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Collective electromagnetic modes for beam-plasma interaction in the wholk space
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We investigate the linear stability of the system formed by an electron beam and its return plasma current
within a general framework, namely, for any orientation of the wave vdctaith respect to the beam and
without any a priori assumption on the orientation of the electric field with respeck.tdVe apply this
formalism to three configurations: cold beam and cold plasma, cold beam and hot plasma, and cold relativistic
beam and hot plasma. We proceed to the identification and systematic study of the two branches of the
electromagnetic dispersion relation. One pertains to Weibel-like beam modes with transverse electric proper
waves. The other one refers to electric proper waves belonging to the plane fornmedrs the beam, it
divides between Weibel-like beam modes and a branch sweeping from longitudinal two-stream modes to
purely transverse filamentation modes. For this latter branch, we thoroughly investigate the intermediate
regime between two-stream and filamentation instabilities for arbitrary wave vectors. When some plasma
temperature is allowed for, the system exhibits a critical angle at which waves are unstable fok.every
Besides, in the relativistic regime, the most unstable mode on this branch is reached for an oblique wave vector.
This study is especially relevant to the fast ignition scenario as its generality could help clarify some confusing
linear issues of present concern. This is a prerequisite towards more sophisticated nonlinear treatments.
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[. INTRODUCTION penetrating into the plasma, the electron beam generates the

) ) ) ) . return current carried by the plasma electrons. For this analy-
Beam-plasma interactions play a crucial role in variousgjs one operates in the Viasov-Maxwell framework and de-
fields of physics and the theoretical study of the linear reyjyes the dispersion relation in ik, ) space. This requires
gime of beam-plasma instabilities forms the basis of mOS{he cpojce of a given orientation fde. In this regard, the
plasma physics textbooks. The long-standing academic dggaye.vector orientations normaffilamentation instability”
velopment of this field is now being revivified and chal- 3,15-17) or parallel(“two-stream instability’[15,18,19) to
Ignged by somelrecent t(_achnological progress making acCe§ie peam have been the most investigated.every orien-
sible new physical regimegl], e.g., in the context of 4oy of k is obviously present in thér,t) reality space
Wund back by inverse Fourier transform, summing over all
{Cs and allw’s. The main objective of this paper is, therefore,
o investigate analytically a three-dimensioaD) VIasov-
Maxwell model of these instabilities for any orientationkof
nition scenariqFIS) first formulated by Tabalet al. in Ref. Lr:: o;;jf::‘:tgo %zarslyr/];:sspisé/yplasemsré%ﬂﬁr;’:g:J rte;]raéréd Jﬁ;g:grﬁ
[4], electron beam-plasma interactions play a key role. ACtui’nodels:(l)’ cold beam through a cold plasm@) cold beam
ally, the fast ignition eventually involves an intense suprath-through a hot plasma, an@) cold relativistic beam through
ermal electron beam, p_roduced by the interaction of a fem. ot plasma. Ignoriné the beam temperature will allow us to
tosecond laser pulse with the dense core plasma, that Sho‘ﬁ:‘fglect potential additional kinetic effects related to wave-
propagate across the plasma corona of the fuel target to e Article resonances.

sure a.loc.al' dngSit of the energy. In O“’GF to validate thi Usual terminology is not always crystal clear, and some-
scenario, It is Important to study th_e potential _beam-plasm%-mes somehow confusing, about the respective definition of
instabilities involved. Many theoretical, numerical, and ex-

) . .the Weibel and filamentation instabilities. It is therefore de-
perimental works have been recently devoted to this OPIGirable to be definite from the beginning: In this paper, we

[3,5-14 and, in particular, some a}uthqr's,lo] have pointed shall denote by filamentation modes the unstable waves hav-
QUI the negd tp anal'y.z.e the coupling between two-stream an g a wave vector normal to both the beam and the electric
fllament_atlon instabilities. . . field (k L beam,k 1 E) and by Weibel modes the unstable

In this, paper, we shall study the linear stability of the o5 \ith wave vector parallel to the beam, namely, the

elqumbnum sta;ceTfﬁ_rmed tby an eleictront liee:rr]n aFnlg its retlﬁ”Ereferred direction, and normal to the electric figttl beam,
plasma current. This system IS relevant to the as, whep | E). This corresponds to the original Weibel's modes con-

figuration[18]. Purely two-stream modes, as usual, are lon-
gitudinal unstable waves with wave vector aligned with the

observational data and theories in astrophyg3] and es-

pecially by the considerable interest in the elaboration o
scenarios for the inertial confinement fusion. In the high-
intensity laser-driven scheme and specifically in the fast ig
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k andE, and single out the large wave velocity k regime. —wge/wzﬁaﬁ in the nonrelativistic_limit, wherew, is the
We discuss the respective orientationskoind E and the  plasma frequency given by,.=qy4mn,/me.

nature of the waves in Sec. Ill. We then apply the general
electromagnetic formalism to the analysis of a cold beam
interacting with a cold plasma in Sec. IV and with a hot _ ) _ )
plasma in Sec. V. Calculations conducted in this section help At this stage, we may emphasize a point concerning the
elucidate unambiguously relativistic beam effects in Sec. vIrespective orientation & andE that has some bearings on
In this respect, an important figu¢see Fig. 2concerning all ~ the dispersion relatio4). If one makes the electrostatic ap-
three models is located towards the beginning of the papeProximation and neglects the magnetic field so thatE

B. Preliminary analysis

Conclusions are f|na”y presented in Sec. VII. 20, the dielectric tensor takes the much Simpler form
4n? [ k-afy(p)ap
Il. GENERAL DISPERSION RELATION ekw)=1+—7 f PREDRY &p. ()

A. Basic derivation S . . . - .
Moreover the basic dispersion relati@t) simplifies dramati-

We consider a homogeneous, spatially infinite, collision-cally when considering longitudinal or transverse waves. For
less, and unmagnetized plasma whose dynamics is ruled byngitudinal wavessee, e.g., Refd20,21]), the dispersion
the relativistic Vlasov-Maxwell equations for the distribution relation reduces to
function f(p,r,t) and the electromagnetic field

e(k,w)E, =0. 8
Jf Jf v af
PTRAAPTRE E+ e BJ- n 0, (1) When considering transverse wavgs,17,18 for which
P k-E,=0, one hak X (k X E,) =—k?E, and Eq.(4) yields the
13B dispersion relation for purely transverse waves
curl E=~——", 2 @2
¢ [?s(k,w)—kzl}Ek:O. (9)
10E 4= . .
curlB==—+—7, ©) Without any assumption upon the nature of the waves, we set
gt ¢ k X (k X Ey)=(k -E, )k —k2E, in Eq. (4) and get
with v=p/(ym) and y=+1+p?/(mic?)=1/V1-v2/c2 cgs 2
Gaussian units are useaglis the electron charge, ama, is its [—28(k,w) +k ok -KI } E,=0. (10
mass. lons are assumed to form a fixed neutralizing back- ¢
ground. Applying Fourier transformation F(r,t) Setting
=2 F explik -r —iwt) in the linearized equations and elimi- .
nating the perturbed magnetic field gives the basic form of _ o 2
the dispersion relation T= c? sk,w)+k ok -k, (11

2

" _ nontrivial (E, #0) solutions are obtained provided that
Czs(k:w)Ekak X (k X E)=0. (4) de(T)=0, i.e.
The expression of the dielectric tensgk , w) is 2
det| ey +kik; — k28| = 0. (12)
4P v dfy(p) k-v ¢
e(k,w) =1+ dp B Sl I ) . . .
1) w-k-v dp (0] This forms the most general expression of the dispersion
Kov relation.
+ } (5) We can now start to detail the geometry of our problem.
@ The momentum distribution anisotropy is set alongzlaeis

wherek ®v=(kv;) denotes the tensorial productlofandyv. (see Fig. 1 for clarity. Without any restriction of generality,

This yields the following expression of the dielectric tensorcYlindrical symmetry allows us to sé&t=(k,,0,k;). We shall

elementg17,20Q: use in the sequel electronic equilibrium distribution functions
fo of the type

(1)2 paafo
5| = fo(p) = fo(PZ+ PL P = o PD foy (P foPy),  (13)

Safﬁz 50(ﬁ+

ne“’2 Y IPg
w2 s k-afdp with [fo(p)d®p=n,. These distribution functions are isotropic
+ pezf p ° (6) in the (x,y) plane. We can notice that E¢13) implies a
New Y Meyw—K-p

vanishing average momentum in they) plane. Due to its
where the integrals must be evaluated using the standagenerality, this framework addresses filamentafi®il5 as
Landau contour for a proper kinetic treatment. It is worthwell as double-strearfil5] instabilities. Under the above as-
noticing that the second left-hand side term reduces tsumptions, Eq(12) reduces to
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X to zero rather quickly beyond a threshold velocity This
A quantity usually denotes the thermal velocity in a Maxwell-
ian distribution or a beam velocity if it goes faster than a
kx - thermal plasma electron. More generaWyis the higher ve-
locity encountered in a given situation and remains always
(O finite. In the limit |kV/ w| <1, we can expand the denomina-
k tor inside any integral of the determinant yielding at leading
order

2
w
Ok Eap= (1 - ;"f) Oup (19)

k-

so that the dielectric tensor is diagonal. This is consistent
with the fact that spatial dispersion vanishes as the distinc-
tive directionk tends to 0. In this regime, the first dispersion
y equation(16) reduces to the branch of the usual light waves
in plasma[17],

[ >
Beam

FIG. 1. Geometry of the problem. The anglg between the
electric field modeE, and the wave vectok may take all values 02 = 0 + K22 (20)
between 0 andr/2. be

We now turn to the evaluation of the second equatibr).

TPy — k§ 0 7P, + KK, Replacing the_eaB’s _by their approximated valued9), we
0 e — K2 0 -0 (14) get for any orientation of the wave vector
vy -
Teatkke 0 e,k (02 02 (@2~ w2e= K2C) = 0. (21)

where n= w/c. Developing the determinant with respect to
the second column yields the following general form of the
dispersion relation:

Therefore, within the approximations we are using, there are
no instabilities in thelkV/w|<1 regime for any kind of
waves. This is a generalization to any orientatiorkoff a
(7Peyy = KO (PP — K (1Pe 1= KD) = (1Pexs+ k)] = 0, result previously displayed ifi.0,17,20.

(15)
which displays two branches, the=w,(k) branch associ- IIl. ORIENTATION OF THE WAVES
ated to WITH RESPECT TO k
Peyw—-kK2=0 (16) Our analysis so far does not single out transverse from
v ) longitudinal waves, even though we derived the simplifica-
and thew=w,(k) branch solving tions of the general dispersion relatici?) in both casegsee

5 5 _ Egs. (8) and (9)]. To clarify this point, it is important to
(Pen= k) (782~ K) = (et kk)®=0. (17) re(llliz(e )that th(e)system hafsyits owla proper waveps and that the
This result is valid for any orientation of the wave vector andorientation of the electric field with respect to the wave vec-
any orientation of the electromagnetic field with respect totor is not a parameter of the problem, but a consequence of
the wave vector. Equatiofi7) can be factorized bw? with- ~ the equations. The dispersion relation ensures that 0 is an
out any additional approximation giving eigenvalue of the tensdr defined in Eq(11), and the eigen-
o 2 2 ) vector associated with this eigenvalue is precisely the electric
0 N(e5,~ exxEzd) + C(Kez+ 2Kzexs + Keexd = 0. (18)  field. We must therefore calculate the angie betweenE,
and k from the equations by making use of the spectral
analysis ofT.
C. Limit of large-phase velocities For distribution functions fulfilling conditiori13), the di-

The evaluation of15) relies on the evaluation of the ma- electric tensor takes the form given in Ha4), that is,

trix elements of the dielectric function(k,w). Analytical
results are difficult to obtain for any orientation. However, a
number of conclusions regarding the large-phase velocity T=
w/k regime can be reached without making explicit the ana-
lytical form of the distribution functions. It is clear froi)
that the only nontrivial occurrence ab in the dispersion with a=72e—k2, b=172e, K2, c=7Pe,,~K;, and d=177e,,
equation is the 1(kw—k-v) denominator. The momenta run +kxk,. Being symmetricT is diagonal in an eigenvector or-
from —o to « in the integrals, but are always limited by thogonal basis. These eigenvectors may be calculated exactly
physical conditions because any distribution function tendss

(22)

|
o O o
o T O
O O o
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0 a-c+ A while the second are purely longitudirfathich is consistent
_ _ with equations structures displayed in E¢®). and (9)]. We

e=| 1 |ande.= 0 ’ (23) shall check in the following that within the cold limit ap-
0 2d proximation, only longitudinal waves can be destabilized

; (two-stream instability, but temperature-dependent investi-
associated \" : o

gations, such as the one conducted in the original work of

_ Weibel, display unstable transverse modes for such wave
A =bandi.=3(@a+cxA), (24)  vectors.

where A=(a-c)?+4d?. They are, respectively,
with the eigenvalues

so that, in the eigenvector orthogonal basise, . ,e._), ten-
sorT takes the form IV. MODEL 1: COLD NONRELATIVISTIC BEAM
WITH COLD PLASMA

N 00O
T=l0 A, O (25) To solve and analyze the general dispersion relation for an
0 0 arbitrary equilibrium distribution function is a rather in-

volved task. In order to get some insight about what is going

One can readily see that the possibility of proper purelyon for oblique wave vectors, we start investigating the

transverse waves with the electric field al(]glg:)”/, namely orientation dependence through the simple model of a cold

along they axis, remains at any orientation of the wave beam propagating through a cold plasma with return current

vector with dispersion equation, = 7%s,,—k?=0, equivalent

to the w;(k) branch defined by Eq16). fo(p) = nLd(py) 8(py) 8(p, + Pp) + Npd(py) 8(py) 8(p, = Py).
Concerning thaev=w,(k) branch defined in Eq17), one (29)

can check thak_\,=0 yieldsw=w,(k). This shows that Eq.

(17) can be further factorized. We shall keep on workingThe nonrelativistic relation®, ,=myV,,, are fulfilled and

with it, however, for simplicity sinceic—d?=0 is more man- npVp=n,V, reflects current neutralization. Total density is

ageable tham,=0 orA_=0. Ne=n,+ny,. After some calculations, the first dispersion
Let us assume that the conditions for self-excitation ofpranch(16) yields Eq.(20) for normal light waves in plasma.

waves alongg, or g, are fulfilled, which meand,=0 or  As for the second dispersion bran¢t), we report in Ap-

A_=0. The simplified expression for both eigenvectors ispendix A its complete form in terms of polar coordinates

then readily derived as (k, 8 in Eq. (B1), where6, measures the angle between the
2 beam velocity and the wave vect@ee Fig. 1, and in terms
of Cartesian coordinatdk,, k,) in Eq. (B2).
&+l o= & o=| O |=&olw. (26) Before turning to an arbitrary orientation, we shall start
2d investigating the well-known two-streaS) and filamen-

The expression above does not mean a degeneracy of t%’a&tmn (F) instabilities, for 6, =0 and )= /2, respectively.

eigenvalues because(k, ) andx_(k, ) do not necessarily e shall make use in the following of the dimensionless

vanish together, for the sani&,w) solutions. This expres- variables
sion shows that thég,, and E,, components of the self- ® KV, n V.
excited waves electric field satisfy the relati@y,/E,,= O=—, z="2, 4=-=2 pg=-2 (30)
-d/a=-c/d (sinceac-d?=0), that is wp Wp Ny ¢
2. _2r2ai .
Eyx __ W&y k*c’sint 27) where the plasma frequeney, refers to the density,,.

From Eq.(B1) for 6,=0, we get the dispersion relation
for wave vectors along the beam

E,, %,,+kc?cosb,sin 6.’

where we sek,=k cos 6, andk,=k sin 6. If we denote by
E,, the component oE, normal to the wave vector and by 72 o 1
Ey, its parallel component, we shift fronfE,/E,,) to (QZ -1-a- —) {1

_ _ =0
2 2 2 ,
(Ex | /Ey)) by means of a rotation of anglg, so that B Q-2 (Q+az)
tan _ Eki _ (Ekx/EkZ)COS 6k - sin 6k (28) (31)
k=" - ; )
B (Exx/Exz)sin 6 + cos b, and the usual two-stream dispersion equation is retrieved

éhrough the second factor, while the first one yields trans-
verse stable modes. TS longitudinal modes are unstable for
Z<Zy with

Finally, we can single out the simplest case where th
wave vector is parallel to the beaft, =0, i.e.,k,=0). Since
the x andy axes are then symmetric, we hawg=¢,, and
£,,=84,=0 so0 thatT is diagonal witha=b and d=0. It is 1313/
readily seen that proper waves belonging to tkg/) plane - 1+a' (32)
are governed by the dispersion equatigiz,,—k’=0 while © l+a '
proper waves belonging to theaxis are governed by,,
=0. Sincek is alongz, the first ones are purely transverse and the growth rate reaches its maximum
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80~ S, (33)

for Z,,~ 1 (see Appendix A
On the other hand, settingy=7/2 in Eqs.(B1) and(B2)
yields the dispersion equation

2
(Qz—l—a)[Q4—Qz(l+a+%> —Zza(l+a)} =0.

(34)

The first factor yields stable modes, and the second polyno-
mial factor has negative imaginary root for ady In the
limit «<1, the growth rate reads

Omi2 ~ BL \/ ZZ'C:BZ, (35

that is, 8,,,~ BVa for Z> B. Filamentation instabilities have
already been investigated within more complex models
[10,15,16. We checked that the temperature and collision-
dependent dispersion equation of REE5] [Eq. (12)] for
example, is exactly retrieved in the cold and collisionless
limit.

For arbitrarily oriented wave vectors, Fig@a? displays a
numerical evaluation of the growth rate in tkeplane in
terms of(Z,,Z,). This figure prompts a comment about the
opportunity of having a formalism embracing longitudinal
and transverse waves. Indeed, the dispersion equation for any 0
angle, assuming the waves longitudinal from the outset,
would be the purely TS expressiai3l) replacing Z by
Z cos 6. This would yield a figure quite similar to Fig(&
except in the filamentation direction where the curve profile
would just vanish.

To clarify this point, we plotted on Fig. 3 the direction of
the unstable electric field modé&g(w) for Z,<0.5. It shows
that the field vector is aligned with lines passing through the
origin, namely, aligned with the wave vector, except near the
normal direction. Instead of a discontinuity, there exists a
smooth transition domain between purely transverse modes
and longitudinal ones. Looking more carefully on how close
one needs to be to th&, axis to violate the longitudinal
wave approximation, we show in Fig(a} a plot of cos<p§

with ¢ =(k,E). One clearly sees that it significantly depafts FIG. 2. Numerical evaluation of the two-stream/filamentation
from 1 for'ZZSO.S andz,~0.5. Th|§ shows Fhat .the tranS" growth rate inw, units, in terms ofZ =kVy/ w,. (@) Model 1 with
tion domain, where the eIe(_:trostatlc approximation fails, ac,,—q 1 andB=0.2. (b) Model 2 with@=0.1, p=0.1, and8=0.2.(c)
tually covers about one-third of the relevadf range for  \jqdel 3 with @=0.1, p=0.1, andy,=4-

unstable modes in thiZ, range. Nevertheless, it still de-

scribes well the general growth rate properties.

/ 7

—TZ%
oo —
S

.
5
8
S
5
$

ot
g
S

§

\

‘
K

X

n
fg: _%[®(px+ |:)th) - ®(px_ Pth)]
4P2
V. MODEL 2: COLD BEAM PASSING THROUGH X[O(py+ Pi) ~ O(py ~ P)]8(p, + Pp),  (36)

A HOT PLASMA . .
again with P, ,=m.V,, , and n,V,=nyVy,. O(x) denotes the

We now allow for some temperature effects in the plasmaHeaviside step function. As far as one is not concerned with
while still considering a nonrelativistic cold beam. This is specific kinetic effects coming through Landau poles, such
most simply modeled by changing the plasma part of thevater-bag distributions provide a classical tool to derive ana-
electronic distribution(29) to lytical results for temperature effects in relativistic settings
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FIG. 3. Direction of the unstable modes electric fiEld , w) for
Z,<0.5 andz,<2 for the cold beam and cold plasma system.
Parameters ar8=0.2 anda=0.1.

[10,22, and we introduce it here for a similar purpose. We
define an additional dimensionless variable measuring
plasma temperature

pP=1 - (37)

The exact dielectric tensor elements calculated for this new
distribution function and a relativistic beam are reported in
Appendix C. One just needs to sgj=1 in the equations to
retrieve the results of this section. This richer system yields a FIG. 4. Plot of co&py with ¢, =(k,E), in terms ofZ for models
more complex structure of unstable waves, and we now statt (a), 2 (b), and 3(c). Same parameters as Figga22(c). The
analyzing separately the two branches defined in Etf.  beam is along th&, axis.

and(17). The analysis conducted in this section will form a
basis for the relativistic beam case.

The temperature dependence in E8B) is clear sincep
=0 yields w®=w}+wj+k’c? while a nonzero temperature in-
. i troduces some rich temperature and angle-dependent fea-
~ We solve here,—k’c?/ w*=0. This equation was already tyres. A quick inspection of Eq38) shows that four real
displayed in some temperature-dependent investigalifis  roots in 2=w/w, are required for stability. The functioh
while it reduced to some stable modes in the cold previougas two singularities located & =-Z« cos 6 +Zp sin 6.
case. We shall see that it plays a role here due to temperatufgstability will appear when the local minimum comprised
effects, especially due to the nonvanishing temperature alongetween those two values becomes positive. This local mini-
they axis [27]. Equation(C1) for the &,, element yields the  mum is roughly reached fa ~-Za cos 6, (the middle of

dispersion relatior({2)=0 with the two singularitiesgiving the stability condition

A. First branch of the dispersion equation: Weibel-like modes

1 p?
F(Q)=PQ) - : : 2
3(QZ+ a cosb)? - (p sin 6,)> (Zar COS 6)2 + “lta+t Z__ (40)
¥ 3 sirkg 3
(38) K
and This condition is clearly violated a& approaches 0. Assum-
72 ing a weak beam witlw<1, Eq.(40) means that the waves
PQ)=0%-1-a- ra (8390  associated to the first branch are stable for Zngamely, at

any wavelength, provided thésin(6,)|>1/y3. Out of this
in terms of the dimensionless variables introduced previouslyngle domain, only small-enough wavelength waves, such
[see Eqs(30) and(37)]. thatZ>Z(6y), are stable with
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B. Second branch of the dispersion relation for k parallel and
A k orthogonal to the beam

\ ~ » === : _p It is useful to examine the results at both ends of khe
‘ 3 orientation range before turning to the general case.

SIS

SN

‘9‘?»‘..‘»‘
‘

o‘s“&{{\\\\\ 7

1. k|2

2 When the wave vector is aligned with the beg@tong the
z axig), so thatk,=0 andk,=k, the x andy directions are
interchangeable. Thereforg,, vanishes and,,=&,,, as can

FIG. 5. Numerical evaluation of the first branch growth rate for P& checked directly by plugging =0 in Eq.(C1).

p=0.03,a=0.1, and8=0.2. The beam and return current are along 1h€ seécond factor in Eq(15) reduces to e A 7P Exx
the Z, axis. -k?)=0, that is,

772822: 0, (44)
/ 1
Z(6) ~ B 3 Sil"?ﬂk -1 (42) 7728xx_ k?=0. (45)

In the limit 6, — 0, that is, for a wave vector almost aligned YSing EQ.(C2), the first equationi44) yields the usual two-
to the beam,Z, diverges asZ (0k)~ﬂl(\f'§| 6./). Then all stream dispersion relatiaqimo temperature corrections hgre
"“—C C V .

wavelengths are unstable. o 1

The growth rate may be calculated looking for roots under 1- Q-27 - (Q+ aZ)? =0. (46)
the form Za cos 6 +i6. Assumingés small and fora<1, @
one gets the following approximate expression at py This is the longitudinal TS mode, unstable 86K Z., de-
fined in Eq.(32). The second equatio@5) brings
PB_Z
Sy ~ =—=——=\1-3 sirth,. 42 z2
322+ “ 42 ey~ 7 0, (47)

Figure 5 shows a numerigal evaluatiqn of the growth rate iRyhich is identical to Eq(38) for 6,=0. This was expected
the (Z,Z,) plan. The relative error using E¢42) never ex-  gince, for such an orientation of the wave vector, xkend
ceeds 3% so that this formula can be considered as a vegy elements of the dielectric tensor are equal. These modes
good approximation of the growth rate in the whélspace.  are, therefore, unstable at adywith growth rates given by

The expression42) is valid provided thats is effectively  the expressions, in Eq. (43). They will be called beam
small, namely, forZ small (i.e., large wavelengthsor pg Weibel-like W,, modes.

small. We shall denote this purely transverse modé\jy
We observe here an important departure from the cold 2.kl?
model where no transverse modes could interact with the

electrons for wave vectors along tzeaxis as no electrons ) ) . X .
After some calculations, the dispersion equation for this

moved perpendicularly to the beam. As temperature intro h and thi : ientation is found to b
duces such electrons, this set of transverse modes can géanc an IS wave vector orientation 1S found 1o be

Let us now consider wave vectors normal to the beam.

destabilized. 1(€2)=0 with
In terms of the variablek, w,, ¢, andVy,, the growth rate 72 o472 272
(42) for =0 reads(in wj, units) Q. Q)= (QZ -l-a- ,3_2 2 QZ——pzzz><Qz -l-a
1 kVy p?Z? ) ( QaZ aZ)2
o= T 43 - - -—. 48
' V3 ws +k2c? 43 0? - p?7? 02-p?22 QO (48)

One can easily check th&, is an even function of) and

which, dropping the 13 multiplicative factor, is exactly the that the cold limit(35) is retrieved whemp=0. A typical plot

original result found by Weibe]l18] at low k using a Max- . o .
wellian instead of a water-bag electronic equilibrium distri- of Q.i. is shown in F.'g' 6. Six real roots are nge_ded for
stability, and a negative value @, at the local minimum

2:2:3: 0;“8;23? Lfgtr S;er :rl:]!frf I;ZT?{:’S g?g; ::é/eagfdtlﬁlgnbael amlocated at)=0 leads t(_)_instability. This_value is easily cal-
in addition to the bulk plasma prevents the real part of theculated and found positive &> Zor, with
pulsation from to be nul{except foré,=/2), which would B
be one of the features of the original Weibel mo¢i&s]. Leapp="—, (49

Let us once more stress here the benefits of the present p
formalism; being free from the electrostatic approximation, itat leading order in the small paramet@sx, andp. A global
can describe both longitudinal and transverse waves witinstability at all wavelengths is retrieved at zero temperature,

wave vectors aligned to the beam direction. while plasma temperature stabilizes short-wavelength waves
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Q B

o Al 2
2 4 2//1 (W 1\(@ 3 4

-2.1p5
Q Q, Q,

FIG. 7. Plot ofQ({2, ;) defined by Eq(52) as a function of).
Parameters are chosen to display clearly the curve topology with
FIG. 6. Typical plot of the dispersion equatiof8). The corre-  Z=15, 8=0.1, a=p=0.03, andf,=/2.2. The circle indicates the
sponding mode is stable when the local extremum between the siplace where real roots can appear or disappear. The dashed line is
gularities is positive. the curve of polynomiaP({}) defined by Eq.53). The ();'s are

defined by Eq(54).

with k> (wp/c)(V,/Vy). This agrees with comparable

temperature-dependent investigatiga®,22 for wave vec- arch connects to mode F across khepace for the full dis-

tors normal to the beam. persion brancl{52). The Weibel-like beam mod#/,, stabi-
When the stability condition breaks, the correspondingizes when the angle increases and is investigated in the next

growth rate can be searched by settidgiésin Eq.(48) and  section.

by expanding it in powers of. This gives Despite its intricate expression, the dispersion relation al-

lows a number of useful analytical conclusions to be drawn.

We start noticing that, at larg@, the asymptotic form 0@

— zZ\1-7%7%,

Oniz 'BVC’V,'(22+B2)(1 +p22%)’ (50 must bring the dispersion relation at high frequeli2y), so
_ that the polynomial
whose maximum is reached fa@r,~ B/ p with
bl PQ)=(Q?-1-a)(Q?-1-a-Z2%F) (53
Oio(Zn) ~ BN a. (51)

can be considered as an envelope matchingQbQ, 6,)
The p=0 limit of Eq. (50) correctly yields Eq(35), and one  curve except in the vicinity of three singularities located at
observes that the maximum growth rai®l) equals the 4, Q,, andQj with (see Fig. 7

growth rate found at zero temperature 0¥ 8. We shall
denote byF modes these almost transverse modes, unstable
for 0<Z<Z. 5.

01 =-Za cos b —Zp sin 6,

The effect of temperature has consisted so far in extend- Qp=~Za cos b+ Zp sin b,
ing the instability domain in the direction (F is stable for
p=0) while shortening it in thex direction by setting a Q3=17 cos b. (54)

threshold aZ~ f3/p. We can, therefore, expect a nontrivial In this section, we shall follow the proper waves having a

border for mterm_edlat_e orientations bridging between the exbulsation real part close @, that is, we follow the branch
tremes we have just investigated.

starting at ,=0 with the purely two-stream modes TS.
When 6, departs from 0, singularitieQ, and(}, separate, as
shown in Fig. 7. The “extendédwo-stream modes TS are
stable as long as th-dependent local minimum, marked
there by a circle, is negative. Moreover, @skeeps increas-
We now consider thew=w,(k) branch (17) solving ing, it is clear on Eq(54) that, due to the plasma transverse

C. Second branch solution for an arbitrary orientation of k:
Two-stream/filamentation (TSF) mode

Q(Q, 6,)=0 for any 6, where we introduce temperature, the roof; will cross the root(), for some
-, -, ) angle below/2, and precisely for the critical anglé;
Q(Q, ) = (D%~ cOSH)(Qe,,~ Sirf6y) yielding Q,=Q, that is
— (O, + Sin 6, cOSH)2. 52 1+
(Q%,,+ sin 6, cost) (52 Hc(a,p)zarctar<—a). (55)
p

We put here for shortne€3= ) 3/Z and use the full expres-
sion of the dielectric tensor element€1). For ,=0, we Let us now depict this more quantitatively. The two zeros of
obtain two unstable modegén short, W,, and TS and for Q on each side of the circle in Fig. 7 are real as long as
6=ml2, only one, modeF (the filamentation mode We  P(Z cos 6,) =<0 in a first approximation. But unlike the cold

show in this section how the purely longitudinal two-streamplasma model, where this condition is valid all the way
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0.14 S
d o1 Sz
d 693
0.06 - 990
7 1650
== 3302
002 e
= |
0.001 0.01 0.1 1
a
-7, | | o
VA 0 FIG. 9. Maximum growth rate in thé, direction in terms ofx
€ for Z values up to 3300. The dashed line is the analytical formula

FIG. 8. Stability domain in th& =kVy/w, plane for the usual (58).
two-stream/filamentation mode for model 3. Shaded area COMe5: o ctions.  both quantities need to merge fo1 since
sponds to unstable wave vectors. The anglés defined through im o6 ’)z /2
Eq. (55). Settingy,=1 yields model 2 ang=0 gives model Xwith : p—0Vcip) =Tl & . .
O 712). Figure 2b) sh(_)ws some numerical _evaluatlc_)n of the
growth rate for this hybrid two-stream/filamentation mode.
One identifies there both the classical two-stream instability
arch along theZ, axis and the filamentation one along the
axis, but the most remarkable feature of this figure is by far

i : X the nondecreasing growth rate in thgdirection. Figure 9
larities wheng approaches. Denoting byZi(6) the insta- displays some numerical computations of the growth rate in

bility threshold, this means that lin. s Z.(6) =. As foran  he g “direction for highZ in terms ofa, together with the
angle larger tharg, the proper waves of pulsation close to gnajytical expressiori58). One observes the slow conver-
Q are stable if the coefficient of 12-Z cos6,)? in the  gence as well as the agreement of this formula at dow
dispersion equation is positive. Finally, we close this investigation by turning to the
In the limit of smalla, B, andp, it is possible to derive  eyaluation of the angle betwednand E, for this mode. A
some analytical resu]ts for the_ stability domair_w. The Ieadingbbt of the vector fieldE(k, w) is presented in Fig. 10. Here
term of the asymptotic expansion&f for 6= 6 is found to  again the vector field is almost aligned with the wave vector,

through until 6, =/2 [see Fig. 2a)], the finite plasma tem-
perature case requires us to increZseigher and higher to
recover two real zeros d between the), and Q)3 singu-

be [28] except near the normal direction with a transition that sharp-
V,a ens asZ, increases. We observe a shift in the field direction
Z.~ . (56)
00 - ak Zx

stability domain obtained.

The importance of the), direction, at which all spatial
scales are unstable, prompts a closer investigation, especiall 4
of the growth rate at this angle. Insertify=2 cos6.+ié

/

VAV AV AV QW J QF G 4 3V 3V 3 4 & ¥ 4

VAP AV AV aU JF G G 4 &V 35 5 B & 4

/
f AT ATt b v v

/

VAV GV GV b 4 G O 3V 3 35 3 B O S

Above 4., the coefficient of 1(Q0—Z cos6,)? is positive gt t 1 1ttt 411 /14812 soss
s o IR A I A A I A I A A’ v
(yielding stability) for [29] VNN LS A A S A L
LI B A A A A A v VA
B 72 — 6 T A A N fAS
Z=z—\/1+—, (57) IR ENE NN NN A
1% 2(0k_00) ot [ A A A A A A AV AV AV A G
) ) ) . L s [ AV B AV AN AN B A VA AV AV AV &V 4
which gives just Eq(49) for 6,=7/2. This signifies that one (S A A A AV AN VA A AP P VAV VGV gV P
goes continuously from two-stream to filamentation instabili- .| | | | {17/ 1 /L1000 000
ties across th& plane. Figure 8 displays schematically the A AV VY G I
f 11t ANy A A AV AV ey AP QP AP 5 IV AV O A
I A A
t s /
bt
A
t f
!

with §<1 into the dispersion functio®(4s, 6,) defined by A e e
Eq. (52 gives an expression of the forn®Q(s,6)~a 2 T
+b#?, with a,b>0, so thats~ Ja/b. For smalla andp, this e
reads at highz LTI
!/_ 0 . . n n . Z
89, ~ Ba. (58) 0 0.2 0.4 0.6 0.8 1 Z

This result bears strong similarities with the growth rate F|G. 10. Direction of the unstable modes electric figlk , w)

computed forf,=7/2 [see Eqs(50) and (51)]. Indeed, it for z,<1 andZ<10 in the cold beam and hot plasma system.
can also be inferred from a continuity argument: denoting bysame parameters as Figbg The plain line represents the upper
8., and &, the growth rates at higit in the /2 and 6, limit of the stability domain.
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0.1 FIG. 12. Numerical evaluation ol,, mode growth rate fop

SO
S “:“ S =0.03,¢=0.1, andB=0.2. The beam and return current are along
S the Z, axis.
0 Z, However, the analytical structure of the full dispersion

equation is involved, and we restrict ourselves to a numerical
FIG. 11. 3D plot of the growth rate for the two-stream/ COmputation of the mode growth rate plotted on Fig. 12. This
filamentation mode calculated in the electrostatic approximation usiS to be compared to Fig. 5 where the same parameters were
ing the dielectric tensofEq. (7)]. Same parameters as Fighp used. This calculation exactly confirms the previous analysis.
The two surfaces are rigorously equal f8¢=0, and one
observes that the stability domain in tBgdirection is wider

for wave vectors bordering the upper limit of the stabilit
g PP y for W,, than forW,,.

domain, that is, for almost stable waves. The quantitygaﬁ)s
with ¢ =(k,E) is displayed on Fig. &) for this model and
shows that unstable waves are no longer longitudinal in a
region bordering th&, axis. Although this region extends up
to Z,~0.5 when filamentation is high, the overall growth-  We finally consider the case of a relativistic beam passing
rate picture can be recovered from longitudinal approximathrough a hot plasma. The distribution function is exactly the
tion as can be seen in Fig. 11, which displays the growth ratene used in the last section, the only difference being the
calculated in the electrostatic approximation, expressing theelativistic factory, which may now exceed 1 when calcu-
dielectric tensor from Eq.7). Indeed, the critical anglé, in lating tensor elements from E¢6). Since our interest lies

the electrostatic approximation is exactly the same. A commainly in the FIS for inertial fusion, we shall keep treating
parison between Figs.() and 11 shows that the ling, the bulk plasma classically. Its thermal energy is actually
=6, is the limit beyond which electrostatic approximation expected to be of the order of 10 keV in a fusion plasma and
fails even qualitatively to describe the growth rate. We shalremains much smaller than the 0.5 meV required to tilt rela-
see this discrepancy between the general electromagnetic apristic effects. As for the plasma return current velocy

proach pursued here and the electrostatic approximatioimduced by the relativistic electron beam, its modulus satis-
building up when relativistic beam effects are considered. fies V,/c<np/n,=a. Yet, it turns out that within the pre-
dicted limits of the FIS,« should vary from 10" (plasma
edge to 1072 (plasma corg[4]. This shows that the return
current velocity is nonrelativistic and that it is perfectly rel-
evant to study relativistic effects only for the beam.

Having elucidated the two-stream/filamentation mode Inserting the distribution functiofEq. (29) for the beam
over the wholé& domain, we finally consider the Weibel-like part and Eq(36) for the plasma paJtinto Eqgs.(6) yields the
beam modea/\,, introduced at the beginning of Sec. V B for tensor elements reported in Appendix C. The dispersion
6¢=0. In that special case of a wave vector along the beanmequation is unchanged and displays the same two branches
the mode was found unstable at anyi.e., at anyk), with  (16) and (17). We introduce from here the beam relativistic
proper pulsations and growth rates identical to those of théactor
first branch moden,, and one can expect this similarity to
apply to weakly oblique wave vectors for two main reasons. Vo= 1 (59)

First, because their dispersion equations degenerate exactly V1- 32’

for 6,=0. Secondly, becaus4, is always purely transverse . _
and W,, exactly transverse fof, =0 and almost transverse With B=Vp/cC.

after. Actually, the proper electric field modes related to the N _ _

TSF andW,, branches are normal. Using compact and obvi- A. Stability analysis of the first branch: W, modes for a

VI. MODEL 3: COLD RELATIVISTIC BEAM PASSING
THROUGH A HOT PLASMA

D. Second branch solution for an arbitrary orientation
of k: W,, mode

ous notations, this means that the TSF eigenvectors relativistic beam
exo(wrsek)) and theW,, eigenvectorseo(ww, (k)) are or- Equation(C1) for the &,, element yields the following
thogonal in the(x,z) plane(see Sec. I\ expression of the dispersion equatiefe,,~k’c>=0 as
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2

P - %(Q/Z + @ COS ;)2 - (p sin 6,)? =0, (60
with
P(Q):Qz—l—ﬁ—z—z, (61)
Y B

in terms of the dimensionless variables introduced previously
[see Eqs(30)]. The relativistic correction is very simple and
the method used in Sec. VA can be applied straightfor-
wardly. The approximation is even better fulfilled since
al y,<<1. Results are, therefore, identical to the ones given
by Eqgs.(40<42) and plotted in Fig. 5.

Vi

B. Stability analysis of the second branch:
Two-stream/filamentation modes FIG. 13. Contour plot of Fig. @). Maximum growth rate invj,
units is about 0.21 aZ,~1 and Z,~5. One sees growth rates

We shall not investigate further th&,, mode evidenced values of 0.16;, Up 10 Z,=25 in the d, direction.

in Sec. V D. Itis very similar to the mode/, described in
Secs. V A and VI A and bears no more relativistic correc-
tions. We therefore turn directly to the two-stream/
filamentation mode and shall review the basic results more
quickly since their derivation involves the methods used
above.

We first emphasize that the expression of the critical angle 2. Numerical computation of two stream/filamentation
evidenced in the nonrelativistic case bears no relativistic cor- growth rates at anyk

rections and remains unchanged here. Actually, its origin lies \We now turn to the most general case and use the follow-

only in the dispersion relation singulariti€; [Egs.(54)].  ing FIS parameters: a relativistic 2 Mé),=4) electron

Corrections will rather appear in the magnitude of the growthheam with densityn,=10%° cn3 enters a 10 keV plasma

rate. with n,=10°* cm 3. This gives@=n,/n,=0.1. This values

lies in the upper range af's since electronic plasma density

1. Results for the “privileged” directionsf,=0, 6., and /2 rather ranges from #8to 10°% cmi~3 within this scenarig4].
These parameters yield a critical anglg=7/2.12 that is

d- close to the normal direction.

(%

& = :
6.~ B "

(64)

For wave vectors normal to the beda =/2, filamen-

tation configuratioln one finds a dispersion equation yiel ) ) . :
ing unstable modes fc < y,8/p in the limit a,p<1. This Figure Zc) displays a numerical evaluation of the growth

is just the nonrelativistic result times a factay so that rela- '€ OVver théZ,,Z,) plane. One notices the long unstable tail
tivistic effects are destabilizing the system at smaller wavelP 10 Zx~40 in the normal direction as well as the reduced
lengths. The maximum growth rate in this direction is foundW0-Stream growth rate in the beam direction. The most

for 2~ Bl \«"; and read$22] striking features are the flat growth rate in thedirection
and the maximum reached f@,~1 andZ,~5. These re-
a sults are detailed in Fig. 13, which is a contour plot of Fig.
Staiz= B T (62 2(c). The angled, between the growth rate’s “ridge” and the
° normal direction is extremely amplified on both figures
where the superscrif® stand for relativistic. where the largest wave vector showr¥is(50,2.5.
For wave vectors along the bedid} =0, two-stream con- As far as the angle betwednand E, is concerned, one

figuration, the dispersion equation yields unstable modes fotan expect here a stronger divergence from the electrostatic
Z<1+(3/2)a™® y, in the limit a<1: the relativistic effect approximation. As long as the beam is nonrelativistic, the
is opposite here as it shrinks the instability domain. In thetwo-stream growth rate exceeds the filamentation growth rate
limit @<1, the dispersion equation found is formally identi- so that the most unstable modes are longitudinal. On the
cal to the nonrelativistic one replacingby a/yi. The maxi-  other hand, the relativistic two-stream and filamentation
mum growth rate igsee[23] and Appendix A growth rates scale as % and 1A'+, respectively. This

\§ 413 means that fory, high enough, and precisely for

55\0 = ZTBI (63) 3
Yo = 2813, 173" (65)
As far as wave vectors in the, direction are concerned,
the method used to derive the nonrelativistic asymptotidilamentation transverse modes are dominant. Numerically,
growth rate in this direction can be applied and brings thehe threshold65) readsy,>4.7 for a value as small as
asymptotic growth rate =103. Figure 14 shows the growth rate computed within the
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FIG. 15. Orientation of the eigenvector electric fi€ltk , w) for
Z,<1 and Z,<10 in the cold relativistic beam and hot plasma
system. Same parameters as Fig).2Ve located, direction as well
as the wave vectar ,, yielding the maximum growth rate.

FIG. 14. 3D plot of the growth rate for the two-stream/ Numerical evaluation of the maximum growth rate.
filamentation mode calculated in the electrostatic approximation us- The k location of the maximum growth rate can be in-
ing the dielectric tensofEq. (7)]. The beam is relativistic withy, ~ ferred from a continuity argument when<1. It has been
=4. Same parameters as FigcR proved that, for a cold plasni@24,25, the maximum growth

rate dependence &y is weak. The maximum growth rate in

electrostatic approximation for the same parameters as ithe beam direction being always nege=1, we can expect
PP P this to remain valid in the small temperature limit. A similar

Fig. 2c). Qne can checl_< that the longitudinal model is noargument can apply for thé, component of the maximum
longer valid beyond the liné, = 6.. The angle betweek and : P = oy [ : oo
. s : . . showing that it coincides witlz,~ B/vp at which the fila-
Ey in terms ofk is displayed on Fig. 15 and illustrates this antation growth rate is maximum. Having determined
point. which wave vectoZ ., leads to the maximum growth rate in
the relativistic regime, we now make use of Fig. 16 to find an
3. Maximum growth rate in thek space analytical expression for the corresponding growth rate value
om(Zm). An analysis of these plots shows th#t behaves as
3 for <1 and as 1443 in the relativistic regime. Figure
6(c) shows that, in thep<1 limit, we can guesss,(Z,)
= (al y,)Y3. By continuity arguments with the TS branch, we
finally conjecture that the maximal growth rate is reached for

We consider the case,p<<1 that is relevant to most ex-
perimental situations where the beam density is much lowe
than the target one and the beam velocity is much highe
than the target thermal velocity.

The fact that the maximum growth rate is found for an
oblique wave vector prompts a closer investigation. Figure B
16 displays a comparison of the maximum growth rates in L~ ?,1 ' (66)
the three privileged directions in terms ¢f. We used the P
analytical expressions given in Table | f6f=0,7/2 and a  with

B Yo

4 0.001 0.01 0.1 11 10 100 ]
0.1 e
0.01 FIG. 16. Comparison between maximum fila-
6mrc_(g...-v-""' mentation growth raté€s,,.;», long dashed ling
0.001 two-stream growth ratédy,, short dashed line
0.0001 Lo (a)l | (b) 0.001 and the maximum for alk (&, plain line) in

terms of B, vy, p, andea. (8) «=0.1,p=1/20.(b)
a=0.1, p=1/10.(c) @=0.1, =2. (d) =4, p
=0.1. S0 and 8,9 are calculated from Egs.

0.2 (62) and (63) while &,, is numerically evaluated.
Black circles are evaluated from E@7).
0.1
0 0.01
0.001 0.01 0.1 1 0.001 0.01 0.1
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TABLE |. Growth rate properties for each unstable modes within model 3.

Modes Solution branéh  ¢,°  Stability domain Max. growth rate  Magnitudle
W, (Weibel) A=0 w2 See Fig. 5 pBIN3 0.848py,a 13
W,, AA-=0 ~ml2®  See Fig. 12 pBIN3E 0.848pypa 13
TSF AA_=0 0—ml2 See Fig. 8

6,=0 0 V312483113 Yo 1

6~ arctari3/ \p) V3123 )23 ¥R

Bc= 0, Blalyy  1458\pa ¥

Oc=!2 w2 Baly, 1.458\ypa 13

dSee Eqs(24) for \; definition.
®(k ,E,) angle.

“Normalized to the two-strearfTS) maximal growth rate.

dExactly for 6,=0.
°For 6,=0.
'Forz— .

\5 o |13
5m(2m)~27,3(7b> . (67)

whereas the two-stream growth rate goes likg,1A plot of
the quantity co§<pk [see Fig. 4c)] demonstrates that the
transition domain between longitudinal two-stream waves

Figure 16 shows that this expression fits numerical evaluaand filamentation transverse waves is then no longer con-

tions very well. As for theZ,, value, Eq.(66) gives Z,,
~(5.3,1), which also fits the value obtained from Figgc2
and 13 very well.

VII. DISCUSSION AND CONCLUSION

fined to the close vicinity of the normal direction. This is also
obvious looking at the orientation of the electric field as
displayed in Fig. 15.

Our main results are summarized in Table | and eventu-
ally display two kinds of instabilities. The first one gathers

instabilities for wave vectors along the beam axis and purely
We used a general electromagnetic formalism to derivgor almost purely transverse waves while the second one is
the unstable proper modes, propagating at any wave vect@ie two-stream/filamentation mode. The last column displays
k, associated with the system formed by an electron beanhe relative magnitude of each growth rate normalized to the
and its return plasma current. Previous analyses restricted @go-stream maximum growth rate. It appears that the trans-
to some specidk direction(parallel or normal to the begm verse and quasitransver% and W,, modes can be domi-
or to some asymptotic regim¢86] or to make some priori - nant in front of two-stream instability fore=ny/n, small
assumptions on the nature of the wayesstricting to the  enough because their relative magnitude scalggpag/ o',
longitudinal or to the transverse cas&his work, aided by  As for the two stream/filamentation branch, the two-stream
numerical computations of the dispersion relation, was mogrowth rate always exceeds the filamentation growth rate for
tivated by the need for a clearer picture of the linear theory, and 8 small. Wheng tends to one, relativistic effects come
for this beam-plasma system relevant to the FIS. into play and filamentation dominates.
The significance of using an electromagnetic formalism  On the two stream/filamentation branch, we identified two

instead of the electrostatic approximgtion appears f.rom.thgrivneged directions at the angleg. and arctaf3/\p).
hot plasma model and becomes evident when taking intdhese modes share properties from filamentation and two-
account relativistic beam effects. Advantages are numerougiream instabilities. Like the TS modes, they propagiate
Firstly, it yields a rigorous and coherent description of un-The 6. mode asymptotically shares the filamentation growth
stable modes all over the space. Secondly, once the distri- (ate without being purely transverse. The second mode,
bution function is given, the dielectric tensor spectral analy\yhich is also the most unstable one, has the two-stream
sis allows a systematig_s\earch for every possible unstabl@rowth rate timesy§’3 without being purely longitudinal. In
mode regardless of ité,E,) angle. Thirdly, it shows the addition, it “borrows” from filamentation its normal wave
limitations of the electrostatic approximation by displaying vector component and from two-stream its parallel one.
purely transverse modes for a wave vector around the beam We are currently extending the present methodological
axis (W, andW,,) or normal to it(F). As for the two-stream/ framework to include collisions, beam temperature, as well
filamentation unstable modes, some quantitative discrepan@s Maxwellian distribution functions.
between the two approaches is confined around the normal
direction as long as the filamentation growth rate remains
smaller than the two-stream growth rate. This is always the
case in the nonrelativistic regim@and small beam density
but the situation changes dramatically with relativistic_beam One of us(A.B.) wishes to thank the Laboratoire de Phy-
effects when the filamentation growth rate scales asyl/ sique des Gaz et des Plasmas for its hospitality.
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APPENDIX A: BASIC RESULTS ON THE TWO-STREAM
INSTABILITY

Let us consider the dispersion relation
1 o 1 _
Q-22% (Q+a2)?

and operate the change of variagte ((2-2)/o*'3. Then Eq.
(A1) turns to the quartic

0, (A1)

1/3

1= 6;—2 +[aPy+ (1 +a)Z] 2

With a=(Z2-1)a 3, we get

2
Sy ay=l,

where we used an expansion in the small parametdtut-
ting y=re'®, we obtain

2 .. _
?r?’e'e“z’ —ar’d??=1. (A2)

From the imaginary part of EqA2) we get
27r1sin (3¢) _
Z% sin(2¢)
which, substituted in the real part of EGA2), gives

r3=-Z%cos ¢.

We get finally
sinB¢)  1-7%2

sin2¢)  2a'3 =A

(_ cos ¢) 1/3

Q :

2 =1 +a'3(- cos ¢) 3.
We look for the maximal imaginary value 6f with respect
to A. This occurs forA=0, i.e., Z,=1 and gives¢=1/3.
Then, withQ)=Q,+i6, we get the maximal growth rate and
associate real part as

Qr =1- 2_4/30[1/3, (A3)
3
N

As it is well known, Eq.(A3) shows that the oscillations

building up with the largest rate are those whose frequency is Q

close to the plasma frequen¢slightly detuned by an amount
of the order of the growth rafeEquation(A4) is the result

given in Eq.(33). We followed above the line of approach of

Bludmanet al. in Ref. [26].

APPENDIX B: FULL FORM OF EQ. (17)

Inserting the distribution functions introduced by E29)
yields the following expression for E¢17):

PHYSICAL REVIEW EO0, 046401(2004

Z°cos6,

(—1+92—a— 7 )x [—1+Qz—a

—2Q) cos G +Z cog26,)
(Q - Z cos 6,)?

2() cos 6 + Za cog26y) Zzsinz&k}

+Za

+Z
T (Q+Za cos 6,)? B2
~ {choseksinek ( a
3 - QO +Z cos b

2
+¢>sin0 =0 (B1)
QO+ Za cos b .
It may be useful to write this expression in terms of the
Cartesian coordinatek,,k,) instead of polar(k, §,). One
gets this

(02-1-a-

.

where as expected

z§>{ , 0UZ2+1 QUZ%+d? 1|,
Z2)1 02— a - -z
B Q-2)* (Q+Za)? B
o
+
-O0+7Z, Q+Z,a

a

2
+%) Z2=0, (B2)

kab

@p

and Z,=

The Z2 factor was left for convenience for it allows a very
straightforward retrieval of th&,=0 or Z,=0 limits. Once
simplified, the resulting expression stresses the limigd
dependence of the overall dispersion equation.

APPENDIX C: DIELECTRIC TENSOR ELEMENTS  g,5

Inserting the equilibrium distribution functions defined in
(36) into the expression of the tensor componepy given
by Eq. (6) yields to the calculation of the tensor elements.
They are here expressed without any approximation in terms
of the dimensionless variables introduced by E20). We
express for convenience the quantit(é%z—:aﬁ as

(Q + Za cos 6,)°cot b, + Z2p?sirf

QZ - 02 -1 _ﬁ _
o Yo (Q+Za cosb)?—(Zp sin 6,)
Q + Za cos 6,) coté, csc b
—Cotzek—( o ) k kA’ (Cla
pZ
1 22 2
Syy:QZ_l‘ﬁ“ ’; —,
Y 3(Q+Za cosb) - (Zp sin 6)
(C1b
7 Z(cog6, — v2 sirf6,) — 2Q cos 6
QZSZzzﬂz—l—% 0[_3 ( K Vg K > k
% % (Q-2Zcosb,)
22a” a cot 6,

(Q+ZacosB)-(Zpsinb)?:  p
(Clo
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Za sin 6,
() = Z cos 6,)
Za(Q) + Za cos 6,) Sy
(Q + Za c0s 6,) - (pZ sin 6,)?

2Za coth, + Q) cot 6, csc b,
- 2pZ

0%,,=— + cot 6,

A, (Cld

where
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)

QO +Za cos b, —Zp sin 6,
QO +Za cos b, +Zp sin 6,

ol

The following expansion arourxi=0 can prove useful when
one investigates the limitg,— 0 or §,— =7/2 in Eqs.(C1):

1 <a+ kx
—In

) _ +0(x°). (C2)
X \a-kx a
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expression fo)=(Q,+Q5)/2. (iii) Finding the condition for
this minimum to be negative only keeping the leading diver-
gent term yields Eq(56) with a quite slow convergence.
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[30] The growth rate is the imaginary part of a solution of the

dispersion equation. The mode does not propagate when the
real part(),=0. For this branch, one hd3,(Z, 6,) ~ Zcost.



