ring is depicted in Fig.
2�a�. Its centerline is an ellipse with semiaxes a=194.4 nm
and b=97.5 nm and encloses the area S�0.060 �m2.
Hence, a threading flux quantum corresponds to a magnetic
field of 69.4 mT. Aharonov–Bohm oscillations of the energy
levels are also observed in Fig. 2�b�. As expected, the non-
uniform curvature of the ellipse leads to the occurrence of
gaps in the energy spectrum. However, the levels are degen-
erate when the flux is an odd integer times 	0 /2. This de-
generacy is due to the twofold rotational symmetry of the
ring.22

A distorted quantum ring similar to those studied by Per-
shin and Piermarocchi28 is also considered. The situation
simulates a structural defect in the form of a dip, which may
occur in fabricated, grown, or field-effect quantum rings.3,6

Instead of a piecewise circular ring, we deal with a centerline
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FIG. 1. �Color online� �a� Scheme of a circular ring and �b�
energy levels as a function of the magnetic flux. The ring width is
w=15 nm and the radius of the centerline, which is marked by the
dashed line in �a�, is 150 nm.
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FIG. 2. �Color online� �a� Scheme of an elliptical ring with a
width w=15 nm and �b� energy levels as a function of the magnetic
flux. The semiaxes of the centerline are a=194.4 nm and b
=97.5 nm.
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in the shape of a limaçon. Such a curve is given in polar
coordinates �� ,�� by

� = c�1 −
23

32
cos���� , �58�

with c=132.3 nm. In this case, a threading flux quantum
corresponds to B�59.8 mT because the area enclosed by
the limaçon is S�0.069 �m2. Aharonov–Bohm oscillations
of the energy levels are clearly observed in Fig. 3�b�, al-
though small gaps are apparent and the ground level is rather
flat. This is in good qualitative agreement with Fig. 2�a� of
Ref. 28 �the units of energy differ by a factor of 4�. Of
course, since both rings lack rotational symmetry, we do not
expect degenerate energies to occur in either case.9

The reason why we did not apply our theory to the dis-

torted ring in Ref. 28 is that Eq. �41� contains k̇, k̇2, and k̈.
Therefore, the curvature of such a ring is discontinuous and
strong singularities occur in Eq. �36�. Moreover, since f�u ,s�
is assumed to be continuous, the wave function ��x ,y� in
Eq. �15� would be discontinuous. To avoid such complica-
tions, we have used the limaçon-shaped centerline, wherein
all derivatives of the curvature are continuous.

B. Rings with non-uniform width

As a simple case of a quantum ring with a non-uniform
width, we consider a circular ring with radius of 100 nm and
w�s�= 
20−0.6 cos�2
s /L�� nm. Note that the width in-
creases as x decreases, but this is not apparent in Fig. 4�a�
because the amplitude of the oscillation is only 3% of the
mean width. Since the area of the circle is S�0.126 �m2, a
threading flux quantum occurs for B�32.9 mT. Aharonov–
Bohm oscillations of the energy levels, with period 	0, are
observed in Fig. 4�b�. However, the non-uniformity of the
width produces gaps and a flattening of the lower six energy
levels.

The ring in Fig. 4�a� is an accurate approximation of an
eccentric ring with circular boundaries with radii of 90 and
110 nm and eccentricity �=0.6 nm. Such a ring was studied
in Ref. 21, and Fig. 4�b� herein is in excellent agreement
with the Fig. 4�b� therein. It should be noted that a very
small value in eccentricity has produced a quenching of the
Aharonov–Bohm oscillations of the lower energy levels.

This is relevant for experimental studies of persistent cur-
rents in quantum rings. However, a more realistic model of
the confining potential may be needed to describe the experi-
mental results.

The physical reason for the flattening of the energy levels
can be explained by using Eq. �55�. The wider regions of the
circular ring are more favorable for the electrons, i.e., they
correspond to a lower effective potential. Therefore, low-
energy electrons are confined near the point corresponding to
s=L /2, wherein the width attains its maximum value. Since
the ring is thin, small variations in the width produce large
variations in the transversal energy, thus confining the elec-
tron. By expanding the longitudinal potential up to second
order in the arc length s−L /2, one obtains

�2

2m�vn�s� � −
�2n2
2

2m�

ẅ�L/2�
w3�L/2��s −

L

2
�2

+ C , �59�

where C is nearly constant. The first term corresponds to an
effective one-dimensional oscillator with the following level
spacing:

�En =
�2n


m�
�−

ẅ�L/2�
w3�L/2�

. �60�

Such a term describes the dominant interaction for weak and
moderate magnetic fields and explains the flatness and spac-
ing of the lower energy levels displayed in Fig. 4�b�.
Namely, in units of E0=�2
2 / �2m�L2�, the level spacing is

�En

E0
=

2nL2



�−

ẅ�L/2�
w3�L/2�

. �61�

For the ring in Fig. 4, we have w�s�= w̄−� cos�2
s /L�, with
w̄=100 nm and �=0.6 nm. This leads to

�E1

E0
=

4L

w̄ + �
� �

w̄ + �
� 20.8 �62�

and �E1�0.3 meV. These numerical results are in good
agreement with Fig. 4�b� in this paper and Fig. 4 in Ref. 21,
respectively.

Next, we consider a ring with a non-uniform width, with
the same centerline as the one shown in Fig. 2�a�, i.e., an
ellipse with semiaxes a=194.4 nm and b=97.5 nm. In this
case, the width profile is displayed in Fig. 5�a�. It has been
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FIG. 3. �Color online� �a� Scheme of a limaçon-shaped ring with
a width w=15 nm and �b� energy levels as a function of the mag-
netic flux. The intersections of the centerline with the x axis are
x1�−227.4 nm and x2�37.2 nm.
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FIG. 4. �Color online� �a� Scheme of a circular ring with a
radius of 100 nm and a width w�s�= 
20−0.6 cos�2
s /L�� nm and
�b� energy levels as a function of the magnetic flux.
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calculated by using Eq. �57� in order to compensate for the
main effects of the width and the curvature. The resulting
ring is thinner where the centerline has a larger curvature,
i.e., at the principal vertices of the ellipse. As expected, gap-
less Aharonov–Bohm oscillations of the energy levels are
apparent in Fig. 5�b�.

It is worth noticing that the width variations shown in Fig.
5�a� are very small. In fact, the energy gaps displayed in Fig.
2�b� have been eliminated by variations in the width that are
less than 1 Å. On the one hand, one must bear in mind that
this is an idealized situation. In practice, it is not a feasible
task to control the width of a quantum ring with such a high
accuracy. However, in some cases, a partial compensation
between curvature and width might be attained. On the other
hand, measurable variations in the width should noticeably
affect the electronic states, thus hiding the interesting effects
of the non-uniform curvature. This situation is more dramatic
for thinner rings, which are the focus of this work. Of course,
a more realistic model with finite-barrier transversal confine-
ment should be developed for a comparison to experimental
data. In the same direction, a multichannel approach may
also be needed.29 Furthermore, uncontrolled interface rough-
nesses and impurities should be taken into account.

VII. CONCLUSIONS

We have calculated the electronic states of quantum rings
in a threading magnetic field, focusing our attention on the
combined effects of the width non-uniformity and the curva-

ture profile of the centerline. An effective one-dimensional
equation was obtained through a variational separation of
variables in curvilinear coordinates. Such an equation con-
tains the width and curvature profiles and their derivatives up
to second order. Therefore, it may be helpful for the theoret-
ical analysis and the experimental design of quantum rings.
We dealt with thin rings with an arbitrary centerline and a
non-uniform width and presented numerical results for circu-
lar, elliptical, and limaçon-shaped quantum rings.

Regarding quantum rings with a non-uniform width, we
have obtained interesting results. For a circular ring, we
proved that smooth and tiny variations in the width may
produce quenching of the Aharonov–Bohm oscillations of
the lower energy levels. Moreover, a width profile that com-
pensates for the main effects of the curvature variations was
obtained for an elliptical centerline. The ring should be thin-
ner where the centerline has a larger curvature. However, for
the considered elliptical ring, the accuracy of the required
width profile is beyond the technological capabilities. There-
fore, the experimental observation of the compensation effect
is not a feasible task. Nonetheless, this means that uncon-
trolled variations in the width of the ring should probably
dominate over the curvature profile.

Our theory, which deals with electronic states in rings
with a non-uniform width in a very intuitive and numerically
efficient manner, should be relevant for the quantum me-
chanics in curved spaces23–25 and for the physics of quantum
rings. We have shown that variations in the width can com-
pensate for or dominate over the effects of a non-uniform
curvature, thus affecting the manifestation of the Aharonov–
Bohm effect. Furthermore, we suspect that the width non-
uniformity may play a similar role in electronic and matter
transmissions through curved waveguides.30–33

The use of Dirichlet boundary conditions in our simple
model may overestimate the effects of the width variations
on the electronic spectra of quantum rings. Anyway, our pre-
dictions should encourage the investigation of more realistic
models with finite-barrier transversal confinement28 and in-
terchannel coupling.29 Additionally, the present formalism
paves the way for those purposes.
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