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We present an approach in equilibrium theory for strain relaxation in heteroepitaxial semiconductor struc-
tures, which includes surface relaxation effects and elastic interactions between straight misfit dislocations. The
free-surface boundary conditions are satisfied by placing an image dislocation outside the crystal so that its
stress field cancels that of the real interface misfit dislocation at the surface. The effect of the Airy stress
function that removes the fictitious shear and normal stresses at the surface is discussed. This image method
provides an equilibrium theory, which correctly predicts experimentally observed values of critical strained
layer thickness and completely describes the elastic and plastic strain relief and work hardening in lattice-
mismatched SiGe epilayers. It is shown that the elastic coherency stress of the strained material is really
affected by a large surface relaxation stress. This is essential for experimental determination of the Ge content
of extremely thin films as a function of the tetragonal distortion of the cubic lattice cells. The equilibrium
theory is also used to define the degree of strain relaxation and to predict the incomplete strain relief at the end
of thermal relaxation process of metastable SiGe/Si heterostructures.@S0163-1829~96!02936-0#

I. INTRODUCTION

In the past few years the epitaxial growth of lattice-
mismatched layers has attracted interest. The growth of co-
herent thin layers on rigid crystalline substrates is possible
when biaxial compressive or tensile strain in the layer ac-
commodates the lattice mismatch between the film and sub-
strate material. When the stored strain energy exceeds a cer-
tain threshold, the heterostructure becomes metastable and
the film strain may give way to misfit dislocations. The basic
energetic and kinetic parameters describing mismatch ac-
commodation by elastic strain and misfit dislocation in meta-
stable heterostructures appear to be well described by the
framework of Matthews and Blakeslee1 and Dodson and
Tsao.2 However, it is evident that they cannot adequately
explain the point of strain relief onset via plastic flow and the
work hardening behavior of strained layers at the end of
thermal relaxation process. This stems from ignoring the ef-
fects of elastic surface relaxation on the film lattice cells and
the elastic interaction between straight misfit dislocations
within the film-substrate interface. The first includes the
problem of developing a relationship between the equilib-
rium critical thickness at which dislocations form and the
bulk lattice mismatch. The latter involves balancing the force
required to move misfit dislocations against the internal elas-
tic stress field due to dislocation-dislocation interactions.3 Fi-
nally, suffice it to say that classical equilibrium and kinetic
models for strained layer case do not imply rigorously the
conditions of equilibrium at the boundary.

In this paper we present a modified Volterra approach in
equilibrium theory for strain relaxation in metastable het-
eroepitaxial semiconductor structures, which includes the
surface effects on mismatch accommodation by tetragonal
distortion of the cubic lattice cells and the elastic interaction
between straight misfit dislocations. Because of the math-
ematical complexities involved in a proper atomistic descrip-
tion of the competing forces, the subject is not treated here in

a Frenkel-Kontorowa model or its approximations. The prin-
ciple of our theoretical method is straightforward. The free-
surface boundary conditions are satisfied by placing an im-
age dislocation outside the crystal so that its stress field
cancels that of the real misfit dislocation at the surface. We
will discuss the effect of the Airy stress function that re-
moves the fictitious shear and normal stresses at the crystal
surface and thus makes the crystal stress-free. We show that
this image method provides an equilibrium theory that cor-
rectly predicts experimentally observed values of critical
layer thickness. To demonstrate the physical significance of
the present approach in equilibrium theory for strained layer
relaxation, we have calculated the equilibrium critical thick-
ness and Ge content via coherency strain of SiGe/Si strained
layer structures and compared our results to those predicted
by using relaxation models based on the absence of surface
relaxation effects and elastically noninteracting dislocations.
Furthermore, by considering the exact solution for the elastic
interaction of real and image dislocations, our equilibrium
model can completely describe the strain relief via lattice
distortion, plastic flow, and work hardening in lattice mis-
matched epilayers. We show that our Volterra dislocation
model is also appropriate when the film thickness is smaller
than the misfit dislocation spacing and approaches disloca-
tion core dimensions. It is pointed out that the elastic coher-
ency stress of the strained material is really affected by a
large surface relaxation stress. This is essential for experi-
mental determination of the Ge content of extremely thin
films as a function of the tetragonal distortion of the cubic
lattice cells. The equilibrium theory is also used to define the
degree of strain relaxation and to predict the incomplete
strain relief at the end of thermal relaxation process of meta-
stable SiGe/Si heterostructures. We consider here only the
thermodynamic equilibrium and homogeneous deformations
of strained layer structures, recognizing that kinematic fac-
tors can influence the attainment of the equilibrium state of
strain.
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II. FORCE BALANCE MODEL
FOR STRAINED LAYER RELAXATION

In thermodynamic equilibrium, misfit dislocations appear
at the interface of a strained layer heterostructure when the
strained layer is thick enough that it is energetically favor-
able for the mismatch to be accommodated by a combination
of elastic strain and interfacial misfit dislocations rather than
by elastic strain alone.4 This equilibrium critical thickness
hcrit has been calculated and discussed by many authors

1,2,5–7

in the continuum picture as well as through phenomenologi-
cal description of dislocation dynamics. However, there have
been many reports, e.g., in Refs. 7 and 8, of experimental
determinations ofhcrit indicating that coherence apparently
persists to thicknesses much greater than that predicted by
classical equilibrium theories. The semiempirical kinetic
model of Dodson and Tsao2 is more appropriate to describe
the latter stages of relaxation, where the effective stress is
decreasing due to a reduction in misfit strain produced by the
high dislocation density. For the case of sufficiently low dis-
location content in the strained layer near the point of strain
relief onset, this model reduces to the equilibrium form of
Matthews and Blakeslee.1 Thus the challenge remains to de-
velop a predictive model appropriate for strained layer relax-
ation.

To introduce an appropriate continuum model, we begin
by analyzing the conditions under which the strained layer
relaxation should occur in metastable heterostructures then
modify the governing models to account for the discrepan-
cies mentioned above. In a finite body, boundary conditions
at the surface must be satisfied. For example, no forces can
act on a free surface. The image-force method provides a
powerful tool to solve such problems in the continuum
theory of elasticity.9 Let us now consider the schematic il-
lustration in Fig. 1. For the strained layer case, the free-
surface boundary conditions are satisfied by placing an im-
age dislocation outside the crystal such that its stress field
cancels that of the real interfacial misfit dislocation at the
surface. The condition is fulfilled if the self-stress of an im-
age misfit dislocation of equal strength and opposite sign at a

position 2h along the strained interface normal is superposed
on the self-stress of the real primary dislocation. In general,
the complete stress distribution for a mixed dislocation is
given by the superposition of the stress fields of the real
dislocation, the image dislocation, and a stress term derived
from the Airy stress function that makes the surface traction-
free. In our case of a mixed dislocation in a co-axial cylinder
with its line parallel to the surface, the image construction
gives the dominant part of the shear stress component. Since
the corresponding stress function term exerts no force com-
ponent along the strained interface normal, the shear stress of
the dislocation construction is approximately obtained from
the shear stress of the image dislocation alone. Notice that
only shear stresses in the slip system produce glide forces on
a dislocation.

In the continuum picture, the presence of dislocations
causes strains around the line and, as a response to these,
stresses as known from conventional elasticity theory. These
stresses are defined by the contact forces transmitted through
internal area elements. We speak of self-stresses to distin-
guish them from the applied misfit stresses. In linear ap-
proximation, the Volterra expression for the shear self-stress
ss of a mixed straight dislocation due to its line tension in a
region bounded by a coaxial cylinder of radiusR is

ss5
Gb~12n cos2u!

4p~12n!R cosf S ln aR

b
21D , ~1!

whereG is the anisotropic shear modulus in the^110& direc-
tion of the~001! plane of the epilayer material,n is its Pois-
son ratio,b is the magnitude of the Burgers vector,u is the
angle between the dislocation Burgers vector and its line
direction, f is the angle between the slip plane and the
strained interface normal, anda is a factor that accounts for
the energy in the dislocation core where linear elasticity does
not apply.a is generally taken to be in the range from 1 to 4
for covalently bonded semiconductor materials.9 Because of
the logarithmic dependence and theR@b Volterra regime,
the elastic self-stress is insensitive to the precise value ofa.
We seta/2.751. Heress is considered to act on the plane
containing the dislocation line direction and the interface
normal. So, referred to the slip plane surface, the shear com-
ponent of the self-stress of a straight dislocationts is given
by ts5cosf ss . For our case, an interfacial 60°-type misfit
dislocation on the slip plane causes resolved shear stress, i.e.,

ts5

GbS 12
n

4D
4p~12n!R cosf

ln
R

b
. ~2!

The ratioG/cosf is the isotropic shear modulus in the$111%
slip planes. Thus, in this case the quantitybts is an image
force given by the simple image construction. Under these
conditions the attraction of the real primary dislocation to-
ward the surface is obtained from the stress of the image
dislocation alone.

So far we have considered the image-force and shear self-
stress problems for a misfit dislocation in a metastable het-
erostructure. As shown in Fig. 1, imagine now a real second-
ary dislocation of equal strength and sign lying parallel to the
real primary dislocation at a distance ofp and moving con-
tinuously towards the primary dislocation. For further defor-

FIG. 1. Schematic illustration of the configuration of real and
image misfit dislocations in a strained heteroepitaxial structure. The
modulus of complex dislocation semispacinguRu is indicated.
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mation under the driving force produced by the external mis-
fit stress, it is necessary that the moving misfit dislocation
overcomes the resistance caused by superposed shear self-
stress field of the image dislocation and the real primary
dislocation bounded by a virtual cylinder of radiusR5h.
Note that at larger distances from the real primary disloca-
tion the image stresses largely cancel the dislocation stresses.
Now for the elastic shear stress field extension of the real
interfacial misfit dislocations lying parallel to another, a rea-
sonable approximation would be to take roughly one-half the
distancep between dislocations forR in Eq. ~2!.9 However,
in this case the quantitybts is a real repulsive force that
drives the real primary dislocation in its slip plane toward the
surface. According to the Green function method for the
elastic displacementsu(R)}b/R2 and the principle of super-
position of displacement fields,9 we now combine the imagi-
nary, i.e., fictitious, and the real free-surface term of the
shear self-stress of a misfit dislocation, i.e.,h and p/2, re-
spectively, and get a complex dislocation semispacingR as
the first-order solution. Its modulusuRu5Rh,p is given by

1

Rh,p
2 5

1

h2
1

4

p2
, ~3!

whereh is the thickness of the epilayer and the subscriptsh
andp stand for the fictitious and the real component, respec-
tively. We can say that the modulus of complex dislocation
semi-spacingRh,p is an approximate solution for the stress-
free boundary associated with the presence of two free sur-
faces. The relationship represented by Eq.~3! is plotted in
Fig. 2 for different layer thicknessesh. The pursual of Fig. 2
shows some interesting relationships. For dislocation spac-
ings p greater than 5h, the modulus of complex dislocation
semispacing as a measure of the extension of the elastically
strained continuum about a misfit dislocation is dominated
by its fictitious term, i.e., by the layer thicknessh. In this

case, Eq.~3! reduces toRh,p;h. If p diminishes continu-
ously, then the effect of the real term onRh,p increases
slowly. When the dislocation spacing reaches the value
p;2h, the fictitious and the real free-surface terms make the
same contribution to the modulus of complex dislocation
semi-spacing. Belowp;h/5, as the real misfit dislocations
approach one another, the effect of the fictitious component
vanishes andRh,p does not depend onh. ReplacingR with
Rh,p in Eq. ~2!, the shear component of the total self-stress
created by present dislocation content in a finite body be-
comes finally

ts5

GbS 12
n

4D
4p~12n!Rh,pcosf

ln
Rh,p

b
. ~4!

We notice that, up until now, we have considered a type
of plane strain deformation under shear stresses, in which the
body undergoes only changes of shape, but no changes of
volume. Now let us consider the effect of the Airy stress
function, which removes the fictitious tangential and radial
normal stresses at the cylinder surface and thus changes the
volume of the epilayer.

III. SURFACE RELAXATION STRESS

In the case of the normal self-stress components of 60°
misfit dislocations the above solution is inadequate and large
additional stresses must be superposed. For such dislocations
the normal self-stress components given by the simple image
construction do not vanish at the free surface. The procedure
for solving this case is the same as that outlined above: first
to superpose the simple image and then to devise a stress
function that cancels the remaining forces acting at the free
surface and thus satisfy the boundary conditions. Hirth and
Lothe9 have given the explicit solution of the Airy stress
function for a pure edge dislocation in a cylinder parallel to
a free surface. In analogy to the edge dislocation case, the
first-order solution for a straight 60° misfit dislocation gives
the normal self-stress componentss f ,t ands f ,r that remove
the fictitious plane strain and make the crystal stress-free:

s f ,t5

GbS 12
n

4D
2p~12n!cosf S 3h

h2
2
b2

h3D , ~5a!

s f ,r5

GbS 12
n

4D
2p~12n!cosf S h

h2
1
b2

h3D , ~5b!

whereh is the distance from the interface to the crystal sur-
face. These tangential and radial stress terms are in fact the
external state of stress that gives rise to the image dislocation
construction that in turn creates the state of tension within
the epilayer. Then, according to the generalized Hooke law,
the normal stresss f ,n acting perpendicular to the slip plane
is given by the combined effect of the tangentials f ,t and
radial s f ,r stress components on the slip plane. Therefore,
from Eqs.~5a! and ~5b! we can write the relation

FIG. 2. Plot of the calculated modulus of complex dislocation
semispacinguRu5Rh,p as a function of misfit dislocation spacingp
for different strained layer thicknessesh.
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s f ,n5
112n

~122n!~11n!
2G~11n!

bS 12
n

4D
2p~12n!cosf

h

h2
.

~6!

Here 2G(11n) is the Young modulus of the epilayer.s f ,n
creates a state of tension between the slip planes of the ep-
ilayer. We call the normal stresss f ,n the ‘‘surface relaxation
stress.’’ A transformation of this normal stress into the inter-
face plane with the tensile axis normal to the dislocation
line gives the state of in-plane tension within the epilayer.
In these coordinates, Eq.~6! yields the in-plane surface
relaxation stresss f . We get s f52 cosls f ,n cosf/cos

2f,
where l is the angle between the Burgers vector and the
direction in the interface, normal to the dislocation line. For
typical values of n from 0.26 to 0.28, the quantity
~112n!~12n/4!/p~122n!~11n!cos2f varies from 1.1 to 1.2,
close to unity. Thus the result for the in-plane surface relax-
ation stress becomes approximately

s f5
2G~11n!

12n
b cosl

h

h2
. ~7!

In words, the in-plane surface relaxation stress decreases
linearly from its maximum value at the crystal surfaceh5h
to zero at the interfaceh50, whereas the strength of surface
relaxation effects on the strained layer structure is related to
the reciprocal of the square of the layer thicknessh. Obvi-
ously, it is a remarkable result with regard to our consider-
ations of the lattice-mismatch accommodation. When these
effects are ignored and a coherency strain calculation is car-
ried out, one obtains a spurious result leading to an erroneous
misfit strain or Ge content of the SiGe layer. In addition,
these effects should play a role in the lattice resistance to
plastic flow of the material. For practical purposes, a reason-
able approximation would be to take an average values f

av

for s f(h), i.e.,

s f
av5

1

h E
0

h

s f~h!dh5
2G~11n!

12n

b cosl

2h
. ~8!

Notice once again thatG is the anisotropic shear modulus in
the ^110& direction of the~001! plane of the epilayer. Fur-
thermore, we have measured the effect of the elastic surface
relaxation on the strained layer heterostructure directly. The
results are presented in Sec. V.

IV. INTERACTION BETWEEN INTERNAL STRESS
AND EXTERNAL STRESS

For a complete description of the equilibrium state of
stress in lattice mismatched epilayers, we should now con-
sider the resolved shear stresst that acts on the slip system
as a consequence of an externally applied misfit stress. In an
initially misfit dislocation-free substrate-epilayer system, the
in-plane strain« is given by (al2as)/as , wherea denotes
the bulk lattice parameter and the subscriptss and l refer to
the substrate and the layer, respectively. When the elastic
strain is partially relieved by a single array of misfit disloca-
tions created at the interface, the residual in-plane strain be-
comes «5[(al2as)/as]2(b cosl/p), where the term
b cosl/p represents the strain relief via plastic flow.10 Here

p is the average distance between the dislocations. Hence it
follows that the lattice-mismatch accommodation would oc-
cur without in-plane tension within the epilayer caused by
the surface relaxation stress. In other words, as explained
above, for the case wherep.h/5, the heterostructure is not
traction-free, because normal stress components acting on
the crystal surface are not taken into account. To overcome
this difficulty we will now substitute the modulus of complex
dislocation semispacingRh,p for p/2 in the residual in-plane
strain expression above. So the true residual in-plane strain
becomes«5[(al2as)/as]2[b cosl/(2Rh,p)], where theh
term accounts for the purely elastic surface relaxation and
the p term for plastic flow. In this case, the resolved shear
stresst acting on the slip system on a misfit dislocation is
given by

t5cosl cosf
2G~11n!

~12n!cosf S al2as
as

2
b cosl

2Rh,p
D . ~9!

Thus the surface relaxation stress term is implied in the ex-
pression for the resolved shear stress that produced the driv-
ing force for plastic flow of the crystal. Note that the ratio
G/cosf is the isotropic shear modulus in the$111% slip
planes.

As we have previously argued, a finite heterostructure is
subjected to point and lattice mismatch forces. The stresses
and strains caused by such internal and external sources of
stress can be superposed. We should now consider the re-
solved shear stress that acts on the slip system as a conse-
quence of the externally applied misfit stress and the elastic
shear stress field due to dislocation-dislocation interactions.
As shown above, during misfit strain relief via plastic flow,
an intrinsic elastic stress field is built up. For further defor-
mation, the moving misfit dislocations have to overcome the
resistance caused by this stress field. Consequently, the dis-
location shear self-stress field is in the direction opposite the
applied misfit stress. The excess resolved shear stress re-
quired to produce plastic flow will then be given by the
difference between the two stress components. Equations~4!
and ~9! yield texc5t2ts , where the second term also ac-
counts for work hardening of the material. Combining the
two terms, we obtain an expression for the excess resolved
shear stress:

texc5cosl cosf
2G~11n!

~12n!cosf Fal2as
as

2
b cosl

2Rh,p
~11b!G , ~10!

with

b5

12
n

4

4p cos2l cosf~11n!
ln
Rh,p

b
.

Here the quantity@b cosl/(2Rh,p)#b corresponds to the de-
crease in active shear stress through elastic interaction be-
tween dislocations depending on the current misfit disloca-
tion density of the crystal.

As a final topic, a few words on the expression for the
excess resolved shear stress are appropriate. This is a conve-
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nient expression. The applications are numerous: problems
of elastic strain retained by the epilayer, equilibrium critical
thickness of a SiGe layer on Si substrate, initial and residual
in-plane strain, film stress, work hardening of the material,
degree of elastic and plastic strain relaxation, and misfit dis-
location density reached at the equilibrium strain state, for
example. Some of the applications are discussed in the fol-
lowing sections.

V. CRITICAL THICKNESS AND FILM STRESS
OF SiGe/Si LAYERS

To demonstrate the physical significance of the present
approach in equilibrium theory for strained layer relaxation
proposed here, we have calculated the equilibrium critical
thickness of Si12xGex/Si strained layer structures as a func-
tion of the fractional atomic Ge contentx. We have com-
pared our results with those predicted by classical relaxation
models, which do not include surface relaxation effects and
dislocation-dislocation interactions. Taking the in-plane mis-
fit strain «50.0418x, Eqs.~3! and ~10! and the equilibrium
conditions for the point of strain relief onset via plastic flow,
i.e., texc50 andp→`, lead to the following expression for
the critical strained layer thicknesshcrit :

x5
b cosl

0.0836hcrit
F 11

12
n

4

4p cos2l cosf~11n!
ln
hcrit
b

G .
~11!

In the absence of surface relaxation forces, the equilibrium
critical thickness of a single strained epilayer upon a sub-
strate of different lattice parameter according to Matthews
and Blakeslee is given by the formulation reported in Ref. 1.
Inserting appropriate material parameters in Eq.~11! and in
the Matthews-Blakeslee formulation, cosl50.5, cosf
50.816,n50.278, andb53.84 Å for growth on the~001!
surface, the equilibrium critical thickness calculated for the
two different models are plotted in Fig. 3. It is seen, at first
glance, that our values ofhcrit represented by Eq.~11! are
much larger than the values calculated using equation of
Matthews and Blakeslee. Moreover, for a fractional atomic
Ge contentx greater than 0.5, the Matthews-Blakeslee for-
mulation does not provide any value forhcrit . Additionally,
we have compared our theoretical results with the published
experimental data7,8 of hcrit obtained from Si12xGex/Si struc-
tures, grown by molecular-beam epitaxy at a growth tem-
perature of 750 °C. For each composition, there is good
agreement between our theoretical results and experimental
data reported in Refs. 7 and 8. For example, forx50.25,hcrit
was found to be approximately 200 Å. As seen in Fig. 3, for
this case, our analysis yields the value of 200 Å. The
Matthews-Blakeslee model predicts only an equilibrium
critical thickness value of 60 Å.

So far, we have been considering the equilibrium critical
thickness of a coherently strained structure. Let us now con-
sider film stresses for elastically strained Si12xGex/Si layers.
For the pseudomorphically strained layer case, wherep→`,
according to the previous Eq.~9!, the in-plane film stresss
becomes

s5
2G~11n!

12n S 0.0418x2
b cosl

2h D . ~12!

This equation can then be used to predict the stress response
to a strain increment, which is related to the volume change
of the layer. The first term on the right-hand side corresponds
to a volume expansion due to Ge incorporation and the sec-
ond one to a volume contraction via surface relaxation. Thus
the residual in-plane strain is given by«50.0418x
2(b cosl/2h). For thin layers, this relation is essential for
experimental determination ofx as a function of the tetrag-
onal distortion of the cubic lattice cells. Figure 4 shows a

FIG. 3. Comparison of predicted equilibrium critical thickness
hcrit for relaxation models based on a non-stress-free body~MB,
Matthews-Blakeslee! and a stress-free body~F, this study! as a
function of Ge contentx.

FIG. 4. Theoretical~solid line! and experimental~3! in-plane
epitaxial film stresss as a function of thicknessh for as-grown
SiGe/Si. The in-plane misfit stress~elastic coherency stress! corre-
sponding to a strain of 0.0418x is also shown.

54 8765STRAIN AND SURFACE PHENOMENA IN SiGe STRUCTURES



plot of s versush for x50.3 andG551 GPa. This relation
between coherency stress and surface relaxation stress has
been studied experimentally too. The in-plane epitaxial film
stresss as a function of layer thickness was measured by a
thin-film stress measuring apparatus, which measures the
changes in the radius of curvature of a substrate created by
deposition of a stressed thin film on its surface. Our experi-
mental data are also shown in Fig. 4. To our knowledge,
such measurements of surface relaxation stresses have not
been reported previously. It is seen that there is good agree-
ment between our theoretical results and experimental data.
This tells us that the elastic coherency stress of the strained
material in the plane of the surface is really affected by a
large surface relaxation stress. Consequently, as stated pre-
viously, calculations of the Ge compositionx for SiGe epi-
taxy based only on misfit strain values assuming bulk lattice
spacings could be seriously in error.

VI. PLASTIC DEFORMATION AND WORK HARDENING
IN SiGe/Si

SiGe/Si structures may be grown to substantially greater
thickness than our equilibrium critical thickness predictions,
before misfit dislocation nucleation and propagation are ob-
served. The heterostructure becomes metastable during
growth becausetexc.0. This metastable growth regime is
concerned with the initial period of creep of diamond struc-
ture materials, in which marked plastic deformation under
static load does not start abruptly. In our case of strained
layer relaxation, such an initial period is characterized by an
incubation time encouraged by lower growth temperature
and lattice mismatch. The initial creep period is finally ter-
minated by the onset of in-plane strain relief via plastic flow.

The ramifications of our model for plastic flow and work
hardening in Si12xGex/Si strained layer structures will now
be discussed. According to Eq.~9!, the in-plane film stresss
becomes

s5
2G~11n!

12n S 0.0418x2
b cosl

2Rh,p
D . ~13!

Putting the values of the material parameters into Eqs.~10!
and ~13!, cosl50.5, cosf50.816,G551 GPa,n50.278,
andb53.84 Å, assuming a metastable epilayer withx50.3
and h5500 Å, and recalling Eq.~3!, we can evaluate the
variation in excess resolved shear stress acting on the slip
systemtexc and in-plane epitaxial film stresss for the com-
plete thermal relaxation process. At the beginning of defor-
mation, wherep→`, texc50.7 GPa, ands51.9 GPa, as il-
lustrated in Fig. 5. During plastic flow via misfit dislocation
generation and propagation,texcands diminish continuously
and then remain unchanged at zero and 1.15 GPa, respec-
tively, whereas the shear self-stress componentts rises to its
maximum value. At this equilibrium deformation stage, the
externally applied misfit stress and the shear component of
elastic stress field due to dislocation interaction compensate
one another and strain relief via plastic flow comes to rest.
Thus, as a result of work hardening, the lattice mismatched
epilayer will remain in a certain state of strain at the end of
thermal relaxation process, i.e., the strained layer is in a
stable state.

It should be mentioned here that recent investigations by
Gillard, Nix, and Freund11 suggest that dislocation blocking
plays a certain role in limiting strain relaxation. We believe,
as shown in the present and the previous sections, that the
creep process in all the stages of strain relaxation in these
structures is essentially determined by a purely elastic inter-
action between dislocations, which leads ultimately to work
hardening of the material. Further experiments would be re-
quired to assess the relative contribution from blocking
mechanism.

For homogenous deformation, our equilibrium theory for
strained layer relaxation is able to predict the degree of in-
plane misfit strain relaxation both at the point of onset of
plastic flow and at the point of equilibrium strain state where
the plastic flow comes to rest. Returning to Eq.~13!, which is
the general in-plane film stress equation, we define the de-
gree of strain relaxationg as the relative lattice-mismatch
accommodation by elastic surface relaxation and interfacial
misfit dislocations compared to mismatch accommodation by
the elastic in-plane strain alone. It can be written as the ratio
of the in-plane strain relief to the in-plane strain~coherency
strain!. For Si12xGex/Si heterostructures, we get

g5
b cosl

0.0836xRh,p
. ~14!

For the point of strain relief onset via plastic flow, where
p→`, Eq. ~14! reduces togel5b cosl/0.0836xh, which can
be a general expression for the degree of elastic strain relief
via surface relaxation.gel is a constant for a given metastable
or stable SiGe/Si strained layer system. Again, according to
Eq. ~14!, the degree of total strain relaxationg t(0) for the
point of equilibrium strain state at the end of thermal relax-
ation process is given byg t(0)5b cosl/0.0836xRh,p(0),

FIG. 5. Decrease in the in-plane epitaxial film stresss and ex-
cess resolved shear stresstexc during strain relief via plastic flow as
a function of the dislocation spacingp. The direction of strain relief
via plastic flow and the equilibrium strain state at the end of the
thermal relaxation process are indicated.
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where the subscriptp(0) stands for the misfit dislocation
spacing reached at the equilibrium deformation stage. In our
case, for Si0.7Ge0.3/Si, h5500 Å, we get gel50.15 and
g t(0)50.49 withp(0)5330 Å. As the corresponding degree
of plastic strain relaxation isgpl~0!5g t(0)2gel , we thus have
gpl~0!50.34. Thus, as stated previously, the lattice-
mismatched epilayer remains in a certain state of strain at the
end of thermal relaxation process. For the given heterosys-
tem, as a result of work hardening, the residual in-plane
strain is approximately 51%. Again, an elastic strain of 15%
is retained in the epilayer by surface relaxation effects and
about 34% of the in-plane strain due to lattice mismatch is
relieved via plastic flow. It should be noted that, up to now,
neither equilibrium theory was able to predict the correct
relaxed strain in heteroepitaxial films.

VII. MISFIT AND THREADING DISLOCATIONS

Incomplete strain relief at the end of thermal relaxation
process, as explained above, was also confirmed by us ex-
perimentally. Because of its importance for our equilibrium
theory, we should now consider the main results briefly. The
decrease of the in-plane epitaxial film stresss as a function
of time is measured fromin situ relaxation experiments in
the temperature range 800 °C–900 °C by the thin-film stress
measuring apparatus. Metastable Si0.7Ge0.3/Si samples with a
strained layer, approximately 500 Å thick, were grown by
molecular-beam epitaxy at a growth temperature of 550 °C.
During postgrowth high-temperature relaxation, the mea-
sured film stress value diminishes continuously from 1.9 GPa
up to 1.15 GPa and then remains unchanged at this value, as
predicted by Eq.~13!.

A Lang topograph image and an optical micrograph of
misfit dislocation network and misfit dislocation terminations
built at the equilibrium strain state are shown in Fig. 6. For
an accurate determination of average interface dislocation
spacing in highly dislocated material from the areal distribu-
tion of misfit dislocation terminations to the free surface, i.e.,
from the distribution of threading dislocations, a relationship
between dislocation separation, dislocation length, and num-
ber of dislocations has been deduced in the following way.
Figure 7 schematically shows the interfacial misfit disloca-
tion network and the threading dislocations connecting the
misfit segments to the free surface. The average line length
of the misfit dislocationsL in any area of the interface is
given byL52/(pTnT), wherepT is the measured average
minimum interfacial spacing of misfit dislocation termina-
tions ~threading dislocations! and nT is the measured areal
density of misfit dislocation terminations. The factor of 2 is
included, because in~001! epitaxy, strain is relieved by two
orthogonal misfit dislocation sets. The dislocation spacingp
measured in each of the^110& directions is the inverse of the
linear misfit dislocation densityN5nTA

n/2, whereA is the
interfacial area occupied with two orthogonal misfit disloca-
tion sets of the sizes given by the square of the average misfit
dislocation lengthL2. In general, the area exponentn varies
between 0.5 and 1. In our case, for arrays of parallel interfa-
cial 60°-type misfit dislocations, the theory of dislocations
predicts a value ofn51. The average interface dislocation
spacing then becomesp52e/(nTL

2), where e is an unit
length. According to the misfit dislocation length expression
given above, we obtain

p5
pT
2nT
2

e ~15!

and can thus determinep in terms ofpT andnT , which we
may measure from the areal distribution of misfit dislocation
terminations.

Using Eq.~15!, from the optical micrograph shown in Fig.
6, we have measured the misfit dislocation spacings reached
at the end of the thermal relaxation processes. WithpT;4

FIG. 6. Misfit dislocation network built at the end of the thermal
relaxation process in 500-Å Si0.7Ge0.3/Si heterostructures.

FIG. 7. Schematic illustration of the configuration of misfit dis-
locations and misfit dislocation terminations~threading disloca-
tions!. Lines represent misfit dislocation segments and dots are
threading dislocations.
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mm and nT;0.004 mm22, the average misfit dislocation
spacingp for the given strained layer system plastically de-
formed is observed to be approximately 300–350 Å. As seen
in Sec. VI, this is consistent with our theoretical prediction
of p(0)5330 Å.

VIII. SUMMARY AND CONCLUSIONS

We have attempted to provide a physical basis for a dif-
ferent approach in equilibrium theory for strain relaxation in
metastable heteroepitaxial semiconductor structures. This ap-
proach includes the surface relaxation effects on the strained
layer structure and the elastic interaction between straight
misfit dislocations. The main purpose of this work was to
develop a straightforward treatment, valid in linear elasticity,
for the relatively complicated case of deformation of a finite
body containing internal stresses and subjected to lattice-
mismatch forces. The model we have outlined yields an ex-
pression in terms of the excess resolved shear stress@Eq.
~10!# for strained layer relaxation, so that the elastic strain

retained by the epilayer, the equilibrium critical thickness of
the strained layer, the initial and residual in-plane strain, the
film stress, work hardening effects on the material, the de-
gree of strain relaxation, and the misfit dislocation density,
reached at the equilibrium strain state, can be predicted.

We believe that the image method proposed here provides
an equilibrium theory that correctly predicts the coherency
and relaxation behavior of SiGe/Si structures. Finally, this
more refined model yields better agreement between com-
puted and measured values and provides a consistent picture
of the complex mechanism for strain relief and defect propa-
gation in a strained layer on a lattice-mismatched substrate.
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