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A b s t r a c t  

We present a simple implementation of quantum teleportation in terms of primitive operations in quantum computation. 
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1. I n t r o d u c t i o n  

Among the many exciting new applications of  quan- 

tum physics in the realm of information processing, we 

are particularly fond of  quantum cryptography, quan- 

tum computing and quantum teleportation [ 11,13,15]. 

Quantum cryptography allows for the confidential 

transmission of  classical information under the nose 

of an eavesdropper, regardless of her computing 

power or technological sophistication [2,3,5]. Quan- 

tum computing allows for an exponential amount of 

computation to take place simultaneously in a single 
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piece of hardware [18,20]; of particular interest is the 

ability of quantum computers to factorize numbers 

very efficiently [29] and to carry out an exhaustive 

search quadratically faster than classical comput- 

ers [10,22], with dramatic implications for classical 

cryptography [12,14]. Quantum teleportation allows 

for the transmission of quantum information to a dis- 

tant location despite the impossibili ty of  measuring 

or broadcasting the information to be transmitted [4]. 

Each of these concepts had a strong overtone of 

science fiction when they were first introduced. 

If asked to rank these ideas on a scale of techno- 

logical difficulty, it is tempting to think that quantum 

cryptography is the easiest while quantum teleporta- 

tion is the most outrageous - especially when it comes 

to teleporting goulash [24]! This ranking is correct 

with respect to quantum cryptography, whose feasibi- 

lity has been demonstrated by several prototypes ca- 

pable of  reliably transmitting confidential information 

over distances of tens of  kilometers [23,25,26,31 ]. The 

situation is less clear when it comes to comparing the 

0167-2789/98/$19.00 © 1998 Published by Elsevier Science B.V. All rights reserved. 
PII: S01 67-2789(98)00043-8 



44 G. Brassard et al./Physica D 120 (1998) 43~17 

technological feasibility of quantum computing with 

that of  quantum teleportation. 

On the one hand, quantum teleportation can be im- 

plemented with a quantum circuit that is much simpler 

than that required for any nontrivial quantum compu- 

tational task: the state of  an arbitrary qubit (quantum 

bit) can be teleported with as few as two quantum 

exclusive-or (controlled-not) gates [1], as we explain 

in this note. Thus, quantum teleportation is signifi- 

cantly easier to implement than even the simplest of  

quantum computations if we are concerned only with 

the complexity of the required circuitry. 

On the other hand, quantum computing is mean- 

ingful even if it takes place very quickly - indeed 

its primary purpose is increased computational speed 

- and within a small region of space. Quite the op- 

posite, the interest of quantum teleportation would 

be greatly reduced if the actual teleportation had to 

take place immediately after the required preparation. 

Thus, although working prototypes of quantum tele- 

portation have recently been demonstrated [8,9], quan- 

tum teleportation across significant time and space 

will have to await a technology that allows for the ef- 

ficient long-term storage [17,28,30] and purification 

[6,7] of quantum information. Nevertheless, it may be 

that short-distance quantum teleportation will play a 

role in transporting quantum information inside quan- 

tum computers. Thus we see that the fates of quantum 

computing and quantum teleportation are inseparably 

entangled! 

usually explained in terms of Einstein-Podolsky- 

Rosen nonlocal quantum states [19] and Bell 

measurements, which makes the process rather mys- 

terious. The purpose of this note is to show how to 

achieve quantum teleportation very simply in terms of 

quantum computation. Of course, the uncanny power 

of quantum computation draws in parts on nonlocal 

effects inherent to quantum mechanics. The quantum 

teleportation circuit described in Section 4 is not re- 

ally different in principle from the original idea [4] 

since it uses quantum computation to create and 

measure nonlocal states. Nevertheless it sheds new 

light on teleportation, at least from a pedagogical 

point of view, since it makes the process completely 

straightforward to anyone who believes that quantum 

computation is a reasonable proposition. Moreover, 
this circuit could genuinely be used for teleportation 

purposes inside a quantum computer. 

3. The basic ingredients 

We shall need two basic ingredients: the quan- 

tum exclusive-or gate (also known as controlled-not), 

which acts on two qubits at a time, and the Walsh- 

Hadamard gate, which acts on a single qubit. Let 10) 

and I 1) denote basis states for single qubits and recall 
that pure states are given by linear combinations of 

basis states, such as Ig'> = oel0> + fill>, where c~ and 
/~ are complex numbers such that loci 2 + I/~12 = 1. 

The quantum exclusive-or (XOR) gate is denoted as 

2. Quantum teleportation 

Recall that any attempt at measuring quantum in- 
formation disturbs it irreversibly and yields incom- 

plete information. This makes it impossible to transmit 
quantum information through a classical channel. Re- 
call also that the purpose of quantum teleportation [4] 
is to circumvent this impossibility so as to allow the 

faithful transmission of  quantum information between 
two parties, conventionally referred to as Alice and 
Bob. 

In order to achieve teleportation, Alice and Bob 

must share prior quantum entanglement. This is 

a ; x 
b Y 

where the inputs are a and b and the outputs are x and 

y. This gate sends 100) to 100), 101 ) to 101 }, I I0) to I11) 
and I 11 ) to f 10). In other words, provided the inputs at 

a and b are in basis states, the output state at x is the 
same as the input state at a, and the output state at y is 
the exclusive-or of the two input states at a and b. This 
is also known as the controlled-not gate because the 

state carried by the control wire "ax" is not disturbed 
whereas the state carried by the target wire "by" is 
flipped if and only if the state on the control wire 
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was ]1). Note that the classical interpretation given 

above no longer holds if the input qubits are not in 

basis states: it is possible for the output state on the 
control wire (at x) to be different from its input state 

(at a). Moreover, the joint state of  the output qubits 

can be entangled even if the input qubits were not, and 

vice versa. 

The Walsh-Hadamard gate is denoted as 

a - - [ ~ - -  x 

and sends 10) to (10) 4- l 1))/v/2 and I1) to (10) -  I1))/ 

In terms of unitary matrices, the operations are 

' (  1 '1 H =  ~ 1 -1 

and 

XOR 
0 0 0 

0 0 

0 1 

where c~10)4-/311) and c~100) 4-/3101) 4- yI10) 4- 6111) 
are represented by the transpose of  vectors (oe,/3) and 

(a,/3, y, ~), respectively. 

4. The teleportation circuit 

Consider the following quantum circuit. Please dis- 

regard the dashed line for the moment. 

T 

c b--EE 

Alice Bob 

~Z~] --- Z 

Let I~P) be an arbitrary one-qubit state. Consider 
what happens if you feed IO00) in this circuit, that is 

if you set upper input a to IO) and both other inputs b 
and c to p0). It is a straightforward exercise to verify 

that state I~P) will be transferred to the lower output z, 
whereas both other outputs x and y will come out in 

state I~b) = (10) + I1)) /v~.  In other words, the output 

will be 14~¢~). If the two upper outputs are measured 

in the standard basis (I0) versus I1)), two random clas- 
sical bits will be obtained in addition to the quantum 

state t~) on the lower output. 

Now, we consider how the system evolves if the first 
two qubits are measured (in the standard basis) at the 

point where the dashed line occurs. This measurement 

results in two random classical bits u and v, which, 

being classical, are necessarily unentangled with the 

third qubit. These two classical bits can be thought of 

as basis quantum states lu) and Iv), respectively, and 
the remaining gates of the circuit (after the dashed 

line) can be performed with states lu) and Iv) for the 

first two qubits. It turns out that, since the first two 
qubits only participate in the rest of the computation 

as the control bits of controlled-not gates, measuring 

them at the point of  the dashed line does not affect the 

final outcome of the computation. This phenomenon 

was previously exploited by Griffiths and Niu [21], 

who noted that, for any controlled-U gate (where U 

is any one-qubit unitary transformation), if the control 

qubit is to be measured in the standard basis then the 

measurement may be performed either before or after 

the gate is executed, without making any difference 

to the final outcome. Thus, we have that the outcome 

of the circuit is unaffected if the first two qubits are 

measured (in the standard basis) before the dashed 

line, rather than at the end of  the computation. 

To turn this circuit into a quantum teleportation 

device, we need the ability to store qubits. Assume 

Alice prepares two qubits in state 10) and pushes them 

through the first two gates of  the circuit. 

[0)~ 
no) 0 

She keeps the upper qubit cr in quantum mem- 
ory and gives the other, p, to Bob. (We do not 

denote these qubits by kets because they are not 
individual pure states: together they are in state 

14~+) = (]00) + I11))/v'2.) At some later time, Alice 
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receives a mystery qubit in unknown state I~P). In or- 

der to teleport this qubit to Bob, she releases ~ from 

her quantum memory and pushes it together with 

the mystery qubit through the next two gates of the 

circuit. She measures both output wires to turn them 

into classical bits u and v. (Note that an irreversible 

measurement is n o t  a requirement here [16], in which 

case the teleportation procedure may in principle be 

reversed [27].) 

To complete teleportation, Alice has to communicate 

u and v to Bob by way of a classical communication 

channel. Upon reception of the signal, Bob creates 

quantum states lu) and Iv) from the classical informa- 

tion received from Alice, he releases the qubit p he 

had kept in quantum memory, and he pushes all three 

qubits into his part of the circuit (on the right of the 

dashed line). At this point, teleportation is complete 

as Bob's output z is in state If-'). 

Note that this process works equally well if Alice's 

mystery qubit is not in a pure state, as originally 

pointed out in [4]. In particular, Alice can teleport 

to Bob entanglement with an arbitrary auxiliary 

system, possibly outside both Alice's and Bob's 

laboratories. Also, such a scheme can be used to 

teleport an arbitrarily large quantum state by map- 

ping it into some possibly entangled n-qubit state and 

then independently teleporting each q u b i t -  linear- 

ity guarantees that the complete state is successfully 

teleported. 

In practice, Bob need not use the quantum circuit 

shown right of the dashed line at all. Instead, he may 

choose classically one of four possible unitary trans- 

formations to apply to the qubit he had kept in quan- 

tum memory, depending on the two classical bits he 

receives from Alice. (This would be more in tune with 

the original teleportation proposal [4].) This explains 

the earlier claim that quantum teleportation can be 

achieved at the cost of only two quantum exclusive- 

ors: those of Alice. Nevertheless, the unitary version 

of Bob's process given here may be more appealing 

than choosing classically among four courses of action 

if teleportation is used inside a quantum computer. 
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