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The nonlinear optical properties of quantum wells �QWs� represented by a Pöschl-Teller confining potential
are studied. This potential is well suited for such purposes as it can easily become asymmetrical by a correct
choice of its parameter set. We calculate the linear and the third-order nonlinear optical intersubband absorp-
tion coefficients, the second-harmonic generation �SHG� susceptibility tensor, and optical rectification �OR�
under the density matrix formalism. Numerical results for a typical GaAs QW are presented. The resulting
SHG and the OR coefficients are much larger than their values for bulk GaAs.
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I. INTRODUCTION

The nonlinear optical properties of quantum wells �QWs�
and other low-dimensional systems have attracted an enor-
mous interest in recent years.1–25 Especially second-order
nonlinear optical properties,10–19 such as second-harmonic
generation �SHG�, optical rectification �OR�, and electro-
optic effect �EOE�, and third-order optical properties,1–9,20–22

such as third-order absorption, and third-harmonic genera-
tion are extensively studied. This is because these nonlineari-
ties have the potential for device applications in far-infrared
laser amplifiers,23 photodetectors,24 and high-speed electro-
optical modulators.25

The linear intersubband absorption within the conduction
band of a GaAs QW has been studied experimentally with4

and without5,6 an electric field. A very large dipole strength
and a narrow band width have been observed, which suggest
that the intersubband optical transition in QWs may have
huge nonlinearities. On the theoretical side, Ahn and Chuang
studied linear and nonlinear intersubband absorptions in
QWs with1,3 and without2 an electric field. Yuen7 and Shi and
Pan8 studied a semiconductor superlattice. Zhang9 consid-
ered electric-field-biased semiparabolic QWs. Results reveal
that the linear and nonlinear intersubband absorptions sig-
nificantly depend on the structure of the system and the ap-
plied electric field.

The second-order susceptibility is negligible except for
the small contribution of the bulk susceptibility in symmetric
QWs.11 However, when the inversion symmetry of the sys-
tem is broken, it is possible to obtain a significant second-
order susceptibility.11–13 Asymmetric QWs can be created in
two ways: either by advanced material growing tech-
nology13–15 or by an external applied electric field.10,11,16

Gurnick and DeTemple14 obtained an asymmetric QW by
growing AlxGa1−xAs multiple QWs with asymmetric compo-
sition gradients of Al in the growth direction and calculated
the second-order nonlinearities for a Morse potential. They
obtained 10�100 times larger values than those of bulk ma-
terials. Yuh and Wang15 investigated a step QW, and
Rosencher and Bois13 have shown that the QWs could be
designed so that the absorption could be doubly resonant and
the SHG susceptibility could be more than 1000 times higher
than that in bulk GaAs. Khurgin12 proposed an asymmetric
coupled QW. Fejer et al.16 observed an order of magnitude

larger second-order susceptibility than that in the bulk case
in GaAs QWs with an electric field. Guo and Gu17 studied
OR and EOE in a parabolic QW with an applied electric
field. Results reveal a significant enhancement of both prop-
erties with the increasing electric field. They obtained one
and six orders of magnitude higher values for OR and EOE
than those in the bulk GaAs, respectively. Also, Zhang and
Xie18,19 calculated EOE and the SHG susceptibility and they
found about two orders of magnitude larger EOE than that in
the parabolic QW with an applied electric field.

In this work, QWs having the Pöschl-Teller potential26 are
considered. This potential has not been studied extensively in
the literature and to the best of our knowledge only Rado-
vanovic et al.27 used the modified Pöschl-Teller potential to
calculate intersubband absorption based on bound-bound,
bound-free, and free-free transitions in QWs.

The Pöschl-Teller potential has tunable asymmetry degree
and the corresponding Schrödinger equation is analytically
solvable.28 The tunable asymmetry of the potential, there-
fore, is expected to yield promising nonlinear optical prop-
erties. The results show that with the increasing asymmetry
parameter the total absorption peak increases and the peak
position has an obvious blueshift. The relative distance be-
tween peak positions of the SHG coefficient gets larger while
both have a blueshift with the increasing asymmetry param-
eter. We obtain large SHG and OR coefficients.

The organization of this paper is as follows. In Sec. II, the
exact wave functions and eigenenergies are given and the
expressions for linear and nonlinear absorption coefficients,
SHG and OR, are derived under the density matrix formal-
ism. In Sec. III, numerical implementation on typical GaAs
material is presented. A brief conclusion is given in Sec. IV.

II. THEORY

The effective-mass Hamiltonian for the electrons in a po-
tential well, V�z� is

H = −
�2

2m*� �2

�x2 +
�2

�y2 +
�2

�z2� + V�z� , �1�

where

PHYSICAL REVIEW B 72, 115340 �2005�

1098-0121/2005/72�11�/115340�6�/$23.00 ©2005 The American Physical Society115340-1

http://dx.doi.org/10.1103/PhysRevB.72.115340


V�z� =
�2�2

2m* ���� − 1�
sin2��z�

+
��� − 1�
cos2��z�� ,

�,� � 1 �2�

Here z represents the growth direction. The Pöschl-Teller
potential26,28 V�z� is governed by three parameters: �, �, and
�. This potential has singularities at z=0 and at z=� /2�.
The parameters � and � tune the degree of the asymmetry,
and the potential profile is perfectly symmetric for �=�.

The eigenfunctions �n,k�r� and eigenenergies 	n,k, are
given, respectively, by

�n,k�r� = 
n�z�exp�ik� · r�� , �3�

	n,k = En +
�2

2m* �k��2, �4�

where k� and r� are the wave and position vectors in the xy
plane. 
n�z� and En are the envelope wave function and
transverse energy of the nth subband, respectively, and are
the solutions of the Schrödinger equation

Hz
n�z� = En
n�z� , �5�

where Hz is the z component of the Hamiltonian H. 
n�z�
and En are given by28


n�z� = CN sin���z�cos���z�

� 2F1�− n,� + � + n,� +
1

2
;sin2��z�� , �6�

En =
�2�2

2m* �� + � + 2n�2n = 0,1,2, . . . . �7�

Here CN is the normalization constant.
We consider an optical radiation of angular frequency �

applied to the system with the polarization along the growth
direction z. The incident field can be written as

E�t� = Re�E0e−i�t� = Ee−i�t + E*ei�t. �8�

The one-electron density matrix equation with intraband re-
laxation is

�
ij

�t
=

1

i�
	H0 − qzE�t�,

ij − �ij�
 − 
�0��ij , �9�

where H0 is unperturbed Hamiltonian. The �ij elements are
taken to be equal to one value �0 only. Equation �9� is solved
via the iterative method,29,30 by noting that


�t� = �
n


�n��t� , �10�

with

�
ij
�n+1�

�t
=

1

i�
	H0,
�n+1�
ij − �0
ij

�n+1� −
1

i�
	qz,
�n�
ijE�t� .

�11�

The electronic polarization P�t� and the susceptibility ��t�
caused by the optical field E�t� can be expressed through the

dipole operator � and the density matrix as29,30

P�t� = ����Ee−i�t + ��− ��E*ei�t =
1

V
Tr�
�� , �12�

where V is the volume of the system and Tr stands for the
trace.

The absorption coefficient and the susceptibility are re-
lated by31

���� =
4��

nrc
Im	����
 , �13�

where nr is the refractive index of the system and the c is the
speed of the light. By using the density matrix formalism and
the iterative procedure,3,29,30 the linear and the third-order
absorption coefficients, ��1���� and ��3����, are derived for
both symmetric and asymmetric potentials. We neglect the
higher-harmonic terms and consider only the steady-state re-
sponse. The first-order and third-order absorption coeffi-
cients are found to be

��1���� =
4��

nrc

�s��10�2��0

�E10 − ���2 + ���0�2 , �14�

��3���� = − 2�� 4�

nrc
�2 I�s��10�4��0

��E10 − ���2 + ���0�2�2

��1 −
��11 − �00�2

4��01�2

���E10 − ���2 − ���0�2 + 2E10�E10 − ���

E10

2 + ���0�2 � .

�15�

Here I is the intensity of the incident field, �s is the density
of the electrons, E10=E1−E0, and �ij is the matrix element
of the dipole operator �ij = �
i�qz�
 j��i , j=0,1�. ��1����
keeps its form, whether the potential is symmetric or not.
However, the second term in Eq. �15� is zero when the po-
tential is symmetric. We write the total absorption coefficient
��� , I� as

���,I� = ��1���� + ��3���,I� . �16�

Derivation of the second-harmonic generation requires the
consideration of the higher-order terms,10 such as �e±2i�t�.
We get the SHG which is observable only in the case of
asymmetric potentials as

�2�
�2� =

�s��10�2��11 − �00�
�2�� − E10 + i��0���� − E10 + i��0�

, �17�

where only the near-resonant term at 2���E10 is consid-
ered.

The coefficient of the constant term which contributes
zero frequency in the SHG expression is the OR coefficient
and it is given by13,17,19

�0
�2� = 8

�s��10�2��11 − �00�E10
2

	��� − E10�2 + ���0�2
	��� + E10�2 + ���0�2

.

�18�
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III. NUMERICAL RESULTS AND DISCUSSION

We use the following input parameters:3 �s=3
�1016 cm−3, �0=1/0.14 ps−1, nr=3.2, m*=0.067m0. The
length of the quantum well, L, and � are taken to be 126.5 Å
and � /2L, respectively.

In Fig. 1, the potential profile is shown for three different
� values, i.e., �=1.2, �=2, and �=3, while � equals to 2.
For �=�, the curve becomes symmetric around �z=� /4, for
��� it becomes oblique and its minimum is shifted to the
right. However, for ��� minimum of the curve is shifted to
the left.

The first three normalized wave functions for the same �
and � values are shown in Fig. 2�a�–2�c�. It can be observed
that the shapes of the wave functions are very similar to the
shapes of the wave functions of the parabolic potential with
and without the electric field.18 This is due to the behavior of
the potential around its minimum value where it may ap-
proximately be replaced by a parabolic curve.28

FIG. 1. The Pöschl-Teller potential profiles for �=2. The solid
curve stands for �=1.2, the dashed curve for �=2, and the dotted
curve for �=3.

FIG. 2. The normalized first three wave functions of the QW having the Pöschl-Teller confining potential. The solid curves stand for
�=1.2, the dashed curves for �=2, and the dotted curves for �=3 in panels �a�, �b�, and �c�.
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We list the first three energy eigenvalues for � between
1.2 and 3 in Table I. In the table, we observe that the energy
levels are not equally spaced. This can be explained by the
quadratic form of eigenenergies 	Eq. �7�
 where the differ-
ence between two successive energy levels is

�En+1,n =
2�2�2

m* �� + � + 2n + 1� . �19�

The linear absorption coefficient ��� , I=0�=��1���� and the
total absorption coefficient ��� , I� as functions of the inci-
dent photon energy at I=1.0 MW/cm2 are shown in Fig. 3.
The peak position of the linear absorption coefficient has a
blueshift with increasing �, because the energy difference
between first-excited and ground states has a linear depen-
dency on the �. However, the peak value does not grow but
remains almost constant. The resonant peak value �i.e., ��
=E10� of the linear absorption coefficient is proportional to
E10��10�2. Our calculations show that this product is more or
less constant when 1.2���3 and 1.2���2. The total ab-

sorption coefficient in Fig. 3 increases with increasing �. The
resonant peak value of the total absorption coefficient is
shown as a function of � and � in Fig. 4. We see that the
higher the � the higher the peak value. The Eq. �15� is totally
negative at resonance and it is proportional to

E10��10�2���10�2 +
��11 − �00�2���0�2

4E10
3 � . �20�

The first term in the parentheses decreases with increasing �
and �. This is because as asymmetry parameters increase, the
potential well becomes narrower yielding smaller ��10�2. Al-
though the symmetry is broken for ��� and ��11−�00�2
increases, the second term in Eq. �20� becomes smaller since
it is inversely proportional to E10

3 . ��3���� decreases in mag-
nitude and as a result the resonant peak value of the total
absorption coefficient increases.

The SHG coefficient as a function of incident photon en-
ergy for the asymmetric Pöschl-Teller potential is shown in
Fig. 5. In the figure, the solid line stands for �=1.2 and the
dotted line for �=3. The curve for �=3 is multiplied by three
for clarity. The increasing � value yields reduction in both
peaks up to �=2 for which the SHG is zero, but for ��2 the
SHG peaks have nonzero values although smaller than the
peaks for ��2. The peak positions have an obvious blue-
shift while their separation increases. These can be attributed
to the linear � dependence of the energy difference between
two successive levels as in Eq. �19�. The maximum value for
the SHG coefficient is about 15 times larger than the one in
bulk32 GaAs for �=1.1. However, when the other input pa-
rameters quoted in the literature13,16 are used, it is possible to
obtain larger peak values. For example, if the density of the
electrons is increased up to the order of 1017 cm−3 the SHG
peak increases more than two orders of magnitude. The elec-
trons are, apart from thermal generation, supplied by dopant
atoms. However, this supply is limited by the solubility of
the dopant atom in GaAs.13 At higher-electron densities, a
good description of the optical properties of QWs must take

TABLE I. The calculated energy eigenvalues for the first three
eigenfunctions in eV for �=2.

� E0 E1 E2

1.2 0.0897 0.2369 0.4541

1.4 0.1013 0.2554 0.4797

1.6 0.1135 0.2747 0.5060

1.8 0.1265 0.2947 0.5330

2.0 0.1402 0.3154 0.5606

2.2 0.1545 0.3367 0.5890

2.4 0.1696 0.3588 0.6181

2.6 0.1854 0.3816 0.6479

2.8 0.2018 0.4051 0.6784

3.0 0.2190 0.4292 0.7096

FIG. 3. The linear and the total absorption coefficients as a
function of photon energy for the optical intensity I
=1.0 MW/cm2 and for �=2. The solid curve stands for �=1.2, the
dashed curve for �=2, and the dotted curve for �=3,

FIG. 4. The resonant peak value of the total absorption coeffi-
cient as a function of the parameter � for various � values. I
=1.0 MW/cm2.
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into account the interactions among those electrons. The
peak value of the SHG tensor at 2��=E10 is displayed in
Fig. 6 as a function of � and �. The SHG is zero at �=�. The
peak increases with ��11−�00� as the asymmetry is intro-
duced. But the E10

2 in the denominator substantially reduces
the peak value at higher values of the asymmetry parameters.

We also calculate the OR coefficient for the � values of
1.2 and 3.0. The results are shown in Fig. 7. The peaks have
a blueshift with increasing �. The peak value of the solid line
corresponds to three orders of magnitude larger values than
in bulk32 GaAs. However, this number can be enhanced
when the other electron densities and relaxation times are
used as mentioned above. For example, with the �s of the
order of 1017 cm−3 and 1/�0 of 0.2 ps−1, for �=1.1, we get
four orders of magnitude larger values than in bulk GaAs.
The relaxation time, however, is certainly governed by in-
trinsic mechanisms such as electron-electron scattering, im-
purity scattering, collisions among electrons, optical-phonon
emission for an excitation energy higher than 36 meV, well
inhomogeneities, and temperature of the system.3,13,18 In Fig.

8, the peak value of the OR coefficient at resonance fre-
quency, i.e., ��=E10, is showed. The peak exhibits the simi-
lar pattern with the peak value of the SHG coefficient, except
that it is reduced with E10.

IV. CONCLUSION

The nonlinear optical properties of QWs described by a
Pöschl-Teller confining potential are studied. We have calcu-
lated the linear and third-order absorption coefficients, the
second-order susceptibility, and the optical rectification for
symmetric and asymmetric cases of the Pöschl-Teller poten-
tial under the density matrix formalism. We find that the total
absorption is reduced by nearly 30% and this reduction de-
creases with increasing asymmetry parameters at I
=1.0 MW/cm2. We calculate SHG and OR coefficients
much larger than in the bulk GaAs. The peak positions

FIG. 5. The SHG coefficient ��2�
�2�� as a function of photon en-

ergy for �=2. The solid curve stands for �=1.2 and the dotted
curve for �=3 �multiplied by three for a better view�.

FIG. 6. The resonant peak value of the SHG coefficient as a
function of the parameter � for various � values.

FIG. 7. The OR coefficient ��0
�2�� as a function of photon energy

for �=2. The solid curve stands for �=1.2 and the dotted curve for
�=3.

FIG. 8. The resonant peak value of the OR coefficient as a
function of the parameter � for various � values.
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strictly depend on the asymmetry parameter. Our investiga-
tion of the peak value of the SHG and OR coefficients for
various � and � show that a feasible SHG or OR coefficient
is possible only for � and ��2. The QWs represented by the

Pöschl-Teller confining potential seem to be possible with
the recent progresses in the nanofabrication technology. An
electric-field-biased QW having a Pöschl-Teller type confin-
ing potential is expected to yield a larger SHG.

*Corresponding author. Electronic address: tomak@metu.edu.tr
1 D. Ahn and S. L. Chuang, Phys. Rev. B 35, R4149 �1987�.
2 D. Ahn and S. L. Chuang, J. Appl. Phys. 62, 3052 �1987�.
3 D. Ahn and S. L. Chuang, IEEE J. Quantum Electron. QE-23,

2169 �1987�.
4 A. Harwitt and J. S. Harris Jr., Appl. Phys. Lett. 50, 685 �1987�.
5 B. F. Levine et al., Appl. Phys. Lett. 50, 273 �1987�.
6 L. C. West and S. J. Eglash, Appl. Phys. Lett. 46, 1156 �1985�.
7 S. Y. Yuen, Appl. Phys. Lett. 43, 813 �1983�.
8 J. J. Shi and S. H. Pan, Superlattices Microstruct. 17, 91 �1995�.
9 L. Zhang, Opt. Quantum Electron. 36, 665 �2004�.

10 L. Tsang, D. Ahn, and S. L. Chuang, Appl. Phys. Lett. 52, 697
�1988�.

11 L. Tsang, S. L. Chuang, and S. M. Lee, Phys. Rev. B 41, 5942
�1990�.

12 J. Khurgin, Phys. Rev. B 38, 4056 �1988�.
13 E. Rosencher and P. Bois, Phys. Rev. B 44, 11315 �1991�.
14 M. K. Gurnick and T. A. DeTemple, IEEE J. Quantum Electron.

QE-19, 791 �1983�.
15 P. F. Yuh and K. L. Wang, J. Appl. Phys. 65, 4377 �1989�.
16 M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwit, and J. S. Harris,

Phys. Rev. Lett. 62, 1041 �1989�.
17 K. X. Guo and S. W. Gu, Phys. Rev. B 47, 16322 �1993�.

18 L. Zhang and H. J. Xie, Phys. Rev. B 68, 235315 �2003�.
19 L. Zhang and H. J. Xie, Mod. Phys. Lett. B 17, 347 �2003�.
20 G. H. Wang, Q. Guo, and K. X. Guo, Phys. Status Solidi B 238,

75 �2003�.
21 L. Zhang and H. J. Xie, Physica E �Amsterdam� 22, 791 �2004�.
22 K. X. Guo and C. Y. Chen, Physica B 262, 74 �1999�.
23 R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707

�1971�.
24 F. Caposso, K. Mohammed, and A. Y. Cho, IEEE J. Quantum

Electron. QE-22, 1853 �1986�.
25 D. A. B. F. Miller, Int. J. High Speed Electron. Syst. 1, 19 �1991�.
26 G. Poschl and E. Teller, Z. Phys. 83, 143 �1933�.
27 J. Radovanovic, V. Milanavic, Z. Ikonic, and D. Indjin, Phys.

Lett. A 269, 179 �2000�.
28 S. Flugge, Practical Quantum Mechanics I �Springer-Verlag, Ber-

lin, 1971�.
29 R. W. Boyd, Nonlinear Optics �Academic Press, San Diego,

2003�.
30 N. Bloembergen, Nonlinear Optics �World Scientific, Singapore,

1996�.
31 H. Haug, Quantum Theory of the Optical and Electronic Proper-

ties of Semiconductors �World Scientific, Singapore, 1994�.
32 A. Yariv, Quantum Electronics �John Wiley, New York, 1989�.

H. YILDIRIM AND M. TOMAK PHYSICAL REVIEW B 72, 115340 �2005�

115340-6


