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Phase transitions of a few-electron system in a spherical quantum dot
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The spin configurations of a spherical quantum dot, defined by a three-dimensional~3D! harmonic confine-
ment potential, containing a few Coulomb Fermi particles~electrons or holes! are studied. Quantum transitions
involving a spin transformation and a ‘‘cold melting’’~from a Wigner crystal-like state, i.e., from regime of
strongly correlated electrons, to a Fermi-liquid-like phase! is driven by the dimensionless quantum control
parameterq ~which is connected with steepness of the confinement potential! is demonstrated. The pair
correlation and radial distribution functions which characterize electronic quantum delocalization are analyzed.
The calculations using the unrestricted variational Hartree-Fock method~for the ground state atT50 K) and
the more computer intensive quantum path integral Monte Carlo method~for TÞ0 K) are performed and
compared. For smallq, the ground state of the three electron system is crystal-like and hasC3 symmetry, i.e.,
the maxima of electron density are located at the nodes of an equilateral triangle. The preferable spin configu-
ration for smallq is ‘‘ferromagnetic,’’ with total spinS53/2. Asq rises, the widths of the one-electron wave
functions grow and become overlapping. At a critical valueq1 the ground state changes fromS53/2 to S
51/2 and at the same time, asymmetry appears in the triangle~i.e., spontaneous breaking of theC3 symmetry
to C2 symmetry!. At a second critical valueq2 the electron distribution undergoes a symmetry phase transition,
from trianglelike~with C2 symmetry! to axial symmetric~with C` symmetry!. As q grows further, we obtain
a Fermi-liquid-like ~non-interacting! electron configuration in the ground state (S51/2). In addition, theS
53/2 state, at a criticalq value ~which is slightly larger thanq1) undergoes a dramatic charge redistribution.

DOI: 10.1103/PhysRevB.66.075335 PACS number~s!: 73.61.2r, 02.70.Rr, 05.30.Fk
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I. INTRODUCTION

The behavior of a many-electron system in a quantum
is of great interest, especially in the regime of strongly c
related electrons.1–7 This can be achieved for rarefied ele
tron systems by the change of a confinement parameter
example, using a controlling gate,8,9 or by using a normal
magnetic field.10 This possibility distinguishes quantum
dots—giant artificial atoms—from natural atoms with rath
weakly correlated electrons~in all natural atoms the tota
correlation energy is always smaller than the Hartree-F
energy!. Therefore, detailed analysis of all quantum dot ch
acteristics in a wide range of the dimensionless quantum
rameterq ~connected with the steepness of the confining
tential and hence control of the correlation of the electro!
is important, particularly the study of electron crystallizati
and quantum ‘‘cold’’ melting. In addition, spin transforma
tion driven by a change of the confinement potential is int
esting in connection with phenomena such as spin blocka
and also for spin memory applications.

In this paper we study in detail the behavior of a fe
electron quantum system inside a spherical quantum dot
parabolic confinement. The model is equivalent to a quan
analog of the three-dimensional~3D! Thomson atom~see,
for example, Ref. 1 and references therein!. All properties of
the system at sufficiently low temperatures depend only
the dimensionless quantum parameterq, which is connected
with the steepness of the confinement potential. We there
analyze how the properties of the spherical quantum dot
pend onq and the total spin. We have studied the followin
characteristics of the few-electron system in the quan
0163-1829/2002/66~7!/075335~10!/$20.00 66 0753
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dot: radial and pair distribution functions and total and e
change energies. We also analyze the symmetry of the e
tron configuration and the effect of the Fermi statistics on
behavior of the quantities under consideration. We useunre-
strictedvariational Hartree-Fock~HF! andab initio quantum
path integral Monte Carlo~PIMC! methods for fermions.

These two methods are complementary. First, the
method requires assumptions about the symmetry of the
tem to be made, which is justified by the PIMC results. S
ond the HF method as shown below allows more prec
calculations to be performed~in the region of small confine-
ment strength! and requires much less central processing u
~CPU! time.

In Sec. II the model of a spherical quantum dot is p
sented. In Sec. III the results of the unrestricted Hartree-F
approximation are analyzed. In Sec. IV the results obtai
by the path integral Monte Carlo calculation are describ
Section V is devoted to a summary and conclusions.

II. MODEL OF A FEW-ELECTRON SYSTEM

We use a three-dimensional parabolic confinement a
spherical quantum dot model. Such a confinement descr
real quantum dots with small number of electrons.11,12 The
Hamiltonian of the system is

H5(
i 51

N
2\2

2m
¹ i

21(
i 51

N
mv2

2
r i

21(
i , j

N
e2

eur i2r j u
, ~1!

wherem is an effective electron mass ande is the dielectric
susceptibility. We use dimensionless variables for length,
©2002 The American Physical Society35-1
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ergy, and temperature:r 85r /r 0 , E85E/E0 , T85T/E0 .
Units of length and energy arer 05(2e2/emv2)1/3, E0

5e2/er 05mv2r 0
2/2. After these transformations the Ham

tonian takes the form

H52(
i

N

q¹ i
21(

i

N

r i
21(

i , j

N
1

r i j
, ~2!

where q5(\2/2m)(mv2e4/2e8)1/3 is the dimensionless
quantum control parameter of the system. It is easy to sh
that q can be expressed as the ratio of the effective B
radius aB* 5\2«/m* e2 and the one-particle lengthl
5(\/m* v)1/2 ~of the ground state in the confinement pote
tial! as q5(aB* /2l )4/3. The controlling parameterq can also
be expressed as the dimensionless ratio of the effective B
radius to the equilibrium interelectron distancer 0 in a clas-
sical cluster or as the dimensionless ratio of the character
quantum kinetic energy\/2mr0

2 to the characteristic class
cal Coulomb interactione2/er 0. As an example we give
some typical values for electrons in GaAs. At log10(q)5
21.5, we have r 05164 nm, l 569 nm, and E0
50.67 meV. More examples are given in Sec. III. The sp
dependent contributions~Breit’s interaction and the spin
orbit interaction or the so-calledLS coupling! are relatively
small in the whole region ofq. Furthermore, we will study
the behavior of the system characteristics in the depend
on the dimensionless parameterq. q can be changed exper
mentally by controlling the steepness of the confining pot
tial v using a gate.

III. UNRESTRICTED HF VARIATIONAL APPROACH:
THEORY AND RESULTS

There are several effective methods for treating the pr
lem under consideration.1–7,11–14In this section we analyze
the ground state of the problem using the unrestricted va
tional Hartree-Fock approach to take into account a poss
spontaneous breaking of spherical symmetry of the Ham
tonian given by Eq.~2!. We take three Gaussians as on
particle wave functions for the system ofN53 electrons.
These Gaussians are centered at the corners~nodes! of a
triangle in thex-y plane. The width of the Gaussians is co
trolled by a variational parameters, which is identical for all
the functions. Hence the basis functionsf i(rW) are given by

f i~rW !5Ne2(1/2)[(x2x0,i )/s] 2
e2(1/2)[(y2y0,i )/s] 2

e2(1/2)(z/s)2
.
~3!

Note that the basis functions are nonorthogonal. There
three possibilities for arrangement of the three nodesrW0,i of a
triangle with different symmetries,C3 , C2, and C` , and
they are plotted in Fig. 1. The node coordinates can be
resented in the form

x0,15a,

y0,150,

x0,25a2
1

2
A4b1

22b2
2,
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y0,25b2/2,

x0,35a2
1

2
A4b1

22b2
2,

y0,352b2/2. ~4!

The center of mass and relative motions can be separ
for parabolic confinement~see, e.g., Ref. 1!. The center of
mass oscillates as a 3D harmonic oscillator. Here we
interested in the relative electron configurations. The para
etera fixes the center of mass position and the electron c
figuration does not depend ona. We suppose for simplicity
~and this is in agreement with the results of the quant
Monte Carlo simulation; see Sec. IV! that the triangle has a
leastC2 symmetry relative to thex axis. It is easy to show
that in the classical case,b15b2, i.e., electrons are at th
nodes of an equilateral triangle. It is obvious that the sy
metry C3 must be true also a for quantum system at su
ciently smallq. When all the centers of Gaussians are on
same axis, i.e.,b15b2/2, we have an electron molecule wit
C` symmetry. Below we shall show that all these cases~see
Fig. 1! occur at different regions of the controlling parame
q.

The wave function of the system can be modeled by
eigenstates of the total spinS:

U(
j 51

3

SŴ jU2

CW 5S~S11!CW . ~5!

The spin operators act on the spinor with 2358
components:15,16

CW 53
C↑,↑,↑~rW1 ,rW2 ,rW3!

C↑,↑,↓~rW1 ,rW2 ,rW3!

C↑,↓,↑~rW1 ,rW2 ,rW3!

C↑,↓,↓~rW1 ,rW2 ,rW3!

C↓,↑,↑~rW1 ,rW2 ,rW3!

C↓,↑,↓~rW1 ,rW2 ,rW3!

C↓,↓,↑~rW1 ,rW2 ,rW3!

C↓,↓,↓~rW1 ,rW2 ,rW3!

4 . ~6!

FIG. 1. Different realizations of symmetry with the give
Gaussian basis set.
5-2
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SW 2 is a constant 838 matrix that acts on the spinor given
Eq. ~6!. The equation responsible for spin effects@apart from
Eq. ~5!# is the total antisymmetry rule~for fermions!, and is
in general given by

Cs1 , . . .si , . . .sj , . . .sN
~rW1 , . . . rW i , . . . ,rW j , . . . rWN!

52Cs1 , . . .sj , . . .si , . . .sN
~rW1 , . . . rW j , . . . ,rW i , . . . rWN!.

~7!

For the ‘‘ferromagnetic’’ state with total spinS53/2 we
have a fourfold degeneracy with respect toSz . Their wave-
forms are exactly equal and we give here the expression
Sz513/2, where only the componentC↑,↑,↑ is not equal to
zero and is fully antisymmetrical:
th
th

r
ta

e

s

ce

07533
or

C↑,↑,↑~rW1 ,rW2 ,rW3!5Uf1~rW1! f1~rW2! f1~rW3!

f2~rW1! f2~rW2! f2~rW3!

f3~rW1! f3~rW2! f3~rW3!

U . ~8!

For the completion we also consider the ‘‘antiferroma
netic’’ state withS51/2. The total spin constrictionS51/2 in
Eq. ~5! ~giving C↑,↑,↓52 f 12 f 2 , C↑,↓,↑5 f 2 and C↓,↑,↑
5 f 1, where f 1 and f 2 are arbitrary functions of the coordi
nates! and Eq. ~7! with the particle permutations 1
2,
1
3, and 2
3 will restrict the waveform of the spino
components (f 1 and f 2). Since the solution ofS51/2 is de-
generate with respect toSz , we give here a waveform
on the componentsC↑,↑,↓ , C↑,↓,↑ , and C↓,↑,↑ ~all with
Sz511/2) as:
C↑,↑,↓~rW1 ,rW2 ,rW3!5
1

3
f1~rW3!Uf2~rW1! f2~rW2!

f3~rW1! f3~rW2!
U1

1

6
f1~rW2!Uf2~rW1! f2~rW3!

f3~rW1! f3~rW3!
U1

1

6
f1~rW1!Uf2~rW3! f2~rW2!

f3~rW3! f3~rW2!
U , ~9!

C↑,↓,↑~rW1 ,rW2 ,rW3!5
1

3
f1~rW2!Uf2~rW1! f2~rW3!

f3~rW1! f3~rW3!
U1

1

6
f1~rW1!Uf2~rW2! f2~rW3!

f3~rW2! f3~rW3!
U1

1

6
f1~rW3!Uf2~rW1! f2~rW2!

f3~rW1! f3~rW2!
U , ~10!

C↑,↓,↓~rW1 ,rW2 ,rW3!5
1

3
f1~rW1!Uf2~rW2! f2~rW3!

f3~rW2! f3~rW3!
U1

1

6
f1~rW2!Uf2~rW1! f2~rW3!

f3~rW1! f3~rW3!
U1

1

6
f1~rW3!Uf2~rW1! f2~rW2!

f3~rW1! f3~rW2!
U . ~11!
f

t if
the
The total charge density is defined as the sum of
squared one-particle functions, but we prefer to define
reduced one-particle probabilityP1 since the wave functions
could overlap significantly. We now integrate out two coo
dinates.rW2 and rW3 were chosen; however, due to the to
antisymmetry of the wave function@see Eq.~7!# any two
could have been chosen. For the ‘‘antiferromagnetic’’ stat
is given by

P1~rW1![(
j 51

8 E d3r 3E d3r 2uC j u2

5
1

3
f1

2~12J2
2!1

1

6
~f2

21f3
2!~21J1

2!

1
f1

3
~f21f3!J1~12J2!2

1

3
f2f3~J1

212J2!

~12!

where the explicit coordinate dependence on the function
omitted in the above expression. The definitions ofJ1 andJ2
are given in the Appendix. ForJ1 ,J2→0 ~small overlap! we
obtain the ‘‘classical’’ total charge density and forJ1 ,J2
→1 P1 cancels due to Pauli’s exclusion principle. Noti
that P1 is mirror symmetric around thex axis ~see Fig. 1!.
The expressions for energies^H&, and both the ‘‘ferromag-
e
e

-
l

it

is

netic’’ and ‘‘antiferromagnetic’’ states as functions o
the variational parametersb and s are presented in the
Appendix.

First we analyze the ferromagnetic stateu↑↑↑&, S53/2.
From the expressions given in the Appendix it follows tha
q is small enough and there is only a small overlap of
basis functions~i.e., b/s is large!, we can approximatêH&
as

Eappr5
9q

2s2
1

3s2

2 F31
2

3 S b

s D 2G1
3

b
. ~13!

If we minimize the energy with respect tob and s, we
find that the local minimum occurs when

b05S 3

2D 1/3

, ~14!

s05q1/4. ~15!

Substituting these values into Eq.~13! yields the ground-
state energy:

E053S 3

2D 2/3

19Aq. ~16!
5-3
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The square root dependence corresponds to the harm
confinement energy.

Now we analyze the transformation of electron config
ration in the ferromagnetic state driven by the quantum c
trol parameterq. In Fig. 2 a contour plot of the total energ
is shown as a function ofb ands at q50.053. At this value
we obtain a bistable global solution. The two minima~indi-
cated bys and1 in the figure! have the same energy. W
denote this critical value ofq by qc . Whenq,qc , the global
minimum corresponds to thes, corresponding to the ‘‘clas
sical’’ minimum. By the classical minimum we mean th
Wigner-crystal-like configuration of charges where the to
potential energy dominates the Hamiltonian. Strictly spe
ing this is the case whenb5b0. For q.qc the quantum
kinetic contributions will be important, and as a result, t
‘‘condensed’’ minima marked with a1 have lower energy.

In Fig. 3, the result of the minimization is plotted as
function of log10(q). Notice that the transition is very shar
at q5qc . The change inb ands is actually infinetely sharp
at T50. However, at finite temperature the transition will
continuous and the fermions will be in a superposition of
s state and the1 state. After the transition the value ofb is
reduced by a factor of 5. The top figure showsE12E2 as a
function ofq. WhenE12E2 crosses the zero axis the groun
state changes from thes state to the1 state. It is interesting
to note that the control parameterq, plays a role analogous t
the temperature in the Ginzburg-Landau theory for superc
ductors.

After the phase transition point, the overlap integralJ,
which is defined in the Appendix, takes an almost const
value of 0.97. In the range23, log10(q),21.2758, the
overlap increases exponentially up to this limit, with the ki
at log10(q)'22. Since the overlap is large, the exchan
energy will also be large. The exchange energy is defi
here as the difference between the ground-state energy
the corresponding unrestricted Hartree energy~with the same
values ofb and s). After the transition point the exchang
energy increases from25% of the ground-state energy up
122%, whileJ is almost constant. This shows that the e
change plays an important role in the pha
transition.

In Fig. 4, the probability distribution for one electron
plotted for q,qc and q.qc for the region near corners o
the triangle~the others follow from total antisymmetry! and
shows theC3 symmetry clearly. The contour plot shows th
the triangular Gaussian distribution atq5qc suddenly con-
denses to one central but wider peak.

Now we analyze the antiferromagnetic state and comp
its energy with the ferromagnetic case to look for a glo
minimum, i.e., for a ground state. We find its energy by t
minimization of^H& using expressions in the Appendix. Th
result shows that at log10(q1),21.3077, the energy is mini
mal for the ‘‘ferromagnetic’’ stateS53/2 and otherwise the
antiferromagnetic stateu↑↑↓& is favorable. The structura
condensation phase transition takes place after the spin
sition. The energy difference between the ferromagnetic
the antiferromagnetic state is, however, small for smallq. In
Fig. 5, the energy difference~absolute value! betweenS
53/2 andS51/2 is converted to real temperature for a Ga
07533
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system in a logarithmic scale. The figure also shows typ
sizes of the electron molecule at some values ofq. For q
,q1 ~indicated with a line in the figure! the system is ferro-
magnetic. From this figure we can estimate the tempera
needed to destroy the ferromagnetism.

In Fig. 6, the result of the minimization is shown. Th
figure shows the second critical pointq2, where the symme-
try phase transitionC2→C` occurs. The ratiob1 /b2 deter-
mines the symmetry of the system. When this ratio equa
we haveC3 symmetry. When 1.b1 /b2.1/2 we haveC2
symmetry, and finally when it equals 1/2 we haveC` sym-
metry. After the spin transition to the antiferromagnetic st
we have C2 symmetry but for log10(q).21.2 the ratio

FIG. 2. Contour plot of energy vs minimization parametersb
ands at the critical valueq5qc50.053. At this value ofq there is
two global minima, here marked with1 ~condensed minimum! and
s ~minimum for normal Wigner cluster!.

FIG. 3. Energy difference between classicalE1 and condensed
minimum E2 as a function ofq for S53/2 ~top figure!. Distanceb
in equilateral triangle~middle figure! vs q. Widthss of one-electron
wave functions~bottom figure! vs q. For q smaller than the critical
condensation valueqc , the classical minimum is the ground stat
5-4
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b1 /b2 decreases quickly towards 1/2. For log10(q2)
.20.772 the ratio is 1/2, i.e., the system hasC` symmetry.
Note that the derivatives ofb2 and s are discontinuous a
this point. As was shown above the symmetryC` ~which
takes place for the Hamiltonian of the system! is restored at
sufficiently large controlling parameterq. In Fig. 7, the prob-
ability distribution is plotted for four values ofq, close to the
transition region. It is interesting that spontaneous break
of symmetry corresponds to that disappearance of the clu
crystallization, i.e., the quantum melting of the cluster. T
figure shows clearly that theC2 symmetry appears in a
intermediate region ofq. Whenq.q2 ~the bottom figure to
the right in Fig. 7! the probability distribution hasC` sym-
metry. Only much later, at largerq when the Coulomb inter-
actions become much smaller than the confinement is
electronic structure of the system identical to that of th
noninteracting electrons in a parabolic confinement. Inde
as one can easily show for the independent three electro
the parabolic confinement potential, the ground state co
sponds to the 1s21p1 configuration~contrary to the configu-
ration 1s22s1 for the hydrogen atom!; this is due to the ex-
pression for the energy of the spherical harmonic oscilla

En,l5\vS 3

2
1 l 12nD , ~17!

wheren50,1,2, . . . , l 50,1,2, . . . , and\v/E0 is equal to
2Aq. We stress that the electron configuration 1s21p1 has
the sameC` symmetry. Thus it is interesting and natural
compare the results of the unrestricted Gaussian HF me
with those obtained by restricted HF method, with orbita

c1s5N1se
2(1/2)(r /s1)2

Y0
0~u,w!,

~18!
c1p5N1pre2(1/2)(r /s2)2

Y1
0~u,w!,

in the 1s21p1 antiferromagnetic stateu↑↑↓&. Doing the same
procedure as above for the Gaussian antiferromagnetic c
we obtain an analytic expression for the energy as a func
of s1 ands2 , E(s1 ,s2). Minimizing this with respect to the
two variational parameterss1 ands2 then gives the globa
minimum. This energy is about 25% larger than the Gauss
energy for log10(q)523. The difference between the tw

FIG. 4. Sequence of the total electron density atz50 for S
53/2. The figure shows the electron configuration right before
after the transition~e.g.,q,qc and q.qc). The white area corre-
sponds to maximal amplitude. Note the small local minimum in
condensed configuration.
07533
g
ter
e

e
e
d,
in

e-

r:

od

se,
n

n

energies decreases asq increases. Starting from log10(q)
520.7258 the restricted~atomiclike! HF function gives the
best result. It differs, however, very little from the unr
stricted Gaussian HF~with C` symmetry! result, e.g., the
correlation energy is small. The total electron density for
Gaussians aligned on the same axis (C` symmetry! does
look the same as that for the independent 1s21p1 configura-
tion, e.g.,

P1~rW !>2c1s
2 ~rW !1c1p

2 ~rW !, ~19!

d

e

FIG. 5. Energy difference~absolute value! betweenS53/2 and
S51/2 converted to temperature, for a GaAs system. To destroy
ferromagnetism in the dot, for log10(q)521.5 we need a tempera
ture of 0.1 K. The typical dimensions of the systemb ands are also
given at some points, as well as standard temperatures.

FIG. 6. Phase transition diagram for the antiferromagnetic st
The ratiob1 /b2 , b2, ands are plotted as a function ofq. The ratio
b1 /b2 gives the symmetry information. Note the discontinuous d
rivative of b2 ands at log10(q)520.772. At this point we change
from C2 symmetry toC` symmetry.
5-5
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for large values ofq @P1 is defined in Eq.~12!#. However,
this is not true for small values ofq, as very many one-
particle orbitals have to be used to satisfactorily build
Wigner crystal.

Finally we sum up the transition steps as follows: The
are three critical values ofq. Two of them,q1 andq2, refer to
transitions within the ground state, and the third,qc , refers
to a transition in the ferromagnetic state. At log10(qc)
521.2758, we go from classicalC3 symmetry to condense
C3 in the ferromagnetic state. At log10(q1)521.3077 the
system goes from a ferromagnetic state to an antiferrom
netic state~a spin transition! and at the same time fromC3 to
C2 symmetry. At log10(q2)520.772 we obtain a sharp sym
metry transition fromC2 symmetry toC` symmetry. Up to
this point Gaussians give a lower energy than the 1s21p1

state. Even if it is not a fundamental transition, the grou
state will, for log10(q).20.7258, be in the 1s21p1 configu-
ration state. They converge, however, in their characteris
for energy and one-particle probability. They both haveC`

symmetry. We hence conclude that our choice of variatio
parameters in the Gaussian basis set is good, since it is
ficient to realize both the structure of a Wigner crystal a
the independent~noninteracting! electron configuration. In
Table I, the energy as a function of log10(q) is listed for the
ferromagneticS53/2 unrestricted variational HF state, th
antiferromagneticS51/2 HF state, and the restricted atom
HF (1s21p1) state. The unrestricted variational HF meth
gives results in very good agreement with quantum M
results ~compare the values in Table I with the resu
in Fig. 8!.

FIG. 7. A sequence of the one-particle probability atz50 for
the antiferromagnetic state. The sequence shows the gradual ch
of symmetry fromC3 , C2, to C` ~arrows indicate growing direc
tion of controlling parameterq). For smallq the width is small and
the wave functions are not overlapping. For largerq the overlap
becomes bigger. The finalC` symmetry is built up by Gaus
sians that are nearly equal to the total density of the 1s21p1

configuration.
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IV. THE PIMC SIMULATION

A. Description of the PIMC method and calculated properties

In this section we describe the path integral Monte Ca
simulations that were performed. In these calculations
Fermi statistics were included by considering the parti
trajectory and permutations in ‘‘imaginary time’’~see, for
example, Ref. 1!. During the simulation the temperature us
was kept small in relation to the excitation energy of t
system; however, it had to be kept large enough so that
so-called ‘‘sign problem’’ did not become important. Th
sign problem arises only in fermion systems, as an odd
mutation of the fermions results in the changing of the s
of the fermion density matrix, i.e., we have

rF~R,R8;b!5
1

NS! (P ~21!Pr~PR,R8;b!, ~20!

whererF is the fermion density matrix,b51/kT, NS is the
number of electrons in the specific spin state,P is the per-
mutation operator of particle labels, andR5$rW1 , . . . ,rWN% is
the set of all particle coordinates. This problem is explain
in more detail by Fenghua and Ceperley.17 In the position
representation the Boltzmann density matrixr is defined as

r~R,R8;b!5^Rue2bHuR8&. ~21!

The density matrix can be expanded in terms of density m
trices at higher temperatures, resulting in a good approxi
tion as the system behaves classically at higher temperat
Dividing up b in M ‘‘imaginary time’’ slices gives

r~R0,RM;b!5E •••E dR1dR2
•••dRM21

3r~R0,R1;t!•••r~RM21,RM;t!. ~22!

Note t5b/M51/k(MT), and MT becomes an effective
temperature. Clearly this effective temperature can beco
much larger than the actual temperature whenM becomes
large.

As a numerical test for the system, we checked that th
were only negligible deviations of the estimators calcula
by the Monte Carlo simulation from the exact theoretic

TABLE I. Dimensionless energyE’ for ferromagnetic HF, anti-
ferromagnetic HF, and 1s21p1 configuration ~also antiferromag-
netic! for different values ofq. The ground state is labeled with a
asterisk.

log10(q)
Ferro-

magnetic HF
Antiferro-

magnetic HF 1s21p1

23.0 4.2157* 4.2157 5.2707
22.5 4.4372* 4.4372 5.3092
22.0 4.8272* 4.8302 5.4265
21.5 5.4948* 5.5096 5.7655
21.0 6.7346 6.6317* 6.6554
20.5 9.3650 8.7131 8.7129*
20.0 14.5763 12.9503 12.9502*

nge
5-6
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values~at the temperatures under consideration! for nonin-
teracting fermions in a harmonic confinement. For exam
the precision of the calculated energy was not worse t
0.5% ~at the temperature at which the simulation was p
formed!. All the configuration and thermodynamic properti
were investigated as a function of the control parameteq.
The values ofq considered were between 1023 and 1 and the
temperature used wasq dependent, but kept constant in o
cillator units so thatkT50.3\v.

This fermionic many-body formalism was used to obta
the values of the following quantities:~i! the total energy,E,
~ii ! the exchange energy,Eexch, ~iii ! the radial distribution of
the particlesr(r ), ~iv! the half-height width ofr(r ), G radial,
~v! the maximum position ofr(r ), Rradial, ~vi! the radius at
which the pair correlation functionf (r ) has a maximum,
Rpair. For details about the derivations of these proper
see, for example, Ref. 1 and references therein.

The total energyE was obtained by using the standa
estimator:18

E5K 3

2
NT1

1

M (
i ,m

H 2
~Ri

m2Ri
m21!2

4qt2
1

1

2
~Ri

m!2J
1

1

M (
i , j ,m

1

uRi
m2Rj

mu L , ~23!

wheret5b/M , M is the number of imaginary time layers
and 1<m<M . The first kinetic term follows from the equi
partition theorem~using the dimensionless temperature,T).
In our caseN52 or N53. The negative part of the secon
term can phenomenologically be understood as a disc
approximation of the kinetic energy, using the imagina
time step Dt5 i2qt. We have then roughlyEkin5qV2

5q(Rm2Rm21)2/Dt252(Rm2Rm21)2/4qt2 ~using di-
mensionless units!.

The exchange energyEexch is defined here as the ferm
onic total energy~the same as the total energyE) minus the
corresponding Boltzmann energy~the energy in the cas
when the particles are distinguishable!. The exchange energ

FIG. 8. Total energy of system vs the quantum parameterq. For
N52, S50 is represented by circles andS51 squares. ForN
53, S51/2 is represented by down triangles andS53/2 up tri-
angles. The smallest spin gives the lowest energy asq→1. The
energy difference becomes extremely small for small values oq
and the energies went slowly towards their classical values.
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serves here as an estimator of the transition between Wi
crystal and Fermi liquid and is directly connected with s
tistics. We also note that the mean number of particles
take part in particle permutations could be used for the sa
purpose. The maximum position of the~dimensionless! pair
correlation function,Rpair describes the mean interpartic
distance and can approximately be understood as the in
particle distance obtained in Sec. III with the mean va
(2b11b2)/3, whereb1 and b2 are the distances in the tri
angle~See Fig. 1!. In the limit q→0 the system is equivalen
to the classical 3D Thomson atom~see Refs. 1 and 4 an
references therein!. For two electrons in the classical equ
librium state the electrons are located on the line go
through the center of the confinement potential at the sa
separation from the center. ThusRpair51 and the total energy
E5 3

2 . Similarly for three classical electrons, the equilibriu
state is when the electrons are located at the nodes o

equilateral triangle andRpair5( 3
2 )1/3'1.145 andE'3.93

@see Eq.~16!#. The Monte Carlo results are in agreeme
with these classical results, as shown below.

The radial distribution of the particles,r(r ), which is an
analog to the reduced one-particle probability given in S
III @see Eq.~12!# averaged over the solid angle, gives info
mation on status of the symmetry transformation. If there
kink in the half-height widthG radial or in the maximum po-
sition Rradial, this indicates strongly a rapid symmetr
change, or alternatively that the effects of the particle
change start to become important. For the former case th
obvious if we take a look at Fig. 7. The radial distribution
simply an average over a ‘‘circle’’ in these figures. It can
seen that an angular average must change when the sym
try changes.

Finally we give here further details of the PIMC calcul
tions. We performed the averaging as follows:

^A&5
1

Neff
( piAi , ~24!

where pi is the parity of permutationi, wherep051, and
Neff5(pi is the ‘‘effective’’ Markov chain length. Every per
mutation of two particles with the same spin changes
sign of the parity.

B. Results

The total energy,E is plotted in Fig. 8 forN52 (S50
and S51/2) andN53 (S51/2 andS53/2). The result for
three electrons agrees strongly with the HF result. Howe
the energy crossover between theS51/2 and theS53/2 state
cannot be observed as the numerical precision was not
ficient to determine the preferable spin state at the low
limit of q. Moreover, the temperature in the region of sm
values ofq was still too high~e.g., compare with the energ
difference in Fig. 5 of Sec. III!. For N52, however, there is
no doubt thatS50 corresponds to the ground state, even
TÞ0 K. It is easy to show that for two electrons, for th
specific parabola problem, thatS50 always corresponds to
the ground state for any temperature.
5-7
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SUNDQVIST, VOLKOV, LOZOVIK, AND WILLANDER PHYSICAL REVIEW B 66, 075335 ~2002!
In Fig. 9, we plot the exchange energy,Eexchas a function
of the control parameterq. It can be clearly seen thatEexch

grows monotonically asq grows. Note also that the increas
in Eexch starts at lowerq and is larger in general for th
higher spin states. ForN53 andS53/2 it increases by up to
19% of the total energy atq5100, with a kink at log10(q)
521.75. For two electrons the Fermi statistics starts to p
a distinct role from log10(q)'21.25. At this value ofq, the
exchange energy~which is directly connected with statistics!
starts to increase as a function ofq. As mentioned above the
mean number of particles that take part in particle permu
tions gives an estimate of the importance of the Fermi sta
tics in the simulation to be made. The simulations show t
this mean follows the same trend as the exchange ene
This is due to the fact that the permutations of the den
matrix @given in Eq. ~20!, and needed to satisfy the tot
antisymmetry required by the Fermi statistics# have little ef-
fect for small values ofq. As all statistical information is
contained in this density matrix, the system becom
Boltzmann-like whenq is small. However, this does not ne
essary mean that we can apply Fermi-Dirac statistics dire
as the exchange starts to increase~since the particles stil
have non-negligible interactions, so thatEÞ( jEj ).

The radial distribution for two particles,r(r ), is plotted in
Fig. 10 for different values ofq in the spin stateS51. As can
be seen, the distribution has a sharply localized shape fq
50.001, which gradually smooths out asq increases. We
also see clearly that that the maximum moves towards
origin; as it becomes more broadly distributed. Thus, qu
tum ‘‘melting’’ occurs and the electrons are ‘‘smeared’’ o
on the whole quantum dot. In other words, we have a tr
sition from a Wigner crystal to a Fermi-liquid-like structur
To be able to resolve details in this transition we have c
culated the half-height width,G radial and the position of the
maximum ofr(r ), Rradial. In Fig. 11 the result ofG radial is
plotted for as a function ofq. For N52 (S50 andS51/2)
and N53 (S51/2 andS53/2). ForN53, it has a kink at
log10(q)521.75. This indicates an exchange effect and/o
symmetry transition. The maximum position,Rradial, how-
ever, which is plotted in Fig. 12 has a kink at log10(q)
521.25. Therefore it seems likely that quantum melting o
curs around these values ofq. For N52, there is no symme
try transition, so the kinks can only be explained as an
change phenomena.

In Fig. 13, the position of the maximum of the pair co
relation function,Rpair is plotted as a function ofq. It can be
interpreted as the mean interparticle distance. ForN52 we
see thatRpair corresponds to the classical interparticle d
tance up to log10(q)521.5, where the different spin solu
tions start to diverge. Due to the additional statistical rep
sion the mean interparticle distance for states with lar
total spin increases more quickly as a function ofq than
states with smaller total spin because of the additional in
electron repulsion due to the exchange interaction. FoN
53 the distance first decreases slowly, but then starts the
increase. For theN52, S50 state, however, the pair corre
lation function decreases monotonically. The nonmonoto
behavior is connected with Fermi statistics and is absent
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Boltzmann systems. For smallq the system is essentiall
equivalent to a Boltzmann system~due to the negligible
overlapping of electron wave functions! and Rpair decreases
with increasingq. As q is increased the role of the Ferm
statistics becomes important andRpair starts to increase with
increasingq.

V. SUMMARY AND CONCLUSIONS

In this paper we present the results of PIMC and HF c
culations for three electrons in a quantum dot~where the
quantum dot is modeled by a harmonic potential!. In addi-
tion, PIMC calculations were also performed for a tw
electron system. The results for the different methods w
found to be generally in agreement, but some differen
were seen.

For the PIMC calculations on the two-electron system
was found that the spin state remainedS50 for all q and for
TÞ0. The three-electron system, however, showed a num
of phase transitions asq ~and hence the confinement! was
increased. Both methods predict a Wigner-crystal-like str
ture for weak confinement~i.e., smallq). In this region the

FIG. 9. Exchange energy of the system vs the quantum par
eter q. For N52, S51 is represented by circles. ForN53, S
51/2 is represented by down triangles andS53/2 up triangles. In
general, the maximal spin gives maximal exchange.

FIG. 10. Evolution of the radial distributionr(r ) with increas-
ing q for N52 andS51. The electrons are sharply localized fo
q50.001 and their structure corresponds to a Wigner crystal. Aq
increases, the position of the maximum moves towards the or
and the broadening becomes wider as well. The system behav
a Fermi liquid in this region.
5-8
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electrons form sharply peaked wave functions at the corn
of an equilateral triangle. As the strength of the confinem
increases ‘‘cold’’ or ‘‘quantum’’ melting takes place, and th
electrons change from being strongly correlated to be
weakly correlated. Related to this we found with the PIM
calculations that the particles considered were fermions,
hence obey Fermi statistics, which has an important effec
the properties of the system at largeq.

The symmetry change is predicted more precisely by
HF method, as the strength of the confinement is increa
and the symmetry of the system changes fromC3 to C2 and
finally to C` . The HF calculations also predict that the sp
state will change fromS53/2 toS51/2 at the same criticalq
value at which the transformation fromC3 to C2 occurs. At
a second criticalq value the symmetry changes fromC2 to
C` . The HF calculations also predict that a ‘‘condensatio
phase transition will occur, within the spin stateS53/2 ~even
though the ground state is in the spin stateS51/2). These
transitions cannot be seen with the PIMC method because~as
can be seen from Fig. 8! there is only a small difference
between the PIMC predicted energies of theS53/2 state and
the S51/2 state for smallq ~see Fig. 5 as well!, and the
PIMC method is not precise enough to determine the low

FIG. 11. Width of the radial distributionG radial vs the quantum
parameterq. For N52, S50 is represented by circles andS51
squares. ForN53, S51/2 is represented by down triangles andS
53/2 up triangles.

FIG. 12. PositionRradial of the maximum of the radial distribu
tion vs the quantum parameterq. For N52, S50 is represented by
circles andS51 squares. ForN53, S51/2 is represented by dow
triangles andS53/2 up triangles.
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energy state, since the thermal energy is greater than
energy difference.
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APPENDIX: EXPRESSIONS FOR ŠH ‹

IN FERROMAGNETIC
AND ANTIFERROMAGNETIC STATES

In this appendix we obtain expressions for the total ene
of the systemE(b,s) as a function of the variational param
etersb ands. The total energy of the system is defined a

E~b,s!5
^T&1^U&1^Uee&

^CuC&
. ~A1!

1. Ferromagnetic stateSÄ3Õ2

First defineJi j as the overlap integral^ i u j & between basis
functions i and j. For C3 symmetry ~where the centers o
wave functions are in corners of an equilateral triangle! all
these overlap integrals are identical and can be denote
simply J. Similarly for C3 symmetryb15b2 can be denoted
asb. Hence we have

^CuC&5~12J2!~112J!. ~A2!

Now J5exp(2b2/4s2). For the kinetic energy in the
u↑↑↑& state we obtain the following expression:

^T&5
3q

2s4
~12J!@b2J213s2~11J22J2!#. ~A3!

Analogously we have the total confinement potential ene
for this case:

^U&5
1

2
@b2

„21J2~J23!…19s2~12J!2~112J!#.

~A4!

Finally the Coulomb interaction between the differe
Gaussians is calculated as follows. The matrix eleme

FIG. 13. PositionRpair of pair function maximum vs the quan
tum parameterq. For N52, S50 is represented by circles andS
51 squares. ForN53, S51/2 is represented by down triangle
andS53/2 up triangles.
5-9
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L i , j ,n,m5E f i~rW1!f j~rW1!fn~rW2!fm~rW2!

r 12
dt ~A5!

and Gaussiansf j (rW i) with the same widths are calculate
We use the fact that a product of two Gaussians is als
Gaussian, apart from a factor. The interaction energy is t
only dependent on the relative distance between the cen
of these Gaussians ands. The Coulomb interaction betwee
two electrons, which are described by normalized Gaussi
separated a distanceb, are given by the expression

Uee5
1

s
F~p!, ~A6!

wherep5b/s and the functionF(p) is defined as the inte
gral

F~p!5
1

pAp
E

0

`

e2(p1z)2
~e4pz21!erf~z!dz. ~A7!

F(p) was solved numerically for differentp.
When p→` ~in practice whenp>5), F(p)→1/p. With

use of the definition ofp we see that Eq.~A5! reduces in this
case to the classical expression for interaction between
pointlike electrons. With use of Eqs.~A5! and ~7! the total
e-e interaction^Uee& has the form

^Uee&5
3

s H F~p!12J3FS p

2D2J2FF~0!12FSA3p

2 D G J .

~A8!

Combining Eqs.~A1!–~A8! we obtain the expression for th
ground-state energyE↑↑↑ as a function of the variational pa
rametersb ands.

2. Antiferromagnetic state SÄ1Õ2

For this state we have
f
n-

ys

et
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^H&5
^↑↑↓uH0u↑↑↓&1^↑↓↑uH0u↑↓↑&1^↓↑↑uH0u↓↑↑&

^↑↑↓u↑↑↓&1^↑↓↑u↑↓↑&1^↓↑↑u↓↑↑&
.

~A9!

Note that in Eq.~A9! the value of all the matrix element
in the numerator are the same, and similarly for the deno
nator. The components of Eq.~A9! are the following:

^U&5
1

12
@2b1

2~12J2!~41J1
214J2!

1b2
2~41J1

2~42J2!12J2
2!

154s2~12J2!~11J1
21J2!#, ~A10!

^T&5
q

4s4
@18s2~12J2!~11J121J2!

22b1
2J1

2~12J2!1b2
2J2~J1

212J2!#, ~A11!

^Uee&5
1

s F2F~p1!1F~p2!1~J1
22J2

2!F~0!

12J1
2FS 1

2
Ap1

212p2
2D G

2
J2

s H J1
2F2FS p1

2 D1FS p2

2 D G
12J2FS 1

2
A4p1

22p2
2D J , ~A12!

^CuC&5~12J2!~11J1
21J2!, ~A13!

where p15b1 /s, p25b2 /s, J15exp(2b1
2/4s2), and J2

5exp(2b2
2/4s2).
d.
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