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Abstract

Ž .Binding energies for an exciton X trapped in the two-dimensional quantum dot by a positive ion located on the z axis
at a distance d from the dot plane are calculated by using the method of few-body physics. This configuration is called a

Ž q . Ž q .barrier D , X center. The dependence of the binding energy of the ground state of the barrier D , X center on the dot
radius for a few values of the distance d between the fixed positive ion on the z axis and the dot plane is obtained. We find

Ž q .that when d-0.2 nm the barrier D , X center does not form a bound state. q 2000 Elsevier Science B.V. All rights
reserved.

PACS: 73.20.Dx; 71.35.Gg

A charged donor center in semiconductors con-
Ž y.sists of a single positive ion and two electrons D

Ž .or an electron and a hole i.e., an exciton which are
bound to the positive ion. Recently, the Dy donor
centers in semiconductor nanostructures have been

w xinvestigated from both the experimental 1–5 and
w xtheoretical 6–9 points of view. However, up to

now, only few theoretical studies have been devoted
Ž q .to the exciton bound to an ionized donor D , X

w xcomplex in low-dimensional structures 10–13 . A
Ž q .D , X center is the simplest exciton complex which
is formed when an electron and a hole are trapped by
a charged impurity. They can be used as a test for
the theoretical description of exciton-impurity inter-
action.

Ž .E-mail address: gzxiewf@public1.guangzhou.gd.cn W. Xie .

A system in which an electron and a hole con-
Ž .fined to a parabolic quantum dot QD are bound by

a positive ion located on the z axis at a distance d
Ž q .from the dot plane is called a barrier D , X center

QD. There has been interest in the subject later
w x14,15 . Rich electronic structures and optical proper-
ties, and a variety of structural phase transitions are
predicted in such systems.

In this paper, we concentrate our study on the
Ž q .barrier D , X complex. It results from the binding

of an exciton to an ionized hydrogenic donor. Its
possible existence was predicted in 1958 by Lampert
w x16 . We will propose a procedure to diagonalize the

Ž q .Hamiltonian of the barrier D , X center in QD’s
with a parabolic lateral confining potential by using
the method of few-body physics. The dependence of
the binding energy of the ground state of the barrier
Ž q .D , X center on the dot radius for a few values of
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the distance d between the fixed positive ion on the
z axis and the dot plane is obtained. We find that

Ž q .when d-0.2 nm, the barrier D , X center does
not form a bound state.

Ž q .The Hamiltonian for the barrier D , X center
QD in the effective-mass approximation is given by

p2 1 p2 1e h
) 2 2 ) 2 2Hs q m v r q q m v r qV ,e 0 e h 0 h c

) )2m 2 2m 2e h

1Ž .
2e 1 1 1

V s y y ,c 2 2 2 2 < <4pee r yr( (r qd r qd0 e hh e

2Ž .

Ž .where r r is the position vector of the electrone h
Ž .the hole originating from the center of the dot and

Ž . ) Ž ) .p p is the moment vector; m m is thee h e h
Ž .effective mass of an electron a hole ; e is the static

dielectric constant; v is the strength of the confine-0

ment, and d is the distance between the fixed posi-
tive ion on the z axis and the dot plane.

Introducing the coordinates

rsr yr , Rs r qr r2, 3Ž . Ž .e h e h

Ž .then Eq. 1 can be rewritten as

HsH qV , 4Ž .0 c

with

P 2 1 p2 1
2 2 2 2H s q Mv R q q mv r , 5Ž .0 0 02 M 2 2m 2

where Msm) qm) ; and msm) m)rM.e h e h
Ž q .The eigenstates of the barrier D , X center QD

can be classified according to the total orbital angu-
lar momentum of the electrons along the z direction.
To obtain the eigen-function and eigen-energies, we
diagonalized H in a model space spanned by the
translationally invariant harmonic product bases

v vF s f R f r , 6Ž . Ž . Ž .w K x n ll n ll1 21 2 L

v Ž .where f r is a two-dimensional harmonic oscilla-n ll
w x Žtor state with frequencies v 17 , an energy 2n

. w xq ll q1 "v. K denotes the whole set of quan-
Ž .tum numbers n , ll ,n , ll in brevity, ll q ll sL1 21 2 1 2

is the total orbital angular momentum. When vsv ,0

the basis function is an exact solution of H if the

Coulomb interaction is removed. In practice, v

serves as a variational parameter around v to mini-0

mize the eigenenergies. The accuracy of solutions
depends on how large the model space is. The
dimension of the model space is constrained by

Ž .0FNs2 n qn q ll q ll F24. If N is in-1 2 1 2

creased by 2, the ratio of the difference in energy is
less than 0.01%. In what follows the energies are in

) ŽmeV and the lengths are in nm; m s0.067m me e e
.is the free-electron mass , and es12.4 for GaAs

QD’s are adopted in the calculation.
We define the binding energy of the barrier

Ž q .D , X centers as

E Dq, X sE D0 qE yE Dq, X 7Ž . Ž . Ž . Ž .B 0

Ž q . Ž q .where E D , X is the barrier D , X center
ground-state energy in the QD’s, E is the lowest0

levels of a hole in the QD’s without the Coulomb
Ž 0.potential, and E D is the ground state energy for

Ž 0.the barrier donor. E D is determined by solving
the appropriate Schrodinger equations in which the¨
ground state for the barrier donor Hamiltonian is
given by linear combinations of the eigenstates with
zero angular momentum for the electron which is

Ž q .Fig. 1. Dependences of the binding energy E D , X on the QDB

radius R for a few different values of d with s s0.707 are
plotted.
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bound by a positive ion located on the z axis at a
distance d from the dot plane. The binding energy

Ž .defined by 7 possesses the following physical inter-
pretation: this is the minimum energy, which is
required to liberate one hole from the bound state of

Ž q .the barrier D , X center QD. After this dissocia-
tion process, the hole is bound in the ground state of

Ž q .the barrier D , X center. The considered the ground
Ž q .state of the barrier D , X center is bound if

Ž q .E D , X )0.B
Ž q .The dependences of E D , X on the dot radiusB

R with the ratio of the effective masses of the
electron and the hole ssm)rm) s0.707 for a fewe h

different values of distances are plotted in Fig. 1.
The calculation shows that when d-0.2 nm there

Ž q .does not exist the bound state in the barrier D , X
center QD’s. From Fig. 1, we see that the binding
energy reduces as the dot radius is increased for
large values of d. However, when d is small, the
binding energy reduces as the dot radius is reduced
for small dot radius R but as the dot radius is
increased for larger dot radius R. For ds0.2 nm, as
the dot size is increased further, the binding energy
becomes negative, i.e., there exists a critical radius

c c Ž q .R , such that if R-R the barrier D , X center
Ž q .configuration is unstable. From E D , X s0 weB

obtain Rc ,14 nm, this critical position depends on
the distance d. It is clear that the critical radius Rc

increases as d increases. When d)0.3 nm, the bar-
Ž q .rier D , X center configuration is always stable. It

is clear that as d increases from zero, the attractive
interaction responsible for binding increases.

In order to understand the bound state feature, it
is useful to study the mass effect of the barrier
Ž q .D , X center QD’s. In Fig. 2, we plot the binding

Ž q .energy of the barrier D , X center QD’s for "v0

s3.6 meV with the mass ratio s from 0 to 1.0. It is
readily seen that, at the beginning, the binding en-
ergy increases as the mass ratio s decreases, then
the binding energy reaches a maximum at some s

which is d-dependent, after that, as the s is reduced
further, the binding energy begins to decrease and
eventually becomes negative, i.e., there exists a criti-
cal mass ratio s c, such that if s-s c the barrier
Ž q .D , X center configuration is unstable. Both the
maximum position and the critical mass ratio are
dependent of the distance d. This point is obviously
different from the case of the exciton without a

Ž q .Fig. 2. Dependences of the binding energy E D , X on theB

mass ratio s with "v s3.6 meV are plotted.0

positive ion in QD’s because at where, the heavier
Ž .hole i.e., the litter s gives rise to the larger binding

energy. When d becomes larger, the result will be in
agreement with the exciton in QD’s.
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