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Basing on the condition that the incident angle is larger than the total internal reflection angle, we pres-
ent a systematic study of transmission properties of one-dimensional photonic crystal with all dielectric
materials by the transfer matrix method and the Bloch’s theorem. Due to the existence of the evanescent
field within the structure, the transmission bands consist of some discrete symmetry peaks. For light with
these peak frequencies, the structure is either transparent or opaque depending on the number of the
structure periods. The unusual transmission properties are attributed to the field distribution and Bloch
wave vector.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Photonic crystals (PCs) have both fundamental interest and po-
tential applications because of their unique ability to control and
manipulate light [1–7]. A band diagram describes properties of
an infinite periodic structure. Usually, PCs are composed of dielec-
tric layers. But one-dimensional (1D) PCs composed of alternating
layers of metal and dielectric materials [8–10] have some promis-
ing features, e.g. a 100% transmission of the evanescent waves is
achieved by means of surface plasmon excitation [11,12]. However,
Refs. [11,12] did not consider the effect of the loss of metal on the
transmission of M-D PCs. If the loss of metal is considered, the ideal
performance of the M-D PCs may be hardly obtained in real appli-
cation. In this paper, we study the transmission properties of 1D
PCs composed of alternating layers of two dielectric materials. Un-
like previous studies that all the waves in dielectric layers are
propagating mode, our study in this paper is based on the case that
the electromagnetic wave is made evanescent within one of two
dielectric materials through a proper incidence condition. Thus
some unusual transmissions will be found, which unlike not only
the transparent band of the M-D PCs, but also conventional pass
bands of 1D PC. For example, for a special frequency, the structure
considered here can be made total transparent (100% transmis-
sion), or be made almost opaque just through adding one period
into its structure or cutting off one period from its structure. Due
to its total dielectric structure, the effect of loss of the materials
can be neglected.
ll rights reserved.

).
2. Structure and Bloch mode

The schematic of 1D PC is shown in Fig. 1. The air-dielectric
multilayer stack (AD)N is placed between two prisms (the grey
layer D is dielectric and the white layer A is the air ðnA ¼ 1Þ). The
prisms on the top and bottom of the PC are used to couple light
into and out of the PC, respectively. When the light is incident nor-
mally on the top surface of the top prism, it will enter into the PC
with an incidence angle h. As we have known, as light propagates
from optically denser medium to optically thinner medium, there
is a total reflection angle called h0 here. Without loss of generality,
the refractive index for both the prisms and the layer D is firstly as-
sumed to be nD ¼ 3:23. According to the geometrical optics and
Fig. 1, the incidence angles from the layers D to layers A are all h.
If h > h0 ¼ arcsinð1=3:23Þ ¼ 0:3184 rad, all the electromagnetic
wave within layers A is evanescent mode, while if h < h0, the elec-
tromagnetic wave in all layers is propagating mode. As is well
known, an evanescent wave cannot propagate through a single
dielectric layer. However, evanescent waves in metallodielectric
photonic crystal can propagate through evanescent coupling of
surface plasmons between interfaces of metal/dielectric layers
[11,12]. This transmission mechanism can be looked as a cou-
pled-plasmon-resonant-waveguide (CPRW). The CPRW is a special
case of the coupled-resonator optical waveguide (CROW) proposed
by Yariv et al. [13]. The field in this case decays exponentially both
in dielectric and in metal, but is amplified at each metal–dielectric
interface. For our current structure, on the condition of h > h0, the
electromagnetic waves within layers A are all evanescent. Thus
each layer D may be looked as a resonator cavity. If there is a
coupling of evanescent wave between two layers D, the whole
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Fig. 1. Schematic of 1D PC.

Fig. 2. Transmission band (black area) for different layer thicknesses.
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structure can also be looked as a 1D analogy of the CROW. Thus a
transmission wave-guiding may be achieved

Firstly, whether the infinite periodic structure of Fig. 1 has
transmission band is dependent on the following dispersion equa-
tion derived from the Bloch’s theorem [14]
cos bzðdA þ dDÞ ¼ cos kðAÞz dA

h i
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where bz is the z component of the Bloch wave vector, and
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cosðhjÞ is the z component of wave vector kj in

the jth layer (c is light velocity in the vacuum and hj is the incident
angle). dA and dD are the thicknesses of layers A and D, respectively.
For TE wave, qj ¼
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q
; cosðhDÞ ¼ cosðhÞ. For h > h0; kðAÞz is an imaginary

quantity, cos½kðAÞz dA� ¼ coshðjkðAÞz dAjÞ; sin½kðAÞz dA� ¼ i� sinhðjkðAÞz dAjÞ.
The condition of Eq. (1) having real solution for bz is
j cos bzðda þ dbÞj 6 1, which corresponds to the transmission band.
The range of the transmission band corresponding to different inci-
dent angle and frequency can be calculated through Eq. (1). In the
calculation, we let h > 0:32 rad so that the wave from layers D enter
into the layers A in evanescent mode. The results are shown in Fig. 2
from which the black area represents the transmission band at dif-
ferent layer thickness. The transmission wave within the transmis-
sion band is still Bloch mode. It is noted that for a fixed incident
angle the frequency of transmission band decreases with dD
increasing, and the width of transmission band decreases with dA

increasing.

3. Transmission properties of finite periodic structure

To further confirm the transmission of the Bloch waves, we ap-
ply a transfer matrix method to calculate the transmittance of a
plane wave incident upon the structure with a finite number of
periods. The plane wave is coupled into and out of the structure
through two prisms. Although Fig. 2 is based on the infinite peri-
odic structure, it still provides us a basis to analyze the finite struc-
ture. Without loss of generality, we fix h ¼ 0:4 rad and
dA ¼ 32:3 lm; dD ¼ 10 lm. Because h > h0, all the electromagnetic
wave within layers A is evanescent mode. Fig. 3 shows the trans-
mittance of TE wave for different period number. In order to com-
pare the transmittance for h > h0 with that for h < h0, we also
calculate the transmittance of TE wave for h ¼ 0:2 rad with differ-
ent number of the periods. The result for N = 6 is shown in Fig. 4. It
is clear that there are clear differences between the transmission
bands for h > h0 and for h < h0. For h > h0, the transmission band
consists of N � 1 narrow transmission peaks. Except these trans-
mission peaks, the transmittances at other frequencies are very
small, even reach zero. Thus these transmission peaks are totally
discrete. Through a detailed observation, we further find that the
discrete transmission peaks for h > h0 are centrosymmetric. Espe-
cially, for even period number, the position of the central peak does
not change with increasing of the period number. However, for odd
period number, all the positions of peaks change with increasing of
the period number. Although the transmission features from Fig. 3
come from current structure parameters, through our studies, we
find they can extend to other incidence angle for h > h0. The prop-
erty of the transmission band for h > h0 can provide a new way to
construct Dense Wavelength Division Multiplex (DWDM) filters for
applications of telecommunications. The number and positions of
filtering channels can be determined by the number of structure
periods. Due to all dielectric materials, the loss of materials can
be neglected, which make it has advantage over the M-D PCs in
Ref. [11]. On the other hand, for h < h0, there are also N � 1 trans-
mission peaks within the transmission band. But except these
peaks, the transmittances at other frequencies are still large. Thus
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Fig. 3. The transmittance of TE wave for different number of periods. In the plots, h ¼ 0:4 rad and dA ¼ 32:3 lm; dD ¼ 10 lm.
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Fig. 4. The transmittance of TE wave for h ¼ 0:2 rad and N = 6 ðdA ¼ 32:3 lm;

dD ¼ 10 lmÞ.

Fig. 5. The transmission spectra for h ¼ 0:8 rad and dA ¼ 20 lm; dD ¼ 10 lm with
different number of the periods. The layers A and D consist of air and SiO2,
respectively.
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these transmission peaks within the transmission band are not
discrete.

Although the transmission properties for h > h0 are much differ-
ent from those for h < h0, all the positions of transmission bands
are still determined by Fig. 2 which corresponds to the Bloch mode
for infinite periodic structure. The discrete resonance peaks within
the transmission band is due to the coupling of cavity resonators
through evanescent wave as we have indicated in Section 2. For
the N-period structure, there are N � 1 coupling, thus there are
N � 1 resonance peaks.

Up to here, the materials making up the structure are particular.
However, the transmission properties for h > h0 are general. As
verification, we use SiO2 make up the layer D and the two prisms
ðnD ¼ 1:547Þ. The layer A is still composed of air in order to obtain
large difference of refraction indexes. In this case,
h0 ¼ arcsinð1=1:547Þ ¼ 0:7029 rad. Then we give the transmission
spectra for h ¼ 0:8 rad and dA ¼ 20 lm; dD ¼ 10 lm with different
number of the periods in Fig. 5. The discrete narrow transmission
peaks in Fig. 5 are similar to those in Fig. 3.
4. Effect of termination

Now we put attention on the central transmission peak at
x ¼ 36:763 THz for h ¼ 0:4 rad and N = 2 in Fig. 3. Showing in
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Fig. 6 (top plot) is the transmittance versus the number of the peri-
ods. The transmittance has only two values, which are either 1 for
even number of the periods or 0.05 for odd number of the periods.
The above rule of the transmittance can extend to arbitrary num-
ber of the periods. The strong dependence of transmittance on
the number of periods only occurs for h > h0. The striking result
is that we can make this structure be either totally transparent
or almost opaque only by adding one period into the structure or
cutting off one period from the structure. We call it as the effect
of termination. The direct reason for the effect of termination is
that the position of the central peak does not change when the
number of the periods increases with even number and the band
structure is totally discrete. The physical reason is due to the reso-
nance transmission. The small transmittance of 0.05 for odd num-
ber of the periods is because the resonance condition cannot be
satisfied. But because the frequency is still within the transmission
band, the transmittance has a small value and does not reach zero.
In light of wave optics, due to the total internal reflection on the
surface of layers A, there are N reflective beams. The two neighbor-
ing reflective beams have the same phase difference. For current
frequency, the two neighboring reflective beams are just out of
phase. Thus they with even number undergo destructive interfer-
ence which leads to a perfect transmission. However, for odd num-
ber of the periods, there always exists one reflective beam that
cannot be cancelled, which leads to an extraordinary low
transmission.

The effect of termination is different from the transparent band
as well as the nontransparent pass band in the M-D PCs [12]. The
transparent band in the M-D structure allows 100% transmission
independent of the thickness of the structure; while the nontrans-
parent pass band in the M-D structure shows a wave-packet
behavior with the thickness-dependent transmission. As we have
indicated above, the effect of termination is only for h > h0. For
h < h0, the effect disappears. In order to give a comparison, the bot-
tom plot of Fig. 6 also shows the transmittance versus number of
the periods for h ¼ 0:2 rad at the frequency x ¼ 26:7 THz which
corresponds to the central peak within the second transmission
band in Fig. 4. Although the transmittances reach 1 with even
number of the periods, the minimal transmittances with odd num-
ber of the periods still overpass 0.5.

In order to obtain the detailed transmission properties for the
condition of h > h0, we still study the dependence of the transmit-
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Fig. 6. The transmittance versus the number of periods for h ¼ 0:4 rad; x2�1 (top)
and h ¼ 0:2 rad; x ¼ 26:7 THz (bottom) ðdA ¼ 32:3 lm; dD ¼ 10 lmÞ.
tance on the number of the periods at the frequencies other than
the central peak frequency. The structure and incidence angle are
the same as Fig. 3. For reading convenience, in Fig. 3, we denote
the peak frequency as xN�k, in which N indicates the period num-
ber, k is the order number of the peak (from left to right). For exam-
ple, for N = 4, the three peak frequencies can be denoted as
x4�1 ¼ 36:419 THz;x4�2 ¼ 36:763 THz and x4�3 ¼ 37:088 THz.
We firstly choose x4�3 and x6�4. The results are shown in Fig. 7.
For the top plot, the 100% transmission always occurs at N = 4k
(k is an integer number), and with other N (N = 4k + 1, 4k + 2,
4k + 3) the transmission keeps the minimal value, i.e., the transmit-
tance changes with a period of N = 4. For the bottom plot, the 100%
transmission always occurs at N = 3k, and with other N(N = 3k + 1,
3k + 2) the transmission keeps the minimal value, i.e., the transmit-
tance changes with a period of N = 3. The results for x4�1 and
x6�2 ¼ 36:522 THz are just the same as those for x4�3 and x6�4

due to the symmetry of the frequency spectra in Fig. 3 and are
not plotted here. From Fig. 7, we find that the positions of some
transmission peaks in Fig. 3 are the same for different N, for exam-
ple, x6�4 is equal to x3�2. It is noted from Fig. 7 that the effect of
termination still occurs with some frequencies other than the cen-
tral peak frequency.
5. Field distribution

Now, we study the electromagnetic field distribution and effec-
tive Bloch wave vector, which can help us further understand the
transmission properties for h > h0. The field distribution and effec-
tive Bloch wave vector can be obtained by transfer matrix method.
In Fig. 8, we plot the electric field distributions with the same fre-
quencies of incident light, incidence angles and structure parame-
ters as those of Fig. 6 (top plot), Figs. 7 (top plot) and (bottom plot).
The top plot, middle plot and bottom plot of Fig. 8 correspond to
the frequencies x2�1;x4�3 and x6�4, respectively. The incident
intensity at the first interface is supposed as 1 with no
dimensionality.
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Fig. 7. The transmittance versus the number of periods for x4�3 (top) and x6�4

(bottom). Both the two frequencies correspond to the transmission peaks close to
the central peak for N = 4 and N = 6 in Fig. 3, respectively.
ðh ¼ 0:4 rad; dA ¼ 32:3 lm; dD ¼ 10 lmÞ.
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The important common features of Fig. 8 are as follows: (i) All
the field is localized at the interface of layers A and D and the
field within all layers A decays or is amplified from the interface.
(ii) The field periodically changes with the thickness increasing.
The period of the field is two times of the structure period for
x2�1, four times of the structure period for x4�3, three times
of the structure period for x6�4, respectively. For x4�1 and
x6�2, the periods of the field are still the same as those x4�3

and x6�4, respectively. The period of the field in Fig. 8 is just
the same as the period of the transmittance in Figs. 6 and 7.
(iii) Within the layer D connecting two field periods, the field al-
ways reaches the minimal value and keeps constant. Thus we
can conclude that it is the period of the field that determines
the period of the transmittance; and if the field pattern has no
integer number of the period of the field, an ideal transmission
cannot be obtained. This is verified by Fig. 9, in which the inci-
dence frequency is the same as that of Fig. 8 (top plot), but the
number of the period of structure changes from 8 to 7. As a re-
sult, the field pattern has 3.5 periods and the field intensity at
the exit is much less than that at the entrance leading to a min-
imal transmission. Also the field distribution in Fig. 9 is different
from that in Fig. 8. Thus for the finite structure, the field distri-
bution is greatly dependent on the number of the period of
structure. The result of Fig. 9 is also well agreement with that
of Fig. 6 (top plot).

Up to now, we only consider the transmission properties with-
in the transmission band basing on h > h0. In this case, the major
features are that the transmittance and the field distribution are
much sensitive to the period number or the thickness of the
structure. With the period number changing, there are only two
cases: one is ideal transmission, the other is minimal transmis-
sion, and both the transmittance and the field periodically
change. Next, we should consider the field distribution for the
frequency within the band gap. Fig. 10 shows the field distribu-
tion with x ¼ 36 THz for different period numbers. After a few
periods, the field quickly decays to zero. Although both the
transmittances for Figs. 9 and 10 are very small, the field distribu-
tions are totally different. In Fig. 9, the incident frequency is still
within the transmission band and the field periodically changes
with no decay through the whole structure, while in Fig. 10, the
incident frequency is within the band gap and the field decays
quickly with increasing period number.
6. Bloch wave vector

To better understand the physics behind all the above results,
we analyze the Bloch wave vector. According to the Bloch’s theo-
rem, the amplitude of a wave inside PC structure must conform
to the imposed periodicity. For current infinite 1D PC, the wave
function can be described as

EðzÞ ¼ uðzÞ expðibzzÞ ð2Þ

where uðzþ dÞ ¼ uðzÞ ðd ¼ dA þ dDÞ. Basing on Eq. (1), we calculate
the value of bz, the z component of Bloch wave vector for infinite
structure. The structure parameters and incidence angle are the
same as those of Fig. 3. Through some numerical calculations, we
just obtain bz ¼ 1=2p=d for x2�1; bz ¼ 1=4p=d;3=4p=d for x4�3 and
x4�1; bz ¼ 1=3p=d;2=3p=d for x6�4 and x6�2; bz ¼ 1� 0:3105ip=d
for x ¼ 36THz, respectively.
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For bz ¼ 1=2p=d,

Eðzþ NdÞ ¼ uðzþ NdÞ exp½ibzðzþ NdÞ� ¼ �uðzÞ expðibzzÞ ¼ �EðzÞ;
if N ¼ 2k; ð3Þ

k is an integer number. (The period of field changing is 2d).
Likely, for bz ¼ 1=4p=d or 3=4p=d,

Eðzþ NdÞ ¼ �EðzÞ; if N ¼ 4k: ðThe period of field changing is 4dÞ:
ð4Þ

For bz ¼ 1=3p=d or2=3p=d;
Eðzþ NdÞ ¼ �EðzÞ; if N ¼ 3k: ðThe period of field changing is 3dÞ

ð5Þ

In Figs. 5–8, all the transmittance and the field intensity are in
absolute value. Thus Eqs. (3)–(5) well explain the changing period
of the transmittance and the field. For the Bloch wave vector
bz ¼ 1� 0:3105i for x ¼ 36 THz with an imaginary quantity, the
electromagnetic field decreases exponentially and is still modu-
lated by the periodical function of u(z), which also explain the re-
sult of Fig. 10.

We also calculate the values of bz for other transmission peak
frequencies in Fig. 3. An interesting and striking result has been
found. For period number N, the values of bz corresponding to
peaks (from left to right) are just ðN� 1Þ=Np=d; . . . 2=Np=d;
1=Np=d in turn. Thus we conclude that the transmittance and
the field distribution periodically change with increasing struc-
ture periods for all transmission peak frequencies. The period of
changing of the transmittance and the field distribution are
dependent on both period number N and the position of trans-
mission peak. For example, for N = 10 and the sixth transmission
peak, bz ¼ ð10� 6Þ=10p=d ¼ 2=5p=d, and the period of changing
of the transmittance and the field distribution is five times of



Fig. 11. The values of beff for x2�1; x4�3 and x6�4 ðh ¼ 0:4 rad; dA ¼ 32:3 lm; dD ¼ 10 lmÞ.
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structure period. We also perform calculations with other struc-
tures and incidence angles but keep h > h0, and find the same
conclusion.

The Bloch wave vector bz is for infinite periodic structure. But
for finite periodic structure, we can still use an effective Bloch
wave vector beff to analyze the transmission properties. The con-
cept of the effective Bloch wave vector is firstly defined through
Ref. [15] and has been used to study the dispersion behavior of
one-dimensional photonic crystals. According to Ref. [15], the
effective Bloch wave vector is determined by

ET ¼ tEI ¼ expðibeff LÞEI ð6Þ

where ET and EI are the output intensity and the incident intensity,
respectively. Thus the value of beff for current finite structure is
determined by

t ¼ expðibeff LÞ ¼ jtj expði/Þ ð7Þ

Where t is the transmittance with a complex value, L is the total
thickness of the current structure and / is the argument. For the
same incidence angle h ¼ 0:4 rad and structure parameters of
dA ¼ 32:3 lm;dD ¼ 10 lm, the effective Bloch wave vector beff ver-
sus the number of the periods is shown in Fig. 11. The top plots
show the real part of beff , the corresponding bottom plots shows
the imaginary part of beff . It is clear that each real part of beff oscil-
lates and the mean value gradually reaches but does not overpass
the corresponding bz with increasing number of the periods, while
the imaginary part of beff are very small meaning the decay can be
neglected. From Fig. 11, we find the finite length influences the va-
lue of beff , but bz still determines the range of beff . Also, as the struc-
ture length extends to infinite, the real part of beff gradually
reaches bz, and the imaginary part of beff is close to zero.
7. Conclusions

In this paper, we have presented a detailed study of the trans-
mission properties of 1D PC with all dielectric materials on the
condition that the incident angle is larger than the total reflection
angle. The existence of evanescent field within dielectric layers
makes the 1D PC exhibit some unique properties which make it
different from not only the M-D PCs but also 1D PC with all prop-
agate mode. A termination effect is found. Unlike the M-D PCs, the
loss is negligible due to all dielectric structure. These unusual
transmission properties may provide a new means of controlling
light in future optical device.
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