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Phase transitions of a few-electron system in a spherical quantum dot
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The spin configurations of a spherical quantum dot, defined by a three-dimen@bmnddarmonic confine-
ment potential, containing a few Coulomb Fermi partickedectrons or holesare studied. Quantum transitions
involving a spin transformation and a “cold meltingfrom a Wigner crystal-like state, i.e., from regime of
strongly correlated electrons, to a Fermi-liquid-like phaisedriven by the dimensionless quantum control
parameterq (which is connected with steepness of the confinement potemgialemonstrated. The pair
correlation and radial distribution functions which characterize electronic quantum delocalization are analyzed.
The calculations using the unrestricted variational Hartree-Fock méfbothe ground state at=0 K) and
the more computer intensive quantum path integral Monte Carlo mdtbod#0 K) are performed and
compared. For smat, the ground state of the three electron system is crystal-like an@hagmmetry, i.e.,
the maxima of electron density are located at the nodes of an equilateral triangle. The preferable spin configu-
ration for smallq is “ferromagnetic,” with total spinS=3/2. Asq rises, the widths of the one-electron wave
functions grow and become overlapping. At a critical vatyyethe ground state changes fro8+3/2 to S
=1/2 and at the same time, asymmetry appears in the tridhglespontaneous breaking of tig symmetry
to C, symmetry. At a second critical valug, the electron distribution undergoes a symmetry phase transition,
from trianglelike(with C, symmetry to axial symmetriqwith C,, symmetry. As g grows further, we obtain
a Fermi-liquid-like (non-interacting electron configuration in the ground stat8=(1/2). In addition, theS
=3/2 state, at a criticad value (which is slightly larger tham;) undergoes a dramatic charge redistribution.
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[. INTRODUCTION dot: radial and pair distribution functions and total and ex-
change energies. We also analyze the symmetry of the elec-
The behavior of a many-electron system in a quantum dotron configuration and the effect of the Fermi statistics on the
is of great interest, especially in the regime of strongly cor-behavior of the quantities under consideration. We wse-
related electron:” This can be achieved for rarefied elec- strictedvariational Hartree-FockHF) andab initio quantum
tron systems by the change of a confinement parameter, f@ath integral Monte Carl¢PIMC) methods for fermions.
example, using a controlling gaté,or by using a normal These two methods are complementary. First, the HF
magnetic field® This possibility distinguishes quantum Method requires assumptions about the symmetry of the sys-
dots—giant artificial atoms—from natural atoms with rathertem to be made, which is justified by the PIMC results. Sec-
weakly correlated electronén all natural atoms the total ond the HF method as shown below allows more precise
correlation energy is always smaller than the Hartree-Fockalculations to be performe@h the region of small confine-
energy. Therefore, detailed analysis of all quantum dot charment strengthand requires much less central processing unit
acteristics in a wide range of the dimensionless quantum pz{CPU) time.
rameterq (connected with the steepness of the confining po- [N Sec. Il the model of a spherical quantum dot is pre-
tential and hence control of the correlation of the e|ect}0nssent8d. In Sec. Il the results of the unrestricted Hartree-Fock
is important, particularly the study of electron crystallization @PProximation are analyzed. In Sec. IV the results obtained
and quantum “cold” melting. In addition, spin transforma- Py the path integral Monte Carlo calculation are described.
tion driven by a change of the confinement potential is inter-Section V is devoted to a summary and conclusions.
esting in connection with phenomena such as spin blockades
and also for spin memory applications. Il. MODEL OF A FEW-ELECTRON SYSTEM
In this paper we study in detail the behavior of a few- ) ) ) ]
electron quantum system inside a spherical quantum dot with e use a three-dimensional parabolic confinement as a
parabolic confinement. The model is equivalent to a quanturiPherical quantum dot model. Such a confinement describes
analog of the three-dimensionédD) Thomson atom(see, real quantum dots with small number of electrdh¥ The
for example, Ref. 1 and references thejeidl properties of ~ Hamiltonian of the system is
the system at sufficiently low temperatures depend only on N ) N ) N )
the dimensionless quantum paramejewhich is connected sz —h _ +2 Mo™ _2+2 €
with the steepness of the confinement potential. We therefore 1 2m = 2 S ey
analyze how the properties of the spherical quantum dot de-
pend ong and the total spin. We have studied the following wherem is an effective electron mass ards the dielectric
characteristics of the few-electron system in the quantunsusceptibility. We use dimensionless variables for length, en-
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ergy, and temperaturer’'=r/ry, E'=E/Ey, T'=T/E,. Equilateral, C, Isosceles, C, Line, C_
Units of length and energy are,=(2e% emw?)?, E,

=e?/er y=mw?r/2. After these transformations the Hamil-

tonian takes the form b

EqV+2r+2— ) b 1

<] ij
where q=(%2/2m)(mw?e*/2e®)¥® is the dimensionless
guantum control parameter of the system. It is easy to show
that g can be expressed as the ratio of the effective Bohr3
radius aj=#%%/m*e®> and the one-particle length
= (#/m* w)? (of the ground state in the confinement poten-
tial) asq=(ag/21)*3 The controlling parameteg can also
be expressed as the dimensionless ratio of the effective Bohr Vo= 0,12,
radius to the equilibrium interelectron distanggin a clas- ’

FIG. 1. Different realizations of symmetry with the given
Gaussian basis set.

sical cluster or as the dimensionless ratio of the characteristic 1

quantum kinetic energ§/2mr,? to the characteristic classi- Xpz=a— f\/4b21_ bzz,

cal Coulomb interactiore?/er,. As an example we give

some typical values for electrons in GaAs. At {g@) = Yos= —b,/2. @)
—1.5, we have ro=164 nm, =69 nm, and E, ‘

=0.67 meV. More examples are given in Sec. Ill. The spin- The center of mass and relative motions can be separated
dependent contributionéBreit’s interaction and the spin- for parabolic confinementsee, e.g., Ref.)1 The center of
orbit interaction or the so-calledS coupling are relatively mass oscillates as a 3D harmonic oscillator. Here we are
small in the whole region ofj. Furthermore, we will study interested in the relative electron configurations. The param-
the behavior of the system characteristics in the dependenegera fixes the center of mass position and the electron con-
on the dimensionless parametgrg can be changed experi- figuration does not depend @n We suppose for simplicity
mentally by controlling the steepness of the confining poten{and this is in agreement with the results of the quantum

tial w using a gate. Monte Carlo simulation; see Sec.)l¥hat the triangle has at

leastC, symmetry relative to the axis. It is easy to show

Ill. UNRESTRICTED HF VARIATIONAL APPROACH: that in the classical casé,;=b,, i.e., electrons are at the
THEORY AND RESULTS nodes of an equilateral triangle. It is obvious that the sym-

metry C3 must be true also a for quantum system at suffi-

There are several effective methods for treating the prob-
711-14 ciently smallg. When all the centers of Gaussians are on the
lem under consideratiofr. In this section we analyze
same axis, i.eh;=b,/2, we have an electron molecule with

the ground state of the problem using the unrestricted varia- symmetry. Below we shall show that all these ca@es
tional Hartree-Fock approach to take into account a pOSSib?Eiw il) occuryét different regions of the controlling parameter
spontaneous breaking of spherical symmetry of the Hamil- 9. 9 gp

tonian given by Eq(2). We take three Gaussians as one-
particle wave functions for the system bf=3 electrons.
These Gaussians are centered at the cortresdes of a
triangle in thex-y plane. The width of the Gaussians is con-
trolled by a variational parametet, which is identical for all

the functions. Hence the basis functioqbg{?) are given by

The wave function of the system can be modeled by the
eigenstates of the total spth

3 |2
Zs

The spin operators act on the spinor with®=28

S(S+ 1)V, (5

bi(N)= Ne~ (UI(x—xo))/012 o= (12)[(y~Yo)/ 012 g~ (1/2) @ 0)? componentd>16
() _ o
. . \I,TTT(rllr25r3)
Note that the basis functions are nonorthogonal. There are gk
three possibilities for arrangement of the three na@g&@f a Wy p(ry,ra,ra)
triangle with different symmetriesC;, C,, andC,, and W | (F1pila)
they are plotted in Fig. 1. The node coordinates can be rep- Ll 203
resented in the form L | Ty (M)
¥— Tl e ®)
Xo,1=4, W p(rera,rs)
Y01=0, W (M2
1 \Ifl,l,T(rliFZvrB)
Xo'zza_z 4b1—b3, _\I’l,l,l(F1,F2,F3).
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&? is a constant & 8 matrix that acts on the spinor given in
Eq. (6). The equation responsible for spin effefdpart from
Eq. (5)] is the total antisymmetry ruléor fermiong, and is
in general given by

- - -

\I}sl,...si,...s,... .,r,—,...rN)

>

Tiy e .FN).
)

For the “ferromagnetic” state with total spi8=3/2 we
have a fourfold degeneracy with respect3a Their wave-

:_\I’sl,.. s

.j,...si,...sN(rlv---rjv---
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$1(r)  ¢1(ra)  ba(ra)
\I’T,T,T(Flsz,G)I ¢2(F1) ¢2(|72) ¢2(F3)- (8)
B3(r)  ba(ra)  ba(ra)

For the completion we also consider the “antiferromag-
netic” state withS=1/2. The total spin constrictio= 1/2 in
Eq. (5 (giving ¥, =—f,—f,, ¥, =f, and ¥ ,,
=f,, wheref,; andf, are arbitrary functions of the coordi-
nate$ and Eq.(7) with the particle permutations =2,
1=3, and 2=3 will restrict the waveform of the spinor
components f(; andf,). Since the solution 06=1/2 is de-

forms are exactly equal and we give here the expression fayenerate with respect t&,, we give here a waveform

S,=+3/2, where only the componeft; ; , is not equal to
zero and is fully antisymmetrical:

on the componentst, , ,, ¥, ., and ¥ ,, (all with
S,=+1/2) as:

O F):3¢(F)¢2<Fl> ol 1 o | dally) alra) T $2(Fa)  alry) .
PRI T 6a(f) da(T)| 6 Pl ga(Tn) ba(fa)] 6 U da(Ta) da(fa)|’

.. o 1 R ¢2(F1) ¢2(F3) 1 R ¢2(F2) ¢2(F3) 1 - ¢2(F1) ¢2(F2)
W (Pl =2 hi(rD)| . R R (2 | R Sz L 2 o
PETRT2ESTR TR T da(fa)| B0 M ga(fe) ds(Ta)| B T ga(F1) ba(fa)

I | - ¢2(F2) ¢2(F3) 1 - d’Z(Fl) ¢2(F3) 1 L | #a(ry) ¢2(F2)
W (Pl fa) =2 hi(r)] . Tzt L R RN (2 R )
LRz g T b3(ry)  Ps(ra) 672 P3(ry)  ps(rs) 673 Pa(ry)  @s(ry)

The total charge density is defined as the sum of thenetic” and “antiferromagnetic” states as functions of
squared one-particle functions, but we prefer to define théhe variational parameters and o are presented in the
reduced one-particle probabili§y; since the wave functions Appendix.
could overlap significantly. We now integrate out two coor-  First we analyze the ferromagnetic state 1), S=3/2.
dinates.Fz and FS were chosen: however, due to the total From the expressions given in the Appendix it follows that if
antisymmetry of the wave functiofsee Eq.(7)] any two  d is small enough and there is only a small overlap of the
could have been chosen. For the “antiferromagnetic” state iPasis functiongi.e., b/o is large, we can approximateH)
is given by as

9q 307 2

8
Py(r)=2, d3r3f d%r | |2 Eapprzﬁ"' > +2
=1 o

b

+2b
3lo

(13

If we minimize the energy with respect toand o, we

=3¢2(1—J2>+ 1<¢2+ $3)(2+33)
371 276 12 3 ! find that the local minimum occurs when

b1

1
= _ — 2 1/3
T3 (P2t ¢3)I1(1—J3) 3 h2p3(I1+2J,) by (;) , 14)
(12)
where the explicit coordinate dependence on the functions is ao=q"". (15

omitted in the above expression. The definitiond pandJ,
are given in the Appendix. Fal;,J,—0 (small overlap we
obtain the “classical” total charge density and fdg,J,
—1 P, cancels due to Pauli's exclusion principle. Notice
that P, is mirror symmetric around thg axis (see Fig. 1L
The expressions for energiésl), and both the “ferromag-

Substituting these values into E(L3) yields the ground-
state energy:

2/3

+940.

E—3:‘3
0=3|3

(16)

075335-3



SUNDQVIST, VOLKOV, LOZOVIK, AND WILLANDER PHYSICAL REVIEW B 66, 075335 (2002

The square root dependence corresponds to the harmon
confinement energy.

Now we analyze the transformation of electron configu-
ration in the ferromagnetic state driven by the quantum con-
trol parametelg. In Fig. 2 a contour plot of the total energy
is shown as a function df and o at q=0.053. At this value
we obtain a bistable global solution. The two miniitiadi- —
cated byO and + in the figurg have the same energy. We fa
denote this critical value af by q.. Whenq<q., the global ~ %1-15f
minimum corresponds to th®, corresponding to the “clas-

Bistable minimum

q,=0.05299

sical” minimum. By the classical minimum we mean the I 2‘522?:;;:

Wigner-crystal-like configuration of charges where the total E11=50.9493

potential energy dominates the Hamiltonian. Strictly speak- 2%2"2?:?2;

ing this is the case wheb=b,. For q>q. the quantum 1.05} E-=5.0493

kinetic contributions will be important, and as a result, the . ) 2_ . ) . ) i

“condensed” minima marked with & have lower energy. 0.1 02 03 04 05 06 07 08 09
In Fig. 3, the result of the minimization is plotted as a LA

function of logy(q). Notice that the transition is very sharp
atg=gq.. The change ib and o is actually infinetely sharp
atT=0. However, at finite temperature the transition will be
continuous and the fermions will be in a superposition of th
O state and the+ state. After the transition the value bfis
reduced by a factor of 5. The top figure shoks—E, as a . _ , .
function ofq. WhenE, — E, crosses the zero axis the ground system in a logarithmic scale. The figure also shows typical
state changes from th@ state to thet+ state. It is interesting Si2€S Of the electron molecule at some valuesjoFor q

to note that the control parametgrplays a role analogous to <91 (indicated with a line in the figujehe system is ferro-
the temperature in the Ginzburg-Landau theory for Superconr_nagnet|c. From this figure we can estimate the temperature
ductors. needed to destroy the ferromagnetism.

After the phase transition point, the overlap integial In Fig. 6, the result of th_e m|n|m|zat|on is shown. The
which is defined in the Appendix, takes an almost constanfiguré shows the second critical pom, where the symme-
value of 0.97. In the range-3<log;o(q)< —1.2758, the try phase transitiol€,— C,, occurs. The ratld?llbz_deter-
overlap increases exponentially up to this limit, with the kink Mines the symmetry of the system. When this ratio equals 1
at log,(q)~—2. Since the overlap is large, the exchangeWe haveCs symmetry. When 1-b, /b,>1/2 we haveC,
energy will also be large. The exchange energy is define§ymmetry, and finally when it equals 1/2 we ha@e sym-
here as the difference between the ground-state energy aMEetry. After the spin transition to the antlferromagnetlc_state
the corresponding unrestricted Hartree endmgyh the same  We have C, symmetry but for logy(q)>—1.2 the ratio
values ofb and ). After the transition point the exchange
energy increases from 5% of the ground-state energy up to o= TP T
+22%, whileJ is almost constant. This shows that the ex-
change plays an important role in the phase -0.05f log,y(a,)=-1.2758
transition.

In Fig. 4, the probability distribution for one electron is =013 25 )

FIG. 2. Contour plot of energy vs minimization parameters
ando at the critical valueg=q.=0.053. At this value ofj there is
two global minima, here marked with (condensed minimujrand
€ (minimum for normal Wigner cluster

-0.5 0
plotted forq<q. and q>q, for the region near corners of 1 .
the triangle(the others follow from total antisymmeirand o
shows theC; symmetry clearly. The contour plot shows that  Zo.sf b = (32"
the triangular Gaussian distribution @t q. suddenly con-
denses to one central but wider peak. 9% Y] ~ = — s 0

Now we analyze the antiferromagnetic state and compare
its energy with the ferromagnetic case to look for a global
minimum, i.e., for a ground state. We find its energy by the =" | (q)=q'"* H

.. . . . . . . 0 o
minimization of(H) using expressions in the Appendix. The  g1.1}f o \\\
result shows that at lgg(q,) < —1.3077, the energy is mini- 1 M . .
mal for the “ferromagnetic” state&S=3/2 and otherwise the -3 =25 -2 ,;;-5(0') -1 -05 0
antiferromagnetic stat¢1|) is favorable. The structural 10
condensation phase transition takes place after the spin tran- F|G. 3. Energy difference between classil and condensed
sition. The energy difference between the ferromagnetic anghinimum E, as a function ofj for S=3/2 (top figure. Distanceb
the antiferromagnetic state is, however, small for smalh in equilateral trianglémiddle figure vs g. Widths o of one-electron

Fig. 5, the energy differencéabsolute value betweenS  wave functiongbottom figure vs g. For g smaller than the critical
=3/2 andS=1/2 is converted to real temperature for a GaAscondensation valug,, the classical minimum is the ground state.
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10 T Y Y
GaAs :
D (7K)
(42 K)
10° E :
< T=0.11K: ———g
Y b=200 nmi : :
E =70 nm :
® H
210}
£
k>
£ / :
w i T=2nK :
FIG. 4. Sequence of the total electron densityzat0 for S 6| p b=6um -
=3/2. The figure shows the electron configuration right before and c=0.9 ”mg :
after the transitior(e.g.,q<g. andq>q.). The white area corre- : R “anti- L
sponds to maximal amplitude. Note the small local minimum in the ferromagnetic™ : ferromagnetic™
condensed configuration. 107 ; S=3%2 S=12 :
-3 -25 -2 -15 -1 -05 0
log,  (a)

b,/b, decreases quickly towards 1/2. For {g@)

>—0.772 the ratio is 1/2, i.e., the system t@s symmetry. FIG. 5. Energy differencéabsolute valuebetweenS=3/2 and
Note that the derivatives di, and o are discontinuous at S=1/2 converted to temperature, for a GaAs system. To destroy the
this point. As was shown above the symme@y (which  ferromagnetism in the dot, for lggq)=—1.5 we need a tempera-
takes place for the Hamiltonian of the sysiesirestored at ture of 0.1 K. The typical dimensions of the systbrando are also
sufficiently large controlling parameter In Fig. 7, the prob-  given at some points, as well as standard temperatures.

ability distribution is plotted for four values @f, close to the

transition region. It is interesting that spontaneous breakingnergies decreases asincreases. Starting from lggq)

of symmetry corresponds to that disappearance of the clustes —0.7258 the restrictetatomiclike HF function gives the
crystallization, i.e., the quantum melting of the cluster. Thepest result. It differs, however, very little from the unre-
figure shows clearly that th€, symmetry appears in an stricted Gaussian HEwith C.. symmetry result, e.g., the
intermediate region of. Whenqg>q, (the bottom figure to  correlation energy is small. The total electron density for the
the right in Fig. 7 the probability distribution ha€.. sym-  Gaussians aligned on the same ax@, (symmetry does

metry. Only much later, at largerwhen the Coulomb inter-  |ook the same as that for the independestlip® configura-
actions become much smaller than the confinement is thgon, e.g.,

electronic structure of the system identical to that of three
noninteracting electrons in a parabolic confinement. Indeed, . 5 - -
as one can easily show for the independent three electrons in Pa(r)=2¢14(r) +¢1p(r), (19
the parabolic confinement potential, the ground state corre-
sponds to the 41p* configuration(contrary to the configu-

ration 1s?2s! for the hydrogen atom this is due to the ex-  [=~"""="""===--__ - b
. . . . L ~ S = 1/2
pression for the energy of the spherical harmonic oscillator: ~C, b,/b, ¢
1
3
Eni=ho|5+1+2n], (17 o9
0.8}
wheren=0,1,2...,1=0,1,2 ..., andfiw/E, is equal to o7l
2./q. We stress that the electron configuratios?llp® has '
the sameC,, symmetry. Thus it is interesting and natural to 9.6}
compare the results of the unrestricted Gaussian HF methog g}
with those obtained by restricted HF method, with orbitals
G .
d1s=Nye” P00 ,¢), o}
18 oo T
djlp:Nlpre—(llz)(r/az)ng(e,go), o B
0.1

in the 1s?1p! antiferromagnetic staté 1 | ). Doing the same -3 -2.5 -2 o -1 -0.5 0

' : : d,,(q)
procedure as above for the Gaussian antiferromagnetic case,
we obtain an analytic expression for the energy as a function i 6. phase transition diagram for the antiferromagnetic state.
of oy anda, E(oy,07). Minimizing this with respect to the  The ratiob, /b,, b,, ande are plotted as a function af The ratio
two variational parameters; and o, then gives the global b, /b, gives the symmetry information. Note the discontinuous de-
minimum. This energy is about 25% larger than the Gaussiafvative of b, and o at log,o(q) = —0.772. At this point we change
energy for logy(q)=—3. The difference between the two from C, symmetry toC.., symmetry.
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TABLE |. Dimensionless energl’ for ferromagnetic HF, anti-
ferromagnetic HF, and sf1p* configuration(also antiferromag-
netic) for different values ofy. The ground state is labeled with an

asterisk.

Ferro- Antiferro-
logso(a) magnetic HF  magnetic HF #21pt
—-3.0 4.2157 4.2157 5.2707

—-25 4.4372 4.4372 5.3092
—-2.0 4.8272 4.8302 5.4265

—-15 5.4948 5.5096 5.7655
—-1.0 6.7346 6.6317 6.6554
-0.5 9.3650 8.7131 8.7129
-0.0 14.5763 12.9503 12.9502
—_
IV. THE PIMC SIMULATION

A. Description of the PIMC method and calculated properties

FIG. 7. A sequence of the one-particle probabilityzatO for In this section we describe the path integral Monte Carlo
the antiferromagnetic state. The sequence shows the gradual changignylations that were performed. In these calculations the
of symmetry fromCs, C,, to C.. (arrows indicate growing direc-  Fermj statistics were included by considering the particle
tion of controlllr?g parameteq). For sm_allq the width is small and trajectory and permutations in “imaginary timesee, for
the wave functions are not overlapping. For largethe overlap oy ampje Ref. L During the simulation the temperature used
becomes bigger. The final.. symmetry is built up by Gaus- ¢ vent small in relation to the excitation energy of the
sians that_ are nearly equal to the total density of ti1p system; however, it had to be kept large enough so that the
configuration. . .o .

so-called “sign problem” did not become important. The
sign problem arises only in fermion systems, as an odd per-
for large values ofj [P, is defined in Eq(12)]. However, mutation of the fermions results in the changing of the sign
this is not true for small values af, as very many one- of the fermion density matrix, i.e., we have
particle orbitals have to be used to satisfactorily build a
Wigner crystal.

Finally we sum up the transition steps as follows: There
are three critical values af. Two of them,q, andq,, refer to ] ) . ] ]
transitions within the ground state, and the thigd, refers wherepe is the fermion density matrix3=1kT, Nsis the
to a transition in the ferromagnetic state. At Jg@|.) number of electrons in the specific spin stfitlals th? per-
= —1.2758, we go from classicél; symmetry to condensed Mutation operator of particle labels, aRg={ry, ... ry} is
C, in the ferromagnetic state. At lggq;)= —1.3077 the f[he set of all _partlcle coordinates. This problem is explalned
system goes from a ferromagnetic state to an antiferromag? More detail by Fenghua and Cgper’réyn.the position
netic state(a spin transitionand at the same time frof; to representation the Boltzmann density mapixs defined as
C, symmetry. At logo(qg,) = —0.772 we obtain a sharp sym- oy —BH|
metry transition fromC, symmetry toC., symmetry. Up to P(RR":B)=(Rle”™R"). @D
this point Gaussians give a lower energy than tis81p®  The density matrix can be expanded in terms of density ma-
state. Even if it is not a fundamental transition, the groundrices at higher temperatures, resulting in a good approxima-
state will, for logo(q) > —0.7258, be in the £1p* configu-  tion as the system behaves classically at higher temperatures.
ration state. They converge, however, in their characteristicBividing up 8 in M “imaginary time” slices gives
for energy and one-particle probability. They both h&ue
symmetry. We hence con_clude that our choice of vari_atjonal P(RO,RM;B)ZJ f dRR2. .. dRM L
parameters in the Gaussian basis set is good, since it is suf-
f|C|ent to realize both the structure of a ngr_1er crystal and X p(RO,RL7)- - - p(RM "L RM: 7). (22)
the independentnoninteracting electron configuration. In
Table I, the energy as a function of lggq) is listed for the  Note 7=8/M=1/k(MT), and MT becomes an effective
ferromagneticS= 3/2 unrestricted variational HF state, the temperature. Clearly this effective temperature can become
antiferromagnetiS= 1/2 HF state, and the restricted atomic much larger than the actual temperature wié&rbecomes
HF (1s?1p?) state. The unrestricted variational HF methodlarge.
gives results in very good agreement with quantum MC As a numerical test for the system, we checked that there
results (compare the values in Table | with the resultswere only negligible deviations of the estimators calculated
in Fig. 8. by the Monte Carlo simulation from the exact theoretical

1
pr(RRA) =17 ; (—1)Pp(PR,R";B), (20
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16 - - - - - serves here as an estimator of the transition between Wigner
crystal and Fermi liquid and is directly connected with sta-

o tistics. We also note that the mean number of particles that
12r /v T take part in particle permutations could be used for the same

m

-

14}

™

10} // purpose. The maximum position of tfidimensionlesspair
- correlation function,R,,; describes the mean interparticle

N

8r / distance and can approximately be understood as the inter-

6 ‘M ,/-' particle distance obtained in Sec. Il with the mean value

s PRI S, o _/'/-/ ] (2b;+b,)/3, whereb; andb, are the distances in the tri-
/.fl/ angle(See Fig. 1 In the limitq— 0 the system is equivalent

2 .'—-——--—-—-——-——""%'/ Log q- to the classical 3D Thomson atofeee Refs. 1 and 4 and

30 25 20 r 0 05 0o  references thereinFor two electrons in the classical equi-

librium state the electrons are located on the line going
FIG. 8. Total energy of system vs the quantum param@t&or  through the center of the confinement potential at the same
N=2, S=0 is represented by circles arg=1 squares. FON  ganaration from the center. ThRs,;= 1 and the total energy
=3, S=1/2 is represented by down triangles aBet3/2 up - £ _ 32 gimijarly for three classical electrons, the equilibrium

angles. The smallest spin gives the lowest energgiasl. The gioi0 s \when the electrons are located at the nodes of an
energy difference becomes extremely small for small valueg of

and the energies went slowly towards their classical values. equilateral triangle andRp,;= (3)*~1.145 andE~3.93
[see EQ.(16)]. The Monte Carlo results are in agreement

values(at the temperatures under consideratifor nonin-  With these classical results, as shown below.
teracting fermions in a harmonic confinement. For example, The radial distribution of the particlep(r), which is an
the precision of the calculated energy was not worse thagnhalog to the reduced one-particle probability given in Sec.
0.5% (at the temperature at which the simulation was perdll [see Eq(12)] averaged over the solid angle, gives infor-
formed. All the configuration and thermodynamic properties mation on status of the symmetry transformation. If there is a
were investigated as a function of the control paramgter Kink in the half-height widthl" 5 OF in the maximum po-
The values ofy considered were between Tband 1 and the Sition Ryagia, this indicates strongly a rapid symmetry
temperature used wagdependent, but kept constant in os- change, or alternatively that the effects of the particle ex-
cillator units so thakT=0.% . change start to become important. For the former case this is

This fermionic many-body formalism was used to obtainobvious if we take a look at Fig. 7. The radial distribution is
the values of the following quantitie§) the total energyE,  Simply an average over a “circle” in these figures. It can be
(i) the exchange energi.,, (iii) the radial distribution of ~seen that an angular average must change when the symme-
the particleso(r), (iv) the half-height width op(r), I .gians try changes.
(V) the maximum position Oﬁ(r)' Rradiala (V|) the radius at . F|na”y we giVe here further qetails of the PIMC calcula-
which the pair correlation functiori(r) has a maximum, tions. We performed the averaging as follows:
Rpair- FOr details about the derivations of these properties

see, for example, Ref. 1 and references therein. 1
The total energyE was obtained by using the standard M=\ > PiA, (24)
estimator*® eff
3 1 (R"—RM 12 1 where p; is the parity of permutatiom, wherepy=1, and
E= < NT+— D, —— ! + = (RM? Nexz=2p; is the “effective” Markov chain length. Every per-
2 A aq7? 2 mutation of two particles with the same spin changes the

sign of the parity.

1 1
+— —_—), (23
M ‘gm |Rim_ij|> B. Results

where 7= B8/M, M is the number of imaginary time layers,  The total energyE is plotted in Fig. 8 forN=2 (S=0

and 1I=m=<M. The first kinetic term follows from the equi- andS=1/2) andN=3 (S=1/2 andS=3/2). The result for
partition theoremusing the dimensionless temperatuf¢,  three electrons agrees strongly with the HF result. However,
In our caseN=2 or N=3. The negative part of the second the energy crossover between e 1/2 and theS= 3/2 state
term can phenomenologically be understood as a discreteannot be observed as the numerical precision was not suf-
approximation of the kinetic energy, using the imaginaryficient to determine the preferable spin state at the lower

time step At=i2qr. We have then roughlyE,,=qV? limit of g. Moreover, the temperature in the region of small
=q(R™—R™ 1)2/At?=—(R™-R™ 1)?/4q7?> (using di- values ofgwas still too high(e.g., compare with the energy
mensionless unijs difference in Fig. 5 of Sec. IJl ForN=2, however, there is

The exchange energi.,., is defined here as the fermi- no doubt thatS=0 corresponds to the ground state, even at
onic total energythe same as the total energy minus the T#0 K. It is easy to show that for two electrons, for this
corresponding Boltzmann enerdyhe energy in the case specific parabola problem, th&=0 always corresponds to
when the particles are distinguishabl€he exchange energy the ground state for any temperature.

075335-7



SUNDQVIST, VOLKOV, LOZOVIK, AND WILLANDER PHYSICAL REVIEW B 66, 075335 (2002

In Fig. 9, we plot the exchange ener@,.,as a function ' ' ' ' '

of the control parametey. It can be clearly seen th&,,, 28 I Eexen /
grows monotonically ag grows. Note also that the increase 29| A
in Egycn Starts at lowerq and is larger in general for the -

higher spin states. Fdf=3 andS=3/2 it increases by upto 15

19% of the total energy aj=10°, with a kink at log(q) I /‘ /
=—1.75. For two electrons the Fermi statistics starts to play"O i / / i
a distinct role from logy(q)~ — 1.25. At this value ofy, the 0.5 /. o i
exchange energiwhich is directly connected with statistjcs I /A/

starts to increase as a function®@fAs mentioned above the ¢ ;=o=o=o=o=o—o=0—/—’é‘¢ Log q1
mean number of particles that take part in particle permuta- 5 25 20 s oY) o5 0.0

tions gives an estimate of the importance of the Fermi statis-

tics in the simulation to be made. The simulations show that FIG. 9. Exchange energy of the system vs the quantum param-
this mean follows the same trend as the exchange energ§ter d- For N=2, S=1 is represented by circles. Fo{=3, S
This is due to the fact that the permutations of the density 1/2 iS represented by down triangles a8 3/2 up triangles. In
matrix [given in Eqg.(20), and needed to satisfy the total general, the maximal spin gives maximal exchange.

antisymmetry required by the Fermi statistibgave little ef- Bolizmann systems. For smafl the system is essentially

fect for small values ofy. As all statistical information is equivalent to a Boltzmann systefdue to the negligible

céorrttamed I"?( th';‘ dgnsny l:ﬂatrlx, thethgys(,jtem b(icomesoverlapping of electron wave functionand R,,;; decreases
olizmann-iik€ wherg 1S Small. HOWEVer, this does NOt NEC- i increasingg. As q is increased the role of the Fermi

essary mean that we can apply Fermi-Dirac statistics directl)ug’t(,mstiCS becomes important aRdy; starts to increase with
as the exchange starts to incredsince the particles still i creasingg ar
have non-negligible interactions, so tha# > E;).
The radial distribution for two particlep(r), is plotted in
Fig. 10 for different values af in the spin stat&=1. As can V. SUMMARY AND CONCLUSIONS

be seen, the distribution has a sharply localized shape for | this paper we present the results of PIMC and HF cal-
=0.001, which gradually smooths out gsincreases. We culations for three electrons in a quantum dahere the
also see clearly that that the maximum moves towards thguantum dot is modeled by a harmonic potentiah addi-
origin; as it becomes more broadly distributed. Thus, quantion, PIMC calculations were also performed for a two-
tum “melting” occurs and the electrons are “smeared” out electron system. The results for the different methods were
on the whole quantum dot. In other words, we have a tranfound to be generally in agreement, but some differences
sition from a Wigner crystal to a Fermi-liquid-like structure. ere seen.

To be able to resolve details in this transition we have cal- For the PIMC calculations on the two-electron system it
culated the half-height widtH, .45 and the position of the was found that the spin state remair@&d0 for all g and for
maximum ofp(r), Riagia- IN Fig. 11 the result of ' agia1 IS T#0. The three-electron system, however, showed a number
plotted for as a function of. ForN=2 (S=0 andS=1/2)  of phase transitions ag (and hence the confinemgnvas
andN=3 (S=1/2 andS=3/2). ForN=3, it has a kink at increased. Both methods predict a Wigner-crystal-like struc-

log;o(q) = —1.75. This indicates an exchange effect and/or aure for weak confinemerii.e., smallqg). In this region the
symmetry transition. The maximum positioR, iy, how-

ever, which is plotted in Fig. 12 has a kink at lg@) - - - - - - - -
= —1.25. Therefore it seems likely that quantum melting oc- 1.0
curs around these values @fFor N=2, there is no symme-

try transition, so the kinks can only be explained as an ex-0.8
change phenomena.

In Fig. 13, the position of the maximum of the pair cor- 0.6
relation functionR,,; is plotted as a function dj. It can be
interpreted as the mean interparticle distance. ¥er2 we 0.4
see thatR,;, corresponds to the classical interparticle dis-
tance up to logy(q) = — 1.5, where the different spin solu- g2}
tions start to diverge. Due to the additional statistical repul-
sion the mean interparticle distance for states with largergq ; i
total spin increases more quickly as a functiongpthan 0o 02 04 06 08 10 12 14 16
states with smaller total spin because of the additional inter- £ 10. Evolution of the radial distributiop(r) with increas-

electron repulsion due to the exchange interaction. Ifor ing q for N=2 andS=1. The electrons are sharply localized for
=3 the distance first decreases slowly, but then starts then -0.001 and their structure corresponds to a Wigner crystatj As
increase. For thél=2, S=0 state, however, the pair corre- increases, the position of the maximum moves towards the origin
lation function decreases monotonically. The nonmonotoni@nd the broadening becomes wider as well. The system behaves as
behavior is connected with Fermi statistics and is absent fo# Fermi liquid in this region.
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FIG. 11. Width of the radial distributiof,,4i5 VS the quantum
parameterg. For N=2, S=0 is represented by circles arg1
squares. FON=3, S=1/2 is represented by down triangles add
=3/2 up triangles.

FIG. 13. PositionR; of pair function maximum vs the gquan-
tum parameteqn. For N=2, S=0 is represented by circles agl
=1 squares. FON=3, S=1/2 is represented by down triangles
and S= 3/2 up triangles.

electrons form sharply peaked wave functions at the cornerf€N€rgy state, since the thermal energy is greater than the
of an equilateral triangle. As the strength of the confinemengneray difference.

increases “cold” or “quantum” melting takes place, and the

electrons change from being strongly correlated to being ACKNOWLEDGMENTS

weakly correlated. Related to this we found with the PIMC  The work was supported by INTAS, RFBRs, the Sweden
calculations that the particles considered were fermions, anflrogram, Quantum Devices, and SSF.

hence obey Fermi statistics, which has an important effect on

the properties of the system at large . APPENDIX: EXPRESSIONS FOR (H)
The symmetry change is predicted more precisely by the IN FERROMAGNETIC
HF method, as the strength of the confinement is increased AND ANTIFERROMAGNETIC STATES

and the symmetry of the system changes fi©gto C, and

finally to C... The HF calculations also predict that the spin  In this appendix we obtain expressions for the total energy
state will change frons=3/2 toS= 1/2 at the same criticaj  Of the systenE(b, o) as a function of the variational param-
value at which the transformation fro@, to C, occurs. At ~ €tersb ando. The total energy of the system is defined as
a second criticat] value the symmetry changes fro@y to

C... The HF calculations also predict that a “condensation” E(b,o)= <T>+<U>+<Uee>_ (A1)
phase transition will occur, within the spin st&e 3/2 (even (W)

though the ground state is in the spin st&e1/2). These

transitions cannot be seen with the PIMC method bectasse 1. Ferromagnetic stateS=3/2

can be seen from Fig.)&here is only a small difference  First defineJ;; as the overlap integrdi|j) between basis
between the PIMC predicted energies of 8v3/2 state and  functionsi andj. For C; symmetry (where the centers of

the S=1/2 state for smallj (see Fig. 5 as well and the  wave functions are in corners of an equilateral triangik
PIMC method is not precise enough to determine the lowerthese overlap integrals are identical and can be denoted as

simply J. Similarly for C3 symmetryb,=b, can be denoted

0.7 . . . . . ash. Hence we have
08 [ R =Ty ] (W|W)=(1-J3%)(1+2J). (A2)
05f . . Now J=exp(—b%45?). For the kinetic energy in the
y i o\\o\‘.\ﬁli-\.\ \ |T17) state we obtain the following expression:

[ N \v ;
031 ‘\5- A, 1 <T)=Z—i(l—J)[szz-l—?;az(l-i-J—ZJZ)]. (A3)
02} \ \ i o

- \‘ Analogously we have the total confinement potential energy
oar e, T for this case:
0.0 1 L 'l L L

-3.0 =25 -2.0 -1.5 -1.0 -0.5 0.0

1
(Uy= E[b2(2+J2(J—3))+9<72(1—J)2(1+ 2J)].
FIG. 12. PositionR,4giy Of the maximum of the radial distribu- (Ad)
tion vs the quantum parametgrForN=2, S=0 is represented by
circles andS=1 squares. FON=3, S=1/2 is represented by down Finally the Coulomb interaction between the different
triangles andS=3/2 up triangles. Gaussians is calculated as follows. The matrix elements
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PN AVNIAVRAYIES iy CTUHGITE D+ (LG LD (LT TIHolL 1)
J o dr (A9 ATt D+ LD LTIy

and Gaussianasj(ﬂ) with the same widths are calculated.

We use the fact that a product of two Gaussians is also a Note that in Eq(A9) the value of all the matrix elements
Gaussian, apart from a factor. The interaction energy is thein the numerator are the same, and similarly for the denomi-
only dependent on the relative distance between the centersitor. The components of EGA9) are the following:

of these Gaussians amd The Coulomb interaction between

|]nm

two electrons, which are described by normalized Gaussians, 1 2 2
separated a distand® are given by the expression (U)= 1_2[2b1(1_J2)(4+Jl+4J2)
1 +b2(4+3%(4—J3,) +232)
Uee=—F(p), (A6) ABTRAT )T 2%
+5402(1— J,) (14 35+ 3,)], (A10)

wherep=hb/c and the functiorF(p) is defined as the inte-
gral q
. <T>=F[1802(1—J2)(1+J12+J2)
F(|o)=L f e (P 2% (P2 1)erf(z)dz. (A7) 7

pymJo —2b20%(1—J,)+ b23,(32+23,)],  (AlD)
F(p) was solved numerically for differemt

When p—o (in practice wherp=5), F(p)— 1/p. With 2
use of the definition op we see that EqA5) reduces in this <Uee>_ 2F (py) +F(p2) + (31 J5)F(0)
case to the classical expression for interaction between two
pointlike electrons. With use of Eq§A5) and (7) the total I
e-e interaction(U.) has the form +201F| 5 p1+2p2

Jz p P2
(Uedd=— (F(D)+2J3F(2) {F(O)+2F [p)“ - —{JZ{ZF 21 +F ?”
(A8) 1
Combining Eqs(A1)—(A8) we obtain the expression for the +232F(§\/4p§— p%) (A12)
ground-state energ,,; as a function of the variational pa-
tersb and o.
ameier anda (UW)y=(1-1,)(1+35+3,), (A13)
2. Antiferromagnetic state S=1/2 where p1= b1/0', Py= b2/0', J1= eXp(_ b§/40'2), and J2

For this state we have =exp(—b3/40?).
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