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Abstract 

We discuss the dynamical behaviour of multi-threshold systems in the presence of noise and periodic inputs. Here, the 
stochastic resonance phenomenon displays some peculiarities such as a clear dependence on the noise statistics and the 
presence of a multi-peaked characteristic curve, which are not observed in simple bistable systems. This phenomenon is 
described without reference to any frequency matching condition as a special case of the well-known dithering effect. 

1. Introduction 

Dynamical models based on threshold systems are common in many fields of scientific research. A few 
examples are: digital communication (e.g. analog to digital conversion), neurobiology (e.g. neuron firing), 
natural events (e.g. avalanches), laser systems (e.g. laser threshold). Recently threshold systems acted on by 
noisy signals received considerable attention [ l-61. These systems are highly non-linear and much of the work 
presented in the literature focused on the study of the input-output response characteristic in the presence of a 
small periodic signal embedded in a large noise background. It was found that when the noise intensity matches 
a proper value, the periodic component in the system output reaches a maximum. This is usually considered 
the fingerprint of the phenomenon of stochastic resonance (SR) * [7,9] (for a recent review on SR see Ref. 

181). 
Even if the use of the word mwnance for this phenomenon has been questioned since the very beginning, 

it has been recently demonstrated [ lo] that, for a diffusion process in a double well system, the meaning of 
resonance as the matching of two characteristic frequencies (or physical time scales) is indeed appropriate for 
such a phenomenon if the residence time of the two states (in the bistable case) is taken into account as the 
order parameter. The resonant condition can be obtained either by changing the noise intensity or by changing 
the input signal frequency. As we show below, this frequency matching condition, instead, does not apply to 
the threshold systems that we consider here. In this case, in fact, the output signal enhancement typical of the 
SR phenomenon can be obtained for non-periodic signals as well. 

1 E-mail: gamrnaitoni@perugia.infn.it. 
* For a more comprehensive list of references see the Web site on SR at http://www.pg.infn.it/SR/ 
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In the following we propose a description of this effect in terms of noise enhanced threshold crossings, 
which is similar to the description of a well-known technique employed in digital signal processing and 
commonly called dithering. The dithering technique was proposed to increase the performances of analog-to- 
digital converters. In digital signal processing, an analog signal is sampled at discrete times and converted into 
a sequence of numbers. Since the register length is finite, the conversion procedure, called signal quantizution, 

results in distortion and loss of signal detail. In order to avoid distortion and recover signal detail, it has become 
common practice, since the sixties, to add a small mount of noise (called dither signal) to the analog signal 
before quantization. A detailed description of this technique is beyond the purpose of this work. The interested 
reader can refer to Ref. [ 111 and references therein. Here, we limit ourselves to observing that analog to digital 
conversion is a member of a wide class of phenomena which can be interpreted by using a dynamical system 
in the presence of thresholds, as a model. 

2. Ro-threshold system 

We start considering the output y of a two-threshold system S. Let x be the input signal, 

y(t) = -1, forx<-$, 

=o, for -$<x<i, 

= 1, forx> i. (1) 

In this system, there are two symmetrical thresholds centered around zero. As the input signal we use x(t) = 
A sin( wat) + c( t). Here e(t) represents white additive noise3 whose statistics is described below. The periodic 
component 4 of the input signal has an amplitude A which is smaller than the threshold value so that, in the 
absence of noise, the system output y is always equal to zero. The addition of noise induces random jumps 
above the upper threshold and below the lower threshold causing y to switch from 0 to 1 or - 1. 

We are interested in monitoring the amplitude of the periodic component in the system output. For this 
reason, we consider the y(t) time series and compute the corresponding power spectral density S,(w). The 
statistical weight of the periodic component in the output signal can be monitored by measuring the height of 
the narrow peak in S,,(w) at w = 00. To eliminate the effect of random jumps, we subtract the continuous 
background N( wa) and define Py = ,/Sy ( WO) - iV( ~0). 

In Fig. 1 we show the noise intensity dependence of Py for two different noise statistics: Gaussian and 
uniform; data points have been obtained by digital simulation of system ( 1). Here g represents the noise 
standard deviation. The unifo~ probability density function (PDF) is defined as 

(2) 

and zero elsewhere. Here, c = L/v%. 
As can be seen, P,(o) shows the typical SR profile: a sharp increase up to a m~imum value (resonant 

condition) and a slow decrease. Apart from these features, common to both cases, some differences are apparent 
so that the system S is quite sensitive to the noise statistics. The uniform noise curve is generally sharper and 
more pronounced, and the maxima occur at slightly different noise values. The differences between the two 
curves are more evident at small noise values and decrease with increasing u and A. 

3 Here and in the follo~ng we consider noise sources with a power spectral density flat up to a cutoff frequency B. The standard deviation 

CT is used as a measure of the noise intensity. 

4 With 00 << ~5. 
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Fig. I. 9” versus w for Gaussian noise (circles) and uniform noise (squares). Input ~plimde A = 0.2 a.u.; theoretical p~ictions A$ are. 

shown with solid lines, k = 0.7. The data presented in this paper have been obtained by means of digital simulation. Statistical enxxs are 
within 10%. 

Fig. 2. SNR, R( CT), versus D for Gaussian noise (circles) and uniform noise (squares). The SNR is in dB, other parameters as in Fig. 1. 

In the description of the SR phenomenon it is common practice to monitor the signal-to-noise ratio (SNR) 
defined as the ratio between the energy stored in the spectral peak at frequency ~0 = we/27r and the noise 
background under the peak. It is worth remembering that such a definition, although quite popular in the SR 
community, differs from other de~nitions of the same qu~tity already used in data analysis. Most im~~ntly, 
such a definition, when applied to two mathematically pathological quantities like a harmonic function and a 
white noise process, has to be taken with some care. For example, it is clear that the SNR, here, becomes 
dependent on the spectral bin amplitude. In Fig. 2, we show the SNR, R( CT), for the two cases of Fig. 1. As 
above, the two curves show the typical SR behaviour with a clear dependence on the noise statistics: uniform 
noise performs much better compared to the Gaussian one. As for the periodic component amplitude, differences 
between the two curves are more evident at small noise values and decrease with increasing CT and A. Maxima 
positions approximately coincide and are not sensitive to the forcing amplitude A. 

3. Multi-threshold system 

The signal quantization, in the usual analog-to-digital conversion procedure, can be considered as a common 
example of a multi-threshold system at work. The continuous (analog) input signal is compared with a number 
of different thresholds and the system output is selected as the digital level which is closer to the sampled 
input (uniform quantization) . Here we consider the quantization procedure as a generalization of the system S 
already introduced in Section 2. Such a procedure can be represented as follows, 

y(t) = -n, for ~(Zn+l)b<n<-~(2n-1)6, 

= 0, for - ib < x < $b, 

=n for ;(2n- l)b<x< ;(2n+l)b. (3) 

For a given n, we have NE = 2n -i- 1 levels and 2n t~esholds. b is the qu~tization step. For n = 1 and b = 1 
we find the case of Section 2. 

In Figs. 3 and 4, we show P;(a) for the Gaussian and uniform noise cases, respectively. In both cases, we 
experimentally (by means of digital simulation) explore n = 1,2,3,4. The addition of new thresholds introduces 
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0 0 

Fig. 3. P$ versus CT with uniform noise for n = 1 (upper left), n = 2 (upper right), n = 3 (lower left) and n = 4 (lower right). A = 0.2. 
Theoretical predictions A;” are shown by solid lines, k = 0.7 as in Fig. 1. 

Fig. 4. P& versus CT with Gaussian noise for n = 1 (upper left), n = 2 (upper right), n = 3 (lower left) and n = 4 (lower right). A = 0.2. 

Theoretical predictions A& are shown by solid lines, k = 0.7 as in Fig. 1. 

- A=O.l 

A A = 0.2 

- A = 0.3 

Fig. 5. SNR, Ru , versus D with uniform noise for n = 4, for three different periodic signal amplitudes: A = 0.1 (squares), A = 0.2 (circles) 
and A = 0.3 (triangles). SNR is in dB. 

Fig. 6. SNR, Rs, vetsus CT with Gaussian noise for n = 4, for three different periodic signal amplitudes: A = 0.1 (squares), A = 0.2 
(circles) and A = 0.3 (triangles). SNR is in dB. 

new features in the SR-like curves: (a) The SR-like behaviour is apparent also in the n > 1 case, both for 

the uniform and Gaussian noise. (b) As soon as the increasing noise explores the presence of new thresholds, 

two distinct qualitative behaviours occur: In the uniform noise case (Fig. 3), P,“(a) shows n distinct maxima, 

in correspondence with L = L,, (L,- = h(2m - 1)b + A for m = 1,. . . ,n), decreasing in amplitude. When 

II -+ 00, for large L, the curve oscillates around the asymptotic value PYm (00) (dotted line in Fig 3). (c) In 
the Gaussian case (Fig. 4)) for finite n, PJ ( (T) shows a single maximum, in analogy with the n = 1 case. The 
bell shaped curve tends to become wider and smoother as II increases. When n + co, for large CT, the curve is 
characterized by a horizontal asymptote with value PYw( 00) (dotted line in Fig. 4), the same as in Fig. 3. 

In Figs. 5 and 6, we show the SNR for the case with n = 4, for three different values of the forcing amplitude 
A (A = 0.1,0.2,0.3), using both the uniform and Gaussian cases, respectively. Also, for this quantity, in the 
uniform noise case, we find the characteristic multi-peaked shape already seen for the amplitude. As previously 
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stated, the positions of the maxima are quite insensitive to the forcing amplitude value. 

4. Theoretical model 

A theoretical description of the system (3) output, for every II, can be obtained on the basis of simple 
considerations of the properties of the stochastic forcing term PDFs and without reference to any synchronization 
phenomenon, as in the usual SR description. It can be shown that such a statistical approach can be applied 
also to the description of the ditheting effect. Here, we reproduce only the most relevant results. For a detailed 
treatment see Ref. [ 111. 

In order to have a large periodic component in the system output, the action of the additive noise should 
produce upward jumps (and inhibit downward jumps) in coincidence with the half period in which x(t) > 0. 
The same requirement holds for the opposite situation of the downward jumps in the half period when x(t) < 0. 
When the added noise is white, the frequency of the periodic term does not play any role and the optimal 
condition for a large periodic output, stated above, can be expressed in terms of the differences of the statistical 
distribution function F(a) between two values. Ignoring the details of the actual shape of the periodic forcing, 
we fix these values at A and -A, i.e. equal to the amplitude of the periodic forcing. We obtain 

A;(a) =+;(2m- l)b+A]/a}-F{[92m- l)b-Al/a}). (4) 
m=l 

A;(a) is a measure of the probability that y jumps from the lower state to the upper state when x > 0 and 
does not when x < 0. Whence, for the Gaussian case 

A;@) =kk(@{,$((2 m- l)b+A]/a}-@{[~(2m-- l)b-Al/(+)) (5) 
In=1 

and for the uniform case 

ASf”W = BY”(L) + C&(L), 

with 

for ;L < ib - A, 

m-l)b+A]+y(m-1) 

for $(2m- l)b-A < ;L < ;(2m- l)b+A, 

fori(2m-l)b+A<$L<$(2m+l)b-A, 

and 

CC”(L) = y?z, for $L > $(2m+ l)b - A. 

Following the reasoning developed above, we can interpret A; (a) as proportional to the amplitude of the 
periodic component of the output y(r), at the input frequency ~0, i.e. A;(a) = kP,“(a), where k is a constant 
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Fig. 7. SNR, R( a~), versus Ne with Gaussian (circles) and uniform (squares) noise. The dotted line is proportional to N;. Parameter 
values: ~0 = 1, A = 0.1 a.u. 

Fig. 8. Time series: input signal z(t) and output signal y(t), without dither noise (upper) and with dither noise (lower), for the case with 
Ne = 4. Parameter values: Al = 1, A = 0.1 a.u. 

related to the spectral bin amplitude. The agreement between theoretical predictions (continuous curve) and 

experimental data (points) is remarkable (see Figs. 1, 3 and 4). The horizontal asymptote, A?( co) = A, 
follows immediately for both signal distributions (see Figs. 3 and 4). 

5. SNR versus number of levels 

The dependence of the output signal of a multi-threshold system on the number of thresholds can be more 
easily addressed within the scheme elaborated in digital data analysis, under the name of quantizution efsects: 
the quantity r] = y - x called quantizatiun error is introduced to take into account the changes in the output 

signal due to the coarseness of the input amplitude quantization. 7 is usually treated as an additive noise whose 

statistical properties depend upon the input signal X. It has been shown that the minimum loss of statistical 

data from the input x occurs when the quantization error can be made independent of x (noise whitening). 

Searching for a technique to realize such an independence condition, it was proposed to add an external signal 

(dither) before quantization. In fact, it can be shown [ 121 that, when the input signal is a complicated signal, 
i.e. a signal “which fluctuates rapidly in a somewhat unpredictable manner” [ 131 the quantization error can be 

treated as a white additive noise of amplitude 

-;b 6 v(t) 6 ;b, (6) 

with uniform distribution and standard deviation CT,, = b/m. It is evident that adding to the input signal a 

noisy dither can represent an effective way to making the input signal more “complicated”. 

Another way to decrease the effect of the quantization noise is to increase the number of quantization levels. 
If the input dynamic range is kept fixed, the number of output levels Ne scales as Ne 0: l/b5. In Fig. 7, we 
show the SNR for system (3) for a fixed input noise value ~0, when the number of levels Ne is changed. Both 
the Gaussian and the uniform noise cases follow the same Nz law. Such a behaviour can be easily explained 
considering the quantization noise as an external noise which superimposes on the input signal with variance 

cr2 = $b2 K NF2. 1 (7) 

5 Np = 2”b where nb is the number of bits. 
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Fig. 9. SNR, R,, versus D with uniform noise for n = 4, for three different numbers of levels: Np = 4 (squares), Nl = 8 (circles) and 
Nr = 16 (triangles). SNR is in dB, A = 0.2 ;L.u. 

Fig. 10. SNR, R,, versus (T with Gaussian noise for R = 4, for three different numbers of levels: iVf = 4 (squares), Np = 8 (circles) and 
IV! = 16 (triangles). SNR is in dB, A = 0.2 a.u. 

The output SNR thus depends on the quantization noise as (a;) -r 0: Ni. Such a Ni law is more strictly 
fulfilled (see Fig. 7) for large Np, where the assumptions made on the quantization noise are fulfilled, i.e. “the 
signal is sufficiently complex and the quantization steps sufficiently small so that the amplitude of the signal is 
likely to traverse many quantization steps when going from sample to sample” [ 131. 

As an example let us consider the following signal, 

z(t) = At sin(wit) + Asin(wot), (8) 

with A << Al. For this signal the ~sumption of “complexity” is not tenable any more and deviation from 
the Ni law is observed. Once again, to whiten the qu~tization noise and increase the SNR, we can increase 
the number of quotation levels (number of bits) or add a dither signal, or both. In Fig. 8, we present the 
effect of the quantization procedure on z(t), with and without the dither noise, for the case with Ne = 4. The 
addition of noise significantly increases the number of jumps corresponding to the threshold values making the 
presence of the small periodic signal more evident. In Figs. 9 and 10, the SNR versus dither noise values, for 
the uniform and Gaussian case, respectively, for three different numbers of levels, is reported together with the 
SNR in the absence of noise. 

The most significant features can be listed as follows. (i) The SNR versus (+ shows the usual SR profile, 
as expected. (ii) The increment, measured over the SNR in the absence of noise, is remarkable for the low 
Ne case and decreases when Ne increases. In the low Ne regime the decrement of the quantization noise is 
mainly due to the action of the dither noise which helps the signal to span the qu~ti~tion step. Once the Ne 
is sufficiently large to allow the small periodic component in the input signal to explore the qu~ti~tion step 
without the help of the noise, the effect of the dither is significantly reduced (see e.g. the case with Na = 16). 
Further increasing the dither noise simply causes the decrement of the SNR as expected in a linear system. 
(iii) The differences between the uniform and Gaussian cases are apparent only in the small Ne limit, when 
the role of noise is effective [ 111 and tend to disappear when Ne is large. 

6. Stochastic resonance and dithering 

For the threshold systems that we consider here, the frequency matching condition typical of the SR phe- 
nomenon does not apply when we have only one characteristic frequency (periodic forcing). As expected, the 
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change of the input frequency does not produce any effect on PY ( CT) [ 2,3]. For this reason the output signal 
enhancement typical of the SR phenomenon can be obtained, here, for non-periodic signals as well. 

It seems reasonable to conclude that the SR in the threshold systems considered here, far from being a 
resorrarrr phenomenon, can be more correctly interpreted as a special case of the dithering effect [ 4,6,11] 
consisting of a threshold crossing process aided by noise. 
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