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We investigate the linear stability of the system formed by an electron beam and its return plasma current
within a general framework, namely, for any orientation of the wave vectork with respect to the beam and
without any a priori assumption on the orientation of the electric field with respect tok. We apply this
formalism to three configurations: cold beam and cold plasma, cold beam and hot plasma, and cold relativistic
beam and hot plasma. We proceed to the identification and systematic study of the two branches of the
electromagnetic dispersion relation. One pertains to Weibel-like beam modes with transverse electric proper
waves. The other one refers to electric proper waves belonging to the plane formed byk and the beam, it
divides between Weibel-like beam modes and a branch sweeping from longitudinal two-stream modes to
purely transverse filamentation modes. For this latter branch, we thoroughly investigate the intermediate
regime between two-stream and filamentation instabilities for arbitrary wave vectors. When some plasma
temperature is allowed for, the system exhibits a critical angle at which waves are unstable for everyk.
Besides, in the relativistic regime, the most unstable mode on this branch is reached for an oblique wave vector.
This study is especially relevant to the fast ignition scenario as its generality could help clarify some confusing
linear issues of present concern. This is a prerequisite towards more sophisticated nonlinear treatments.
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I. INTRODUCTION

Beam-plasma interactions play a crucial role in various
fields of physics and the theoretical study of the linear re-
gime of beam-plasma instabilities forms the basis of most
plasma physics textbooks. The long-standing academic de-
velopment of this field is now being revivified and chal-
lenged by some recent technological progress making acces-
sible new physical regimes[1], e.g., in the context of
conventional accelerators and free electron lasers, by new
observational data and theories in astrophysics[2,3] and es-
pecially by the considerable interest in the elaboration of
scenarios for the inertial confinement fusion. In the high-
intensity laser-driven scheme and specifically in the fast ig-
nition scenario(FIS) first formulated by Tabaket al. in Ref.
[4], electron beam-plasma interactions play a key role. Actu-
ally, the fast ignition eventually involves an intense suprath-
ermal electron beam, produced by the interaction of a fem-
tosecond laser pulse with the dense core plasma, that should
propagate across the plasma corona of the fuel target to en-
sure a local deposit of the energy. In order to validate this
scenario, it is important to study the potential beam-plasma
instabilities involved. Many theoretical, numerical, and ex-
perimental works have been recently devoted to this topic
[3,5–14] and, in particular, some authors[7,10] have pointed
out the need to analyze the coupling between two-stream and
filamentation instabilities.

In this, paper, we shall study the linear stability of the
equilibrium state formed by an electron beam and its return
plasma current. This system is relevant to the FIS as, when

penetrating into the plasma, the electron beam generates the
return current carried by the plasma electrons. For this analy-
sis, one operates in the Vlasov-Maxwell framework and de-
rives the dispersion relation in thesk ,vd space. This requires
the choice of a given orientation fork. In this regard, the
wave-vector orientations normal(“filamentation instability”
[3,15–17]) or parallel(“two-stream instability”[15,18,19]) to
the beam have been the most investigated. Yetevery orien-
tation of k is obviously present in thesr ,td reality space
found back by inverse Fourier transform, summing over all
k ’s and allv’s. The main objective of this paper is, therefore,
to investigate analytically a three-dimensional(3D) Vlasov-
Maxwell model of these instabilities for any orientation ofk.
In order to clearly display plasma temperature and relativis-
tic effects, we shall study the problem for three different
models:(1) cold beam through a cold plasma,(2) cold beam
through a hot plasma, and(3) cold relativistic beam through
a hot plasma. Ignoring the beam temperature will allow us to
neglect potential additional kinetic effects related to wave-
particle resonances.

Usual terminology is not always crystal clear, and some-
times somehow confusing, about the respective definition of
the Weibel and filamentation instabilities. It is therefore de-
sirable to be definite from the beginning: In this paper, we
shall denote by filamentation modes the unstable waves hav-
ing a wave vector normal to both the beam and the electric
field (k' beam,k 'E) and by Weibel modes the unstable
waves with wave vector parallel to the beam, namely, the
preferred direction, and normal to the electric field(ki beam,
k 'E). This corresponds to the original Weibel’s modes con-
figuration [18]. Purely two-stream modes, as usual, are lon-
gitudinal unstable waves with wave vector aligned with the
beam(ki beam,k iE).

In Sec. II, we expose the derivation of the dielectric tensor
for any orientation of the wave vector and any angle between
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k andE, and single out the large wave velocityv /k regime.
We discuss the respective orientations ofk and E and the
nature of the waves in Sec. III. We then apply the general
electromagnetic formalism to the analysis of a cold beam
interacting with a cold plasma in Sec. IV and with a hot
plasma in Sec. V. Calculations conducted in this section help
elucidate unambiguously relativistic beam effects in Sec. VI.
In this respect, an important figure(see Fig. 2) concerning all
three models is located towards the beginning of the paper.
Conclusions are finally presented in Sec. VII.

II. GENERAL DISPERSION RELATION

A. Basic derivation

We consider a homogeneous, spatially infinite, collision-
less, and unmagnetized plasma whose dynamics is ruled by
the relativistic Vlasov-Maxwell equations for the distribution
function fsp ,r ,td and the electromagnetic field
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with v=p / sgmed and g=Î1+p2/ sme
2c2d=1/Î1−v2/c2. cgs

Gaussian units are used,q is the electron charge, andme is its
mass. Ions are assumed to form a fixed neutralizing back-
ground. Applying Fourier transformation Fsr ,td
=okFk expsik ·r − ivtd in the linearized equations and elimi-
nating the perturbed magnetic field gives the basic form of
the dispersion relation
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The expression of the dielectric tensor«sk ,vd is
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wherek ^ v=skiv jd denotes the tensorial product ofk andv.
This yields the following expression of the dielectric tensor
elements[17,20]:
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where the integrals must be evaluated using the standard
Landau contour for a proper kinetic treatment. It is worth
noticing that the second left-hand side term reduces to

−vpe
2 /v2dab in the nonrelativistic limit, wherevpe is the

plasma frequency given byvpe=qÎ4pne/me.

B. Preliminary analysis

At this stage, we may emphasize a point concerning the
respective orientation ofk andE that has some bearings on
the dispersion relation(4). If one makes the electrostatic ap-
proximation and neglects the magnetic field so thatk 3E
.0, the dielectric tensor takes the much simpler form

«sk,vd = 1 +
4pq2

k2 E k · ] f0spd/] p

v − k ·v
d3p. s7d

Moreover the basic dispersion relation(4) simplifies dramati-
cally when considering longitudinal or transverse waves. For
longitudinal waves(see, e.g., Refs.[20,21]), the dispersion
relation reduces to

«sk,vdEk = 0. s8d

When considering transverse waves[10,17,18] for which
k ·Ek =0, one hask 3 sk 3Ekd=−k2Ek and Eq.(4) yields the
dispersion relation for purely transverse waves

Fv2

c2 «sk,vd − k2IGEk = 0. s9d

Without any assumption upon the nature of the waves, we set
k 3 sk 3Ekd=sk ·Ekdk −k2Ek in Eq. (4) and get

Fv2

c2 «sk,vd + k ^ k − k2IGEk = 0. s10d

Setting

T =
v2

c2 «sk,vd + k ^ k − k2I , s11d

nontrivial sEk Þ0d solutions are obtained provided that
detsTd=0, i.e.,

detUv2

c2 «i j + kikj − k2di jU = 0. s12d

This forms the most general expression of the dispersion
relation.

We can now start to detail the geometry of our problem.
The momentum distribution anisotropy is set along thez axis
(see Fig. 1 for clarity). Without any restriction of generality,
cylindrical symmetry allows us to setk =skx,0 ,kzd. We shall
use in the sequel electronic equilibrium distribution functions
f0 of the type

f0spd = f0spx
2 + py

2,pzd = f0xspx
2df0yspy

2df0zspzd, s13d

with ef0spdd3p=ne. These distribution functions are isotropic
in the sx,yd plane. We can notice that Eq.(13) implies a
vanishing average momentum in thesx,yd plane. Due to its
generality, this framework addresses filamentation[3,15] as
well as double-stream[15] instabilities. Under the above as-
sumptions, Eq.(12) reduces to
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* h2«xx − kz
2 0 h2«xz+ kzkx

0 h2«yy − k2 0

h2«xz+ kxkz 0 h2«zz− kx
2 * = 0, s14d

whereh;v /c. Developing the determinant with respect to
the second column yields the following general form of the
dispersion relation:

sh2«yy − k2dfsh2«xx − kz
2dsh2«zz− kx

2d − sh2«xz+ kzkxd2g = 0,

s15d

which displays two branches, thev=v1skd branch associ-
ated to,

h2«yy − k2 = 0 s16d

and thev=v2skd branch solving

sh2«xx − kz
2dsh2«zz− kx

2d − sh2«xz+ kzkxd2 = 0. s17d

This result is valid for any orientation of the wave vector and
any orientation of the electromagnetic field with respect to
the wave vector. Equation(17) can be factorized byv2 with-
out any additional approximation giving

v2s«xz
2 − «xx«zzd + c2skz

2«zz+ 2kxkz«xz+ kx
2«xxd = 0. s18d

C. Limit of large-phase velocities

The evaluation of(15) relies on the evaluation of the ma-
trix elements of the dielectric function«sk ,vd. Analytical
results are difficult to obtain for any orientation. However, a
number of conclusions regarding the large-phase velocity
v /k regime can be reached without making explicit the ana-
lytical form of the distribution functions. It is clear from(6)
that the only nontrivial occurrence ofv in the dispersion
equation is the 1/sv−k ·vd denominator. The momenta run
from −` to ` in the integrals, but are always limited by
physical conditions because any distribution function tends

to zero rather quickly beyond a threshold velocityV. This
quantity usually denotes the thermal velocity in a Maxwell-
ian distribution or a beam velocity if it goes faster than a
thermal plasma electron. More generally,V is the higher ve-
locity encountered in a given situation and remains always
finite. In the limit ukV/vu!1, we can expand the denomina-
tor inside any integral of the determinant yielding at leading
order

«ab = S1 −
vpe

2

v2 Ddab s19d

so that the dielectric tensor is diagonal. This is consistent
with the fact that spatial dispersion vanishes as the distinc-
tive directionk tends to 0. In this regime, the first dispersion
equation(16) reduces to the branch of the usual light waves
in plasma[17],

v2 = vpe
2 + k2c2. s20d

We now turn to the evaluation of the second equation(17).
Replacing the«ab’s by their approximated values(19), we
get for any orientation of the wave vector

sv2 − vpe
2 dsv2 − vpe

2 − k2c2d = 0. s21d

Therefore, within the approximations we are using, there are
no instabilities in theukV/vu!1 regime for any kind of
waves. This is a generalization to any orientation ofk of a
result previously displayed in[10,17,20].

III. ORIENTATION OF THE WAVES
WITH RESPECT TO k

Our analysis so far does not single out transverse from
longitudinal waves, even though we derived the simplifica-
tions of the general dispersion relation(12) in both cases[see
Eqs. (8) and (9)]. To clarify this point, it is important to
realize that the system has its own proper waves and that the
orientation of the electric field with respect to the wave vec-
tor is not a parameter of the problem, but a consequence of
the equations. The dispersion relation ensures that 0 is an
eigenvalue of the tensorT defined in Eq.(11), and the eigen-
vector associated with this eigenvalue is precisely the electric
field. We must therefore calculate the anglewk betweenEk
and k from the equations by making use of the spectral
analysis ofT.

For distribution functions fulfilling condition(13), the di-
electric tensor takes the form given in Eq.(14), that is,

T = 1a 0 d

0 b 0

d 0 c
2 , s22d

with a=h2«xx−kz
2, b=h2«yy−k2, c=h2«zz−kx

2, and d=h2«xz
+kzkx. Being symmetric,T is diagonal in an eigenvector or-
thogonal basis. These eigenvectors may be calculated exactly
as

FIG. 1. Geometry of the problem. The anglewk between the
electric field modeEk and the wave vectork may take all values
between 0 andp /2.
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e1 = 10

1

0
2 andek± = 1a − c ± ÎD

0

2d
2 , s23d

where D=sa−cd2+4d2. They are, respectively, associated
with the eigenvalues

l1 = b andl± = 1
2sa + c ± ÎDd, s24d

so that, in the eigenvector orthogonal basisse1,ek+,ek−d, ten-
sor T takes the form

T = 1l1 0 0

0 l+ 0

0 0 l−
2 . s25d

One can readily see that the possibility of proper purely
transverse waves with the electric field alonge1= ŷ, namely
along they axis, remains at any orientation of the wave
vector with dispersion equationl1=h2«yy−k2=0, equivalent
to thev1skd branch defined by Eq.(16).

Concerning thev=v2skd branch defined in Eq.(17), one
can check thatl−l+=0 yieldsv=v2skd. This shows that Eq.
(17) can be further factorized. We shall keep on working
with it, however, for simplicity sinceac−d2=0 is more man-
ageable thanl+=0 or l−=0.

Let us assume that the conditions for self-excitation of
waves alongek+ or ek− are fulfilled, which meansl+=0 or
l−=0. The simplified expression for both eigenvectors is
then readily derived as

euk + ul+=0
= euk − ul−=0

= 1− 2c

0

2d
2 ; ek0svd. s26d

The expression above does not mean a degeneracy of the
eigenvalues becausel+sk ,vd andl−sk ,vd do not necessarily
vanish together, for the samesk ,vd solutions. This expres-
sion shows that theEkx and Ekz components of the self-
excited waves electric field satisfy the relationEkx/Ekz=
−d/a=−c/d (sinceac−d2=0), that is

Ekx

Ekz
= −

v2«zz− k2c2sin2uk

v2«xz+ k2c2cosuksin uk
, s27d

where we setkz=k cosuk andkx=k sin uk. If we denote by
Ek' the component ofEk normal to the wave vector and by
Eki its parallel component, we shift fromsEkx/Ekzd to
sEk' /Ekid by means of a rotation of angleuk, so that

tan wk =
Ek'

Eki

=
sEkx/Ekzdcosuk − sin uk

sEkx/Ekzdsin uk + cosuk
. s28d

Finally, we can single out the simplest case where the
wave vector is parallel to the beam(uk =0, i.e.,kx=0). Since
the x and y axes are then symmetric, we have«xx=«yy and
«xz=«xz=0 so thatT is diagonal witha=b and d=0. It is
readily seen that proper waves belonging to thesx,yd plane
are governed by the dispersion equationh2«xx−k2=0 while
proper waves belonging to thez axis are governed by«zz
=0. Sincek is alongz, the first ones are purely transverse

while the second are purely longitudinal[which is consistent
with equations structures displayed in Eqs.(8) and (9)]. We
shall check in the following that within the cold limit ap-
proximation, only longitudinal waves can be destabilized
(two-stream instability), but temperature-dependent investi-
gations, such as the one conducted in the original work of
Weibel, display unstable transverse modes for such wave
vectors.

IV. MODEL 1: COLD NONRELATIVISTIC BEAM
WITH COLD PLASMA

To solve and analyze the general dispersion relation for an
arbitrary equilibrium distribution function is a rather in-
volved task. In order to get some insight about what is going
on for oblique wave vectors, we start investigating thek
orientation dependence through the simple model of a cold
beam propagating through a cold plasma with return current

f0spd = npdspxddspyddspz + Ppd + nbdspxddspyddspz − Pbd.

s29d

The nonrelativistic relationsPp,b=meVp,b are fulfilled and
npVp=nbVb reflects current neutralization. Total density is
ne=np+nb. After some calculations, the first dispersion
branch(16) yields Eq.(20) for normal light waves in plasma.
As for the second dispersion branch(17), we report in Ap-
pendix A its complete form in terms of polar coordinates
(k,uk) in Eq. (B1), whereuk measures the angle between the
beam velocity and the wave vector(see Fig. 1), and in terms
of Cartesian coordinatesskz,kxd in Eq. (B2).

Before turning to an arbitrary orientation, we shall start
investigating the well-known two-stream(TS) and filamen-
tation (F) instabilities, foruk =0 anduk =p /2, respectively.
We shall make use in the following of the dimensionless
variables

V =
v

vp
, Z =

kVb

vp
, a =

nb

np
, b =

Vb

c
, s30d

where the plasma frequencyvp refers to the densitynp.
From Eq.(B1) for uk =0, we get the dispersion relation

for wave vectors along the beam

SV2 − 1 −a −
Z2

b2DF1 −
a

sV − Zd2 −
1

sV + aZd2G = 0,

s31d

and the usual two-stream dispersion equation is retrieved
through the second factor, while the first one yields trans-
verse stable modes. TS longitudinal modes are unstable for
Z,Zc0 with

Zc0 =
s1 + a1/3d3/2

1 + a
, s32d

and the growth rate reaches its maximum
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dm0 ,
Î3

24/3a1/3, s33d

for Zm,1 (see Appendix A).
On the other hand, settinguk =p /2 in Eqs.(B1) and(B2)

yields the dispersion equation

sV2 − 1 −adFV4 − V2S1 + a +
Z2

b2D − Z2as1 + adG = 0.

s34d

The first factor yields stable modes, and the second polyno-
mial factor has negative imaginary root for anyZ. In the
limit a!1, the growth rate reads

dp/2 , bZÎ a

Z2 + b2 , s35d

that is,dp/2,bÎa for Z@b. Filamentation instabilities have
already been investigated within more complex models
[10,15,16]. We checked that the temperature and collision-
dependent dispersion equation of Ref.[15] [Eq. (12)] for
example, is exactly retrieved in the cold and collisionless
limit.

For arbitrarily oriented wave vectors, Fig. 2(a) displays a
numerical evaluation of the growth rate in thek plane in
terms ofsZz,Zxd. This figure prompts a comment about the
opportunity of having a formalism embracing longitudinal
and transverse waves. Indeed, the dispersion equation for any
angle, assuming the waves longitudinal from the outset,
would be the purely TS expression(31) replacing Z by
Z cosuk. This would yield a figure quite similar to Fig. 2(a)
except in the filamentation direction where the curve profile
would just vanish.

To clarify this point, we plotted on Fig. 3 the direction of
the unstable electric field modesEksvd for Zz,0.5. It shows
that the field vector is aligned with lines passing through the
origin, namely, aligned with the wave vector, except near the
normal direction. Instead of a discontinuity, there exists a
smooth transition domain between purely transverse modes
and longitudinal ones. Looking more carefully on how close
one needs to be to theZx axis to violate the longitudinal
wave approximation, we show in Fig. 4(a) a plot of coswk

2

with wk =sk ,Êd. One clearly sees that it significantly departs
from 1 for Zz&0.5 andZx,0.5. This shows that the transi-
tion domain, where the electrostatic approximation fails, ac-
tually covers about one-third of the relevantZz range for
unstable modes in thisZx range. Nevertheless, it still de-
scribes well the general growth rate properties.

V. MODEL 2: COLD BEAM PASSING THROUGH
A HOT PLASMA

We now allow for some temperature effects in the plasma
while still considering a nonrelativistic cold beam. This is
most simply modeled by changing the plasma part of the
electronic distribution(29) to

f0
p =

np

4Pth
2 fQspx + Pthd − Qspx − Pthdg

3fQspy + Pthd − Qspy − Pthdgdspz + Ppd, s36d

again with Pp,b=meVp,b and npVp=nbVb. Qsxd denotes the
Heaviside step function. As far as one is not concerned with
specific kinetic effects coming through Landau poles, such
water-bag distributions provide a classical tool to derive ana-
lytical results for temperature effects in relativistic settings

FIG. 2. Numerical evaluation of the two-stream/filamentation
growth rate invp units, in terms ofZ =kVb/vp. (a) Model 1 with
a=0.1 andb=0.2. (b) Model 2 witha=0.1,r=0.1, andb=0.2. (c)
Model 3 with a=0.1, r=0.1, andgb=4.
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[10,22], and we introduce it here for a similar purpose. We
define an additional dimensionless variable measuring
plasma temperature

r =
Vth

Vb
. s37d

The exact dielectric tensor elements calculated for this new
distribution function and a relativistic beam are reported in
Appendix C. One just needs to setgb=1 in the equations to
retrieve the results of this section. This richer system yields a
more complex structure of unstable waves, and we now start
analyzing separately the two branches defined in Eqs.(16)
and (17). The analysis conducted in this section will form a
basis for the relativistic beam case.

A. First branch of the dispersion equation: Weibel-like modes

We solve here«yy−k2c2/v2=0. This equation was already
displayed in some temperature-dependent investigations[17]
while it reduced to some stable modes in the cold previous
case. We shall see that it plays a role here due to temperature
effects, especially due to the nonvanishing temperature along
the y axis [27]. Equation(C1) for the «yy element yields the
dispersion relationFsVd=0 with

FsVd ; PsVd −
1

3

r2

sV/Z + a cosukd2 − sr sin ukd2 ,

s38d

and

PsVd = V2 − 1 −a −
Z2

b2 , s39d

in terms of the dimensionless variables introduced previously
[see Eqs.(30) and (37)].

The temperature dependence in Eq.(38) is clear sincer
=0 yieldsv2=vp

2+vb
2+k2c2 while a nonzero temperature in-

troduces some rich temperature and angle-dependent fea-
tures. A quick inspection of Eq.(38) shows that four real
roots in V=v /vp are required for stability. The functionF
has two singularities located atV=−Za cosuk ±Zr sin uk.
Instability will appear when the local minimum comprised
between those two values becomes positive. This local mini-
mum is roughly reached forV,−Za cosuk (the middle of
the two singularities) giving the stability condition

sZa cosukd2 +
1

3 sin2uk
, 1 + a +

Z2

b2 . s40d

This condition is clearly violated asuk approaches 0. Assum-
ing a weak beam witha!1, Eq. (40) means that the waves
associated to the first branch are stable for anyZ, namely, at
any wavelength, provided thatusinsukdu.1/Î3. Out of this
angle domain, only small-enough wavelength waves, such
that Z.Zcsukd, are stable with

FIG. 3. Direction of the unstable modes electric fieldEsk ,vd for
Zz,0.5 andZx,2 for the cold beam and cold plasma system.
Parameters areb=0.2 anda=0.1.

FIG. 4. Plot of cos2wk with wk =sk ,Êd, in terms ofZ for models
1 (a), 2 (b), and 3 (c). Same parameters as Figs. 2(a)–2(c). The
beam is along theZz axis.
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Zcsukd , bÎ 1

3 sin2uk
− 1. s41d

In the limit uk →0, that is, for a wave vector almost aligned
to the beam,Zc diverges asZcsukd,b / sÎ3uukud. Then all
wavelengths are unstable.

The growth rate may be calculated looking for roots under
the form −Za cosuk + id. Assumingd small and fora!1,
one gets the following approximate expression at anyuk:

d1k ,
rb

Î3

Z
ÎZ2 + b2

Î1 − 3 sin2uk . s42d

Figure 5 shows a numerical evaluation of the growth rate in
the sZx,Zzd plan. The relative error using Eq.(42) never ex-
ceeds 3% so that this formula can be considered as a very
good approximation of the growth rate in the wholek space.
The expression(42) is valid provided thatd is effectively
small, namely, forZ small (i.e., large wavelengths) or rb
small. We shall denote this purely transverse mode byWy.

We observe here an important departure from the cold
model where no transverse modes could interact with the
electrons for wave vectors along thez axis as no electrons
moved perpendicularly to the beam. As temperature intro-
duces such electrons, this set of transverse modes can be
destabilized.

In terms of the variablesk, vp, c, andVth, the growth rate
(42) for uk =0 reads(in vp units)

d1 =
1
Î3

kVth

Îvp
2 + k2c2

, s43d

which, dropping the 1/Î3 multiplicative factor, is exactly the
original result found by Weibel[18] at low k using a Max-
wellian instead of a water-bag electronic equilibrium distri-
bution function for the bulk plasma(without any additional
electron beam). Let us remark that the presence of the beam
in addition to the bulk plasma prevents the real part of the
pulsation from to be null(except foruk =p /2), which would
be one of the features of the original Weibel modes[18].

Let us once more stress here the benefits of the present
formalism; being free from the electrostatic approximation, it
can describe both longitudinal and transverse waves with
wave vectors aligned to the beam direction.

B. Second branch of the dispersion relation for k parallel and
k orthogonal to the beam

It is useful to examine the results at both ends of thek
orientation range before turning to the general case.

1. k ¸ ẑ

When the wave vector is aligned with the beam(along the
z axis), so thatkx=0 andkz=k, the x and y directions are
interchangeable. Therefore,«xz vanishes and«xx=«yy, as can
be checked directly by plugginguk =0 in Eq. (C1).

The second factor in Eq.(15) reduces toh2«zzsh2«xx

−k2d=0, that is,

h2«zz= 0, s44d

h2«xx − k2 = 0. s45d

Using Eq.(C2), the first equation(44) yields the usual two-
stream dispersion relation(no temperature corrections here)

1 −
a

sV − Zd2 −
1

sV + aZd2 = 0. s46d

This is the longitudinal TS mode, unstable forZ,Zc0 de-
fined in Eq.(32). The second equation(45) brings

V2«xx −
Z2

b2 = 0, s47d

which is identical to Eq.(38) for uk =0. This was expected
since, for such an orientation of the wave vector, thexx and
yy elements of the dielectric tensor are equal. These modes
are, therefore, unstable at anyZ with growth rates given by
the expressiond1 in Eq. (43). They will be called beam
Weibel-like Wxz modes.

2. k� ẑ

Let us now consider wave vectors normal to the beam.
After some calculations, the dispersion equation for this
branch and this wave vector orientation is found to be
Q'sVd=0 with

Q'sVd ; SV2 − 1 −a −
Z2

b2 −
aZ2

V2 −
a2Z2

V2 − r2Z2DSV2 − 1 −a

−
r2Z2

V2 − r2Z2D − S VaZ

V2 − r2Z2 −
aZ

V
D2

. s48d

One can easily check thatQ' is an even function ofV and
that the cold limit(35) is retrieved whenr=0. A typical plot
of Q' is shown in Fig. 6. Six real roots are needed for
stability, and a negative value ofQ' at the local minimum
located atV=0 leads to instability. This value is easily cal-
culated and found positive forZ.Zcp/2 with

Zcp/2 =
b

r
, s49d

at leading order in the small parametersb, a, andr. A global
instability at all wavelengths is retrieved at zero temperature,
while plasma temperature stabilizes short-wavelength waves

FIG. 5. Numerical evaluation of the first branch growth rate for
r=0.03,a=0.1, andb=0.2. The beam and return current are along
the Zz axis.
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with k. svp/cdsVb/Vthd. This agrees with comparable
temperature-dependent investigations[10,22] for wave vec-
tors normal to the beam.

When the stability condition breaks, the corresponding
growth rate can be searched by settingV= id in Eq. (48) and
by expanding it in powers ofd. This gives

dp/2 , bÎa
ZÎ1 − Z2/Zcp/2

2

ÎsZ2 + b2ds1 + r2Z2d
, s50d

whose maximum is reached forZm,b /Îr with

dp/2sZmd , bÎa. s51d

The r=0 limit of Eq. (50) correctly yields Eq.(35), and one
observes that the maximum growth rate(51) equals the
growth rate found at zero temperature forZ@b. We shall
denote byF modes these almost transverse modes, unstable
for 0,Z,Zcp/2.

The effect of temperature has consisted so far in extend-
ing the instability domain in thez direction (F is stable for
r=0) while shortening it in thex direction by setting a
threshold atZ,b /r. We can, therefore, expect a nontrivial
border for intermediate orientations bridging between the ex-
tremes we have just investigated.

C. Second branch solution for an arbitrary orientation of k:
Two-stream/filamentation (TSF) mode

We now consider thev=v2skd branch (17) solving
QsV ,ukd=0 for anyuk, where we introduce

QsV,ukd ; sV̂2«xx − cos2ukdsV̂2«zz− sin2ukd

− sV̂2«xz+ sinuk cosukd2. s52d

We put here for shortnessV̂;Vb /Z and use the full expres-
sion of the dielectric tensor elements(C1). For uk =0, we
obtain two unstable modes(in short, Wxz and TS) and for
uk =p /2, only one, modeF (the filamentation mode). We
show in this section how the purely longitudinal two-stream

arch connects to mode F across thek space for the full dis-
persion branch(52). The Weibel-like beam modeWxz stabi-
lizes when the angle increases and is investigated in the next
section.

Despite its intricate expression, the dispersion relation al-
lows a number of useful analytical conclusions to be drawn.
We start noticing that, at largeV, the asymptotic form ofQ
must bring the dispersion relation at high frequency(21), so
that the polynomial

PsVd = sV2 − 1 −adsV2 − 1 −a − Z2/b2d s53d

can be considered as an envelope matching theQsV ,ukd
curve except in the vicinity of three singularities located at
V1, V2, andV3 with (see Fig. 7)

V1 = − Za cosuk − Zr sin uk ,

V2 = − Za cosuk + Zr sin uk ,

V3 = Z cosuk . s54d

In this section, we shall follow the proper waves having a
pulsation real part close toV3, that is, we follow the branch
starting at uk =0 with the purely two-stream modes TS.
Whenuk departs from 0, singularitiesV1 andV2 separate, as
shown in Fig. 7. The “extended9 two-stream modes TS are
stable as long as theZ-dependent local minimum, marked
there by a circle, is negative. Moreover, asuk keeps increas-
ing, it is clear on Eq.(54) that, due to the plasma transverse
temperature, the rootV3 will cross the rootV2 for some
angle belowp /2, and precisely for the critical angleuc
yielding V2=V3, that is

ucsa,rd ; arctanS1 + a

r
D . s55d

Let us now depict this more quantitatively. The two zeros of
Q on each side of the circle in Fig. 7 are real as long as
PsZ cosukd&0 in a first approximation. But unlike the cold
plasma model, where this condition is valid all the way

FIG. 6. Typical plot of the dispersion equation(48). The corre-
sponding mode is stable when the local extremum between the sin-
gularities is positive.

FIG. 7. Plot ofQsV ,ukd defined by Eq.(52) as a function ofV.
Parameters are chosen to display clearly the curve topology with
Z=15, b=0.1, a=r=0.03, anduk =p /2.2. The circle indicates the
place where real roots can appear or disappear. The dashed line is
the curve of polynomialPsVd defined by Eq.(53). The Vi’s are
defined by Eq.(54).
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through untiluk =p /2 [see Fig. 2(a)], the finite plasma tem-
perature case requires us to increaseZ higher and higher to
recover two real zeros ofQ between theV2 and V3 singu-
larities whenuk approachesuc. Denoting byZcsukd the insta-
bility threshold, this means that limuk→uc

Zcsukd=`. As for an
angle larger thanuc, the proper waves of pulsation close to
V3 are stable if the coefficient of 1/sV−Z cosukd2 in the
dispersion equation is positive.

In the limit of small a, b, andr, it is possible to derive
some analytical results for the stability domain. The leading
term of the asymptotic expansion ofZc for uk &uc is found to
be [28]

Zc ,
Î8a

uc − uk
. s56d

Above uc, the coefficient of 1/sV−Z cosukd2 is positive
(yielding stability) for [29]

Z ù
b

r
Î1 +

p/2 − uk

2suk − ucd
, s57d

which gives just Eq.(49) for uk =p /2. This signifies that one
goes continuously from two-stream to filamentation instabili-
ties across thek plane. Figure 8 displays schematically the
stability domain obtained.

The importance of theuc direction, at which all spatial
scales are unstable, prompts a closer investigation, especially
of the growth rate at this angle. InsertingV=Z cosuc+ id
with d!1 into the dispersion functionQsd ,ucd defined by
Eq. (52) gives an expression of the formd3Qsd ,ucd,a
+bd2, with a,b.0, so thatd,Îa/b. For smalla andr, this
reads at highZ

duc
, bÎa. s58d

This result bears strong similarities with the growth rate
computed foruk =p /2 [see Eqs.(50) and (51)]. Indeed, it
can also be inferred from a continuity argument: denoting by
dp/2

` and duc

` the growth rates at highZ in the p /2 and uc

directions, both quantities need to merge forr!1 since
limr→0ucsrd=p /2.

Figure 2(b) shows some numerical evaluation of the
growth rate for this hybrid two-stream/filamentation mode.
One identifies there both the classical two-stream instability
arch along theZz axis and the filamentation one along theZx
axis, but the most remarkable feature of this figure is by far
the nondecreasing growth rate in theuc direction. Figure 9
displays some numerical computations of the growth rate in
the uc direction for highZ in terms ofa, together with the
analytical expression(58). One observes the slow conver-
gence as well as the agreement of this formula at lowa.

Finally, we close this investigation by turning to the
evaluation of the angle betweenk and Ek for this mode. A
plot of the vector fieldEsk ,vd is presented in Fig. 10. Here
again the vector field is almost aligned with the wave vector,
except near the normal direction with a transition that sharp-
ens asZx increases. We observe a shift in the field direction

FIG. 8. Stability domain in theZ =kVb/vp plane for the usual
two-stream/filamentation mode for model 3. Shaded area corre-
sponds to unstable wave vectors. The angleuc is defined through
Eq. (55). Settinggb=1 yields model 2 andr=0 gives model 1(with
uc→p /2).

FIG. 9. Maximum growth rate in theuc direction in terms ofa
for Z values up to 3300. The dashed line is the analytical formula
(58).

FIG. 10. Direction of the unstable modes electric fieldEsk ,vd
for Zz,1 and Zx,10 in the cold beam and hot plasma system.
Same parameters as Fig. 2(b). The plain line represents the upper
limit of the stability domain.
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for wave vectors bordering the upper limit of the stability
domain, that is, for almost stable waves. The quantity coswk

2

with wk =sk ,Êd is displayed on Fig. 4(b) for this model and
shows that unstable waves are no longer longitudinal in a
region bordering theZx axis. Although this region extends up
to Zz,0.5 when filamentation is high, the overall growth-
rate picture can be recovered from longitudinal approxima-
tion as can be seen in Fig. 11, which displays the growth rate
calculated in the electrostatic approximation, expressing the
dielectric tensor from Eq.(7). Indeed, the critical angleuc in
the electrostatic approximation is exactly the same. A com-
parison between Figs. 2(b) and 11 shows that the lineuk
=uc is the limit beyond which electrostatic approximation
fails even qualitatively to describe the growth rate. We shall
see this discrepancy between the general electromagnetic ap-
proach pursued here and the electrostatic approximation
building up when relativistic beam effects are considered.

D. Second branch solution for an arbitrary orientation
of k : Wxz mode

Having elucidated the two-stream/filamentation mode
over the wholek domain, we finally consider the Weibel-like
beam modeWxz introduced at the beginning of Sec. V B for
uk =0. In that special case of a wave vector along the beam,
the mode was found unstable at anyZ (i.e., at anyk), with
proper pulsations and growth rates identical to those of the
first branch modeWy, and one can expect this similarity to
apply to weakly oblique wave vectors for two main reasons.
First, because their dispersion equations degenerate exactly
for uk =0. Secondly, becauseWy is always purely transverse
and Wxz exactly transverse foruk =0 and almost transverse
after. Actually, the proper electric field modes related to the
TSF andWxz branches are normal. Using compact and obvi-
ous notations, this means that the TSF eigenvectors
ek0(vTSFskd) and theWxz eigenvectorsek0(vWxz

skd) are or-
thogonal in thesx,zd plane(see Sec. III).

However, the analytical structure of the full dispersion
equation is involved, and we restrict ourselves to a numerical
computation of the mode growth rate plotted on Fig. 12. This
is to be compared to Fig. 5 where the same parameters were
used. This calculation exactly confirms the previous analysis.
The two surfaces are rigorously equal forZx=0, and one
observes that the stability domain in theZx direction is wider
for Wxz than forWy.

VI. MODEL 3: COLD RELATIVISTIC BEAM PASSING
THROUGH A HOT PLASMA

We finally consider the case of a relativistic beam passing
through a hot plasma. The distribution function is exactly the
one used in the last section, the only difference being the
relativistic factorg, which may now exceed 1 when calcu-
lating tensor elements from Eq.(6). Since our interest lies
mainly in the FIS for inertial fusion, we shall keep treating
the bulk plasma classically. Its thermal energy is actually
expected to be of the order of 10 keV in a fusion plasma and
remains much smaller than the 0.5 meV required to tilt rela-
tivistic effects. As for the plasma return current velocityVp
induced by the relativistic electron beam, its modulus satis-
fies Vp/c,nb/np=a. Yet, it turns out that within the pre-
dicted limits of the FIS,a should vary from 10−1 (plasma
edge) to 10−3 (plasma core) [4]. This shows that the return
current velocity is nonrelativistic and that it is perfectly rel-
evant to study relativistic effects only for the beam.

Inserting the distribution function[Eq. (29) for the beam
part and Eq.(36) for the plasma part] into Eqs.(6) yields the
tensor elements reported in Appendix C. The dispersion
equation is unchanged and displays the same two branches
(16) and (17). We introduce from here the beam relativistic
factor

gb =
1

Î1 − b2
, s59d

with b=Vb/c.

A. Stability analysis of the first branch: Wy modes for a
relativistic beam

Equation (C1) for the «yy element yields the following
expression of the dispersion equationv2«yy−k2c2=0 as

FIG. 11. 3D plot of the growth rate for the two-stream/
filamentation mode calculated in the electrostatic approximation us-
ing the dielectric tensor[Eq. (7)]. Same parameters as Fig. 2(b).

FIG. 12. Numerical evaluation ofWxz mode growth rate forr
=0.03,a=0.1, andb=0.2. The beam and return current are along
the Zz axis.
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PsVd −
1

3

r2

sV/Z + a cosukd2 − sr sin ukd2 = 0, s60d

with

PsVd = V2 − 1 −
a

gb
−

Z2

b2 , s61d

in terms of the dimensionless variables introduced previously
[see Eqs.(30)]. The relativistic correction is very simple and
the method used in Sec. V A can be applied straightfor-
wardly. The approximation is even better fulfilled since
a /gb!1. Results are, therefore, identical to the ones given
by Eqs.(40)–(42) and plotted in Fig. 5.

B. Stability analysis of the second branch:
Two-stream/filamentation modes

We shall not investigate further theWxz mode evidenced
in Sec. V D. It is very similar to the modeWy described in
Secs. V A and VI A and bears no more relativistic correc-
tions. We therefore turn directly to the two-stream/
filamentation mode and shall review the basic results more
quickly since their derivation involves the methods used
above.

We first emphasize that the expression of the critical angle
evidenced in the nonrelativistic case bears no relativistic cor-
rections and remains unchanged here. Actually, its origin lies
only in the dispersion relation singularitiesVi [Eqs. (54)].
Corrections will rather appear in the magnitude of the growth
rate.

1. Results for the “privileged” directionsuk =0, uc, and p /2

For wave vectors normal to the beam(uk =p /2, filamen-
tation configuration), one finds a dispersion equation yield-
ing unstable modes forZ,gbb /r in the limit a ,r!1. This
is just the nonrelativistic result times a factorgb so that rela-
tivistic effects are destabilizing the system at smaller wave-
lengths. The maximum growth rate in this direction is found
for Z,b /Îr and reads[22]

dmp/2
R = bÎ a

gb
, s62d

where the superscriptR stand for relativistic.
For wave vectors along the beam(uk =0, two-stream con-

figuration), the dispersion equation yields unstable modes for
Z,1+s3/2da1/3/gb in the limit a!1: the relativistic effect
is opposite here as it shrinks the instability domain. In the
limit a!1, the dispersion equation found is formally identi-
cal to the nonrelativistic one replacinga by a /gb

3. The maxi-
mum growth rate is(see[23] and Appendix A)

dm0
R =

Î3

24/3

a1/3

gb
. s63d

As far as wave vectors in theuc direction are concerned,
the method used to derive the nonrelativistic asymptotic
growth rate in this direction can be applied and brings the
asymptotic growth rate

duc

R = bÎ a

gb
. s64d

2. Numerical computation of two stream/filamentation
growth rates at anyk

We now turn to the most general case and use the follow-
ing FIS parameters: a relativistic 2 MeVsgb=4d electron
beam with densitynb=1020 cm−3 enters a 10 keV plasma
with np=1021 cm−3. This givesa=nb/np=0.1. This values
lies in the upper range ofa’s since electronic plasma density
rather ranges from 1022 to 1026 cm−3 within this scenario[4].
These parameters yield a critical angleuc=p /2.12 that is
close to the normal direction.

Figure 2(c) displays a numerical evaluation of the growth
rate over thesZx,Zzd plane. One notices the long unstable tail
up to Zx,40 in the normal direction as well as the reduced
two-stream growth rate in the beam direction. The most
striking features are the flat growth rate in theuc direction
and the maximum reached forZz,1 andZx,5. These re-
sults are detailed in Fig. 13, which is a contour plot of Fig.
2(c). The angleuc between the growth rate’s “ridge” and the
normal direction is extremely amplified on both figures
where the largest wave vector shown isZ =s50,2.5d.

As far as the angle betweenk and Ek is concerned, one
can expect here a stronger divergence from the electrostatic
approximation. As long as the beam is nonrelativistic, the
two-stream growth rate exceeds the filamentation growth rate
so that the most unstable modes are longitudinal. On the
other hand, the relativistic two-stream and filamentation
growth rates scale as 1/gb and 1/Îgb, respectively. This
means that forgb high enough, and precisely for

gb .
3

28/3a1/3, s65d

filamentation transverse modes are dominant. Numerically,
the threshold(65) readsgb.4.7 for a value as small asa
=10−3. Figure 14 shows the growth rate computed within the

FIG. 13. Contour plot of Fig. 2(c). Maximum growth rate invp

units is about 0.21 atZz,1 and Zx,5. One sees growth rates
values of 0.16vp up to Zx&25 in theuc direction.
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electrostatic approximation for the same parameters as in
Fig. 2(c). One can check that the longitudinal model is no
longer valid beyond the lineuk =uc. The angle betweenk and
Ek in terms ofk is displayed on Fig. 15 and illustrates this
point.

3. Maximum growth rate in thek space

We consider the casea ,r!1 that is relevant to most ex-
perimental situations where the beam density is much lower
than the target one and the beam velocity is much higher
than the target thermal velocity.

The fact that the maximum growth rate is found for an
oblique wave vector prompts a closer investigation. Figure
16 displays a comparison of the maximum growth rates in
the three privileged directions in terms ofgb. We used the
analytical expressions given in Table I foruk =0,p /2 and a

numerical evaluation of the maximum growth rate.
The k location of the maximum growth rate can be in-

ferred from a continuity argument whenr!1. It has been
proved that, for a cold plasma[24,25], the maximum growth
rate dependence onZx is weak. The maximum growth rate in
the beam direction being always nearZz=1, we can expect
this to remain valid in the small temperature limit. A similar
argument can apply for theZx component of the maximum,
showing that it coincides withZx,b /Îr at which the fila-
mentation growth rate is maximum. Having determined
which wave vectorZm leads to the maximum growth rate in
the relativistic regime, we now make use of Fig. 16 to find an
analytical expression for the corresponding growth rate value
dmsZmd. An analysis of these plots shows thatdm behaves as
a1/3 for a!1 and as 1/gb

1/3 in the relativistic regime. Figure
16(c) shows that, in ther!1 limit, we can guessdmsZmd
~ sa /gbd1/3. By continuity arguments with the TS branch, we
finally conjecture that the maximal growth rate is reached for

Zm , S b

Îr
,1D , s66d

with

FIG. 14. 3D plot of the growth rate for the two-stream/
filamentation mode calculated in the electrostatic approximation us-
ing the dielectric tensor[Eq. (7)]. The beam is relativistic withgb

=4. Same parameters as Fig. 2(c).

FIG. 15. Orientation of the eigenvector electric fieldEsk ,vd for
Zz,1 and Zx,10 in the cold relativistic beam and hot plasma
system. Same parameters as Fig. 2(c). We locateuc direction as well
as the wave vectorZm yielding the maximum growth rate.

FIG. 16. Comparison between maximum fila-
mentation growth rate(dmp/2, long dashed line),
two-stream growth rate(dm0, short dashed line),
and the maximum for allk (dm, plain line) in
terms ofb, gb, r, anda. (a) a=0.1,r=1/20.(b)
a=0.1, r=1/10. (c) a=0.1, gb=2. (d) gb=4, r
=0.1. dmp/2, and dm0 are calculated from Eqs.
(62) and (63) while dm is numerically evaluated.
Black circles are evaluated from Eq.(67).
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dmsZmd ,
Î3

24/3S a

gb
D1/3

. s67d

Figure 16 shows that this expression fits numerical evalua-
tions very well. As for theZm value, Eq. (66) gives Zm
,s5.3,1d, which also fits the value obtained from Figs. 2(c)
and 13 very well.

VII. DISCUSSION AND CONCLUSION

We used a general electromagnetic formalism to derive
the unstable proper modes, propagating at any wave vector
k, associated with the system formed by an electron beam
and its return plasma current. Previous analyses restricted us
to some specialk direction (parallel or normal to the beam)
or to some asymptotic regimes[26] or to make somea priori
assumptions on the nature of the waves(restricting to the
longitudinal or to the transverse case). This work, aided by
numerical computations of the dispersion relation, was mo-
tivated by the need for a clearer picture of the linear theory
for this beam-plasma system relevant to the FIS.

The significance of using an electromagnetic formalism
instead of the electrostatic approximation appears from the
hot plasma model and becomes evident when taking into
account relativistic beam effects. Advantages are numerous.
Firstly, it yields a rigorous and coherent description of un-
stable modes all over thek space. Secondly, once the distri-
bution function is given, the dielectric tensor spectral analy-
sis allows a systematic search for every possible unstable

mode regardless of itssk ,Ek̂d angle. Thirdly, it shows the
limitations of the electrostatic approximation by displaying
purely transverse modes for a wave vector around the beam
axis (Wy andWxz) or normal to it(F). As for the two-stream/
filamentation unstable modes, some quantitative discrepancy
between the two approaches is confined around the normal
direction as long as the filamentation growth rate remains
smaller than the two-stream growth rate. This is always the
case in the nonrelativistic regime(and small beam density),
but the situation changes dramatically with relativistic beam
effects when the filamentation growth rate scales as 1/Îgb

whereas the two-stream growth rate goes like 1/gb. A plot of
the quantity cos2wk [see Fig. 4(c)] demonstrates that the
transition domain between longitudinal two-stream waves
and filamentation transverse waves is then no longer con-
fined to the close vicinity of the normal direction. This is also
obvious looking at the orientation of the electric field as
displayed in Fig. 15.

Our main results are summarized in Table I and eventu-
ally display two kinds of instabilities. The first one gathers
instabilities for wave vectors along the beam axis and purely
(or almost purely) transverse waves while the second one is
the two-stream/filamentation mode. The last column displays
the relative magnitude of each growth rate normalized to the
two-stream maximum growth rate. It appears that the trans-
verse and quasitransverseWy and Wxz modes can be domi-
nant in front of two-stream instability fora=nb/np small
enough because their relative magnitude scales asbrgb/a1/3.
As for the two stream/filamentation branch, the two-stream
growth rate always exceeds the filamentation growth rate for
a andb small. Whenb tends to one, relativistic effects come
into play and filamentation dominates.

On the two stream/filamentation branch, we identified two
privileged directions at the anglesuc and arctansb /Îrd.
These modes share properties from filamentation and two-
stream instabilities. Like the TS modes, they propagate[30].
The uc mode asymptotically shares the filamentation growth
rate without being purely transverse. The second mode,
which is also the most unstable one, has the two-stream
growth rate timesgb

2/3 without being purely longitudinal. In
addition, it “borrows” from filamentation its normal wave
vector component and from two-stream its parallel one.

We are currently extending the present methodological
framework to include collisions, beam temperature, as well
as Maxwellian distribution functions.
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TABLE I. Growth rate properties for each unstable modes within model 3.

Modes Solution brancha wk
b Stability domain Max. growth rate Magnitudec

Wy (Weibel) l1=0 p /2 See Fig. 5 rb /Î3 0.84brgba−1/3

Wxz l+l−=0 ,p /2d See Fig. 12 rb /Î3e 0.84brgba−1/3

TSF l+l−=0 0→p /2 See Fig. 8

uk =0 0 Î3/24/3a1/3/gb 1

uk ,arctansb /Îrd Î3/24/3sa /gbd1/3 gb
2/3

uk =uc bÎa /gb
f 1.45bÎgba−1/3f

uk =p /2 p /2 bÎa /gb 1.45bÎgba−1/3

aSee Eqs.(24) for li definition.
bsk ,Ek

ˆ d angle.
cNormalized to the two-stream(TS) maximal growth rate.
dExactly for uk =0.
eFor uk =0.
fFor Z→`.
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APPENDIX A: BASIC RESULTS ON THE TWO-STREAM
INSTABILITY

Let us consider the dispersion relation

1 −
a

sV − Zd2 −
1

sV + aZd2 = 0, sA1d

and operate the change of variabley;sV−Zd /a1/3. Then Eq.
(A1) turns to the quartic

1 =
a1/3

y2 + fa1/3y + s1 + adZg−2.

With a;sZ−2−1da−1/3, we get

2

Z3y3 − ay2 = 1,

where we used an expansion in the small parametera. Put-
ting y=reif, we obtain

2

Z3r3ei3f − ar2ei2f = 1. sA2d

From the imaginary part of Eq.(A2) we get

2

Z3

r sin s3fd
sins2fd

= a,

which, substituted in the real part of Eq.(A2), gives

r3 = − Z3cosf.

We get finally

s− cosfd1/3sins3fd
sins2fd

=
1 − Z2

2a1/3 ; A,

V

Z
= 1 +a1/3s− cosfd1/3eif.

We look for the maximal imaginary value ofV with respect
to A. This occurs forA=0, i.e., Zm=1 and givesf=p /3.
Then, withV=Vr + id, we get the maximal growth rate and
associate real part as

Vr = 1 − 2−4/3a1/3, sA3d

dm0 =
Î3

24/3a1/3. sA4d

As it is well known, Eq.(A3) shows that the oscillations
building up with the largest rate are those whose frequency is
close to the plasma frequency(slightly detuned by an amount
of the order of the growth rate). Equation(A4) is the result
given in Eq.(33). We followed above the line of approach of
Bludmanet al. in Ref. [26].

APPENDIX B: FULL FORM OF EQ. (17)

Inserting the distribution functions introduced by Eq.(29)
yields the following expression for Eq.(17):

S− 1 +V2 − a −
Z2cos2uk

b2 D 3 F− 1 +V2 − a

+ Za
− 2V cosuk + Z coss2ukd

sV − Z cosukd2

+ Za
2V cosuk + Za coss2ukd

sV + Za cosukd2 −
Z2sin2uk

b2 G
− FZ2cosuksinuk

b2 + ZS a

− V + Z cosuk

+
a

V + Za cosuk
DsinukG2

= 0 sB1d

It may be useful to write this expression in terms of thek
Cartesian coordinatesskz,kxd instead of polar(k,uk). One
gets this

SV2 − 1 −a −
Zz

2

b2DFV2 − a
V2/Zx

2 + 1

sV − Zzd2 −
V2/Zx

2 + a2

sV + Zzad2 −
1

b2GZx
2

− S a

− V + Zz
+

a

V + Zza
+

Zz

b2D2

Zx
2 = 0, sB2d

where as expected

Zz =
kzVb

vp
and Zx =

kxVb

vp
.

The Zx
2 factor was left for convenience for it allows a very

straightforward retrieval of theZx=0 or Zz=0 limits. Once
simplified, the resulting expression stresses the limitedZx
dependence of the overall dispersion equation.

APPENDIX C: DIELECTRIC TENSOR ELEMENTS «ab

Inserting the equilibrium distribution functions defined in
(36) into the expression of the tensor component«ab given
by Eq. (6) yields to the calculation of the tensor elements.
They are here expressed without any approximation in terms
of the dimensionless variables introduced by Eq.(30). We
express for convenience the quantitiesV2«ab as

V2«xx = V2 − 1 −
a

gb
−

sV + Za cosukd2cot2uk + Z2r2sin2uk

sV + Za cosukd2 − sZr sin ukd2

− cot2uk −
sV + Za cosukd cot2uk cscuk

rZ
D, sC1ad

V2«yy = V2 − 1 −
a

gb
−

1

3

Z2r2

sV + Za cosukd2 − sZr sin ukd2 ,

sC1bd

V2«zz= V2 − 1 −
a

gb
3 +

aZ

gb
3

Zscos2uk − gb
2 sin2ukd − 2V cosuk

sV − Z cosukd2

−
Z2a2

sV + Za cosukd2 − sZr sin ukd2 −
a cot uk

r
D,

sC1cd
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V2«xz= −
Za sin uk

gbsV − Z cosukd
+ cotuk

+
ZasV + Za cosukd cscuk

sV + Za cosukd2 − srZ sin ukd2

−
2Za cot2uk + V cot uk cscuk

2rZ
D, sC1dd

where

D = lnSUV + Za cosuk − Zr sin uk

V + Za cosuk + Zr sin uk
UD .

The following expansion aroundx=0 can prove useful when
one investigates the limitsuk →0 or uk →p /2 in Eqs.(C1):

1

x
lnSa + kx

a − kx
D =

2k

a
+ Osx2d. sC2d
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