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We investigate the properties of resonant modes which arise from the introduction of local defects in
two-dimensional~2D! and 3D photonic crystals. We show that the properties of these modes can be controlled
by simply changing the nature and size of the defects. We compute the frequency, polarization, symmetry, and
field distribution of the resonant modes by solving Maxwell’s equations in the frequency domain. The dynamic
behavior of the modes is determined by using a finite-difference time-domain method which allows us to
compute the coupling efficiency and the losses in the microcavity.@S0163-1829~96!05135-1#

I. INTRODUCTION

It is well known that the rate of spontaneous radiative
decay of an atom scales with the atom-field coupling and
with the density of allowed states at the atomic transition
frequency. By changing either the atom-field coupling or the
density of states, the rate of spontaneous emission can be
significantly affected.

In free space, the density of states scales quadratically
with the frequency, and the probability of finding an atom in
an excited state simply decays exponentially with time. The
introduction of boundaries in the vicinity of the atom has the
effect of changing the density of allowed states. For ex-
ample, in the case of a bounded system with perfectly re-
flecting walls, the density of states is reduced to a spectrally
discrete set of very sharp peaks, each corresponding to a
resonant mode of the cavity. If the atomic transition fre-
quency falls between any of these peaks, atomic radiative
decay can be essentially suppressed. However, if the transi-
tion frequency matches one of the resonances, the density of
available modes for radiative decay becomes very large,
which in turn enhances the rate of spontaneous emission.

It has been suggested recently that photonic crystals could
be used to control the rate of spontaneous emission, since
they have the ability of suppressing every mode in the struc-
ture for a given range of frequencies.1,2 These crystals be-
have essentially like three-dimensional dielectric mirrors, re-
flecting light along every direction in space. In the case
where the radiative transition frequency of an atom falls
within the frequency gap of the crystal, spontaneous radia-
tive decay can be suppressed.

If a small defect is introduced in the photonic crystal, a
mode~or group of modes! can be created within the structure
at a frequency which lies inside the gap.3–8 The defect be-
haves like a microcavity surrounded by reflecting walls. If
the defect has the proper size to support a state in the band
gap, and if the radiative transition frequency of the atom
matches that of the defect state, the rate of spontaneous emis-
sion will be enhanced.

In this paper, we investigate the properties of these defect
states: their frequency, polarization, symmetry, and field dis-
tribution, as well as their coupling efficiency to modes out-
side the crystal. We show that, by choosing a proper defect,
we can shape the resonance and tune its frequency to suit

most any requirement. We also compute the losses of the
cavity and show that the quality factorQ can be made very
large by simply increasing the size of the crystal.

II. COMPUTATIONAL METHODS

To investigate the properties of defect states in photonic
crystals, two different computational approaches are used.
The first solves Maxwell’s equations in the frequency do-
main, while the second solves the equations in the time do-
main. These two methods reveal different information about
the cavity. The frequency-domain method yields the fre-
quency, polarization, symmetry, and field distribution of ev-
ery eigenmode in the cavity, and the time-domain method
allows us to determine the temporal behavior of the modes.
By looking at the evolution of the fields in time, we will be
able to determine the coupling efficiency, the scattering, and
the quality factor of the cavity.

A. Frequency domain

In the first method, the fields are expanded into a set of
harmonic modes; the wave equation for the magnetic field is
written in the form

¹3H 1

e~r !
¹3H~r !J 5

v2

c2
H~r !. ~1!

Equation~1! is an eigenvalue problem which can be rewrit-
ten as

QHn5lnHn , ~2!

whereQ is a Hermitian differential operator andln is the
nth eigenvalue, proportional to the squared frequency of the
mode. We solve Eq.~2! by using a variational approach,
where each eigenvalue is computed separately by minimiz-
ing the functional̂ HnuQuHn&. This method is described in
more detail in Refs. 9 and 10. Briefly, to find the minimum,
we use the conjugate gradient method with preconditions,
keepingHn orthogonal to the lower states. The conjugate
gradient method has the advantage of being more efficient
than the traditional method of steepest descents, in that it
requires less iterations to reach convergence. In order to
minimize the functional, we need to calculate

QHn~r !5H ¹3
1

e~r !
¹3JHn~r !. ~3!

PHYSICAL REVIEW B 15 SEPTEMBER 1996-IVOLUME 54, NUMBER 11

540163-1829/96/54~11!/7837~6!/$10.00 7837 © 1996 The American Physical Society



Since the curl is a diagonal operator in reciprocal space, and
1/e(r ) is a diagonal operator in real space, each of these
operators is computed in the space where it is diagonal by
going back and forth between real and reciprocal space using
fast Fourier transforms~FFT’s!. This allows the operatorQ
to be diagonalized without storing every element of the
N3N matrix; instead, only theN elements ofHn need be
stored. In turn, we will be able to consider structures of very
large dimensions.

B. Time domain

The second method solves Maxwell’s equations in real
space, where the explicit time dependency of the equations is
maintained. The equations for the electric and magnetic
fields can be written as

]

]t
H~r ,t !52¹3E~r ,t !, ~4!

e~r !
]

]t
E~r ,t !5¹3H~r ,t !. ~5!

These equations are discretized on a simple cubic lattice,11

where space-time points are separated by fixed units of time
and distance. The derivatives are approximated at each lat-
tice point by a corresponding centered difference, which
gives rise to finite-difference equations. By solving these
equations, the temporal response of the microcavities can be
determined.

In solving Eqs. ~4! and ~5!, special attention must be
given to the fields at the boundary of the finite-sized compu-
tational cells. Since information outside the cell is not avail-
able, the fields at the edges must be updated using boundary
conditions. In our simulations, we used Mur’s second-order
absorbing boundary conditions in order to minimize back
reflections into the cell.12

III. TWO-DIMENSIONAL CRYSTALS

We begin by investigating the properties of a microcavity
in a two-dimensional photonic crystal. The crystal consists of
a perfect array of infinitely long dielectric rods located on a
square lattice of lengtha. Each rod has a radius of 0.20a,
and a refractive index of 3.4. By normalizing every param-
eter with respect to the lattice constanta, we can scale the
microcavity to any length scale simply by scalinga.

A. Mode symmetry

We investigate the propagation of electromagnetic fields
in the plane normal to the rods. Since the rods have transla-
tional symmetry along their axes, the waves can be decou-
pled into two transversely polarized modes, transverse elec-
tric ~TE! and transverse magnetic~TM!, depending on
whether the electric or magnetic field is normal to the rods.
The allowed modes in this structure are computed by using
the frequency domain approach described in Sec. II A. A
large gap for TM modes is found between the frequencies
f50.29c/a and f50.42c/a. A similar gap for TE modes
does not exist. Since TE and TM modes are linearly inde-

pendent, it is possible to study the behavior of each polariza-
tion separately. For the remainder of this section, only TM
modes will be considered.

A defect is now introduced into the perfect array of rods.
The defect can have any shape or size; it can be made by
changing the refractive index of a rod, modifying its radius,
or removing a rod altogether. The defect could also be made
by changing the index or the radius of several rods. Here we
choose to modify the radius of a single rod. The modes in the
crystal are computed using a supercell approximation, which
consists of placing a large crystal with a defect into a super-
cell and repeating it periodically in space. In the example
below, the supercell contains a 737 crystal.

We begin with a perfect crystal—where every rod has a
radius of 0.20a—and gradually reduce the radius of a single
rod. Initially, the perturbation is too small to localize a mode
in the crystal. When the radius reaches 0.15a, a resonant
mode appears in the vicinity of the defect. Since the defect
involves removing dielectric material in the crystal, the mode
appears at a frequency close to the lower edge of the band
gap. As the radius of the rod is further reduced, the fre-
quency of the resonant mode sweeps upward across the gap,
and eventually reachesf50.38c/a when the rod is com-
pletely removed. Figure 1 shows the frequency of the mode
for several values of the radius. The frequency of the mode
can be tuned by simply adjusting the size of the rod.

The electric field distribution of the resonant mode is
shown in Fig. 2~a! for the specific case where the radius is
equal to 0.10a. The electric field is polarized along the axis
of the rods and decays rapidly away from the defect. Since
the field does not have a node in the azimuthal direction, it is
labeled a monopole. The frequency of the mode isf
50.33c/a.

Instead of reducing the size of a rod, it would also have
been possible to increase its size. Again, starting from a per-
fect crystal, we gradually increase the radius of a rod. When
the radius reaches 0.25a, two doubly degenerate modes ap-
pear at the top of the gap. Since the defect involves adding
material, the modes sweep downward across the gap as the
radius increases. The modes eventually disappear into the
continuum below the gap when the radius becomes larger

FIG. 1. Frequency of the defect states in an array of dielectric
rods with radius 0.20a. The defect is introduced by changing the
radiusR of a single rod. The case whereR50.20a corresponds to a
perfect array, while the case whereR50 corresponds to the re-
moval of a rod. The shaded regions indicate the edges of the band
gap.
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than 0.40a ~see Fig. 1!. The field distribution of the two
doubly degenerate modes is shown in Figs. 2~b! and 2~c! for
the case whereR50.33a. The modes are labeled dipoles
since they have two nodes in the plane.

By increasing the radius further, a large number of reso-
nant modes can be created in the vicinity of the defect. This
is shown again in Fig. 1. Several modes appear at the top of
the gap: first a quadrupole, then another~nondegenerate!
quadrupole, followed by a second-order monopole and two
doubly degenerate hexapoles. These modes also sweep
downward across the gap as the defect is increased. The
modes are shown in Figs. 2~d!–2~h! for the case where
R50.60a.

Figure 2~i! shows the field distribution for one of the
many resonant modes which exist in the cavity whenR is
equal to the lattice constanta. The defect state resembles a
whispering-gallery mode found in a microdisk laser. The
field has many nodes~12 in this case! and is located mostly
at the edges of the defect.

B. Coupling efficiency

In order to couple energy into the cavity, it is necessary to
transfer energy through the walls of the crystal. Incident light
can transfer energy to the resonant mode by the evanescent
field across the array of rods. To compute the coupling effi-
ciency, we use the time-domain approach described in Sec.
II B, and consider a finite-sized 7311 crystal in which a
single rod has been removed. Plane waves are sent at normal
incidence, and the transmission is computed through the
crystal. The setup is shown in Fig. 3~a!.

The incident light must have some component of the same
symmetry as that of the cavity mode in order to couple into

the cavity. In the case of a missing rod, we have shown that
the resonant mode has even symmetry with respect to thexz
plane passing through the middle of the defect. We have also
shown that the resonant mode has even symmetry with re-
spect to thexy plane, since the electric field is polarized
along thez direction. Therefore, plane waves should be able
to couple energy efficiently into the cavity as long as they are
polarized along thez direction.

Instead of studying the steady-state response of plane
waves, one frequency at a time, a single pulse of light is sent
onto the crystal with a wide frequency profile. The spectrum
of the incident pulse is shown in Fig. 3~b!. It has a Gaussian
profile centered atf50.35c/a and a width of 0.20c/a which
extends beyond the edges of the gap. The electric field is
polarized along the axis of the rods. The transmission
through the crystal is computed at a single point, marked
‘‘detector’’ in Fig. 3~a!. The transmission is normalized with
respect to the incident amplitude. Results are shown in Fig.
3~c!.

A wide gap can be seen in the transmission spectrum. The
gap extends fromf50.24c/a to f50.42c/a. Although the
upper frequency of the gap matches that of Fig. 1, Fig. 3~c!
appears to have a larger gap than Fig. 1. We recall, however,
that the gap in Fig. 1 applies to all directions in the plane
whereas the one in Fig. 3~c! applies only to propagation
along the direction of the incident waves.

The modes inside the gap are strongly attenuated. They
cannot propagate through the crystal and are reflected back.

FIG. 2. Electric-field distribution of TM defect states in an array
of dielectric rods for various defect sizes.~a! Monopole,R50.10a.
~b! and~c! Doubly degenerate dipoles,R50.33a. ~d! and~e! Non-
degenerate quadrupoles,R50.60a. ~f! Second-order monopole,
R50.60a. ~g! and ~h! Doubly degenerate hexapoles,R50.60a. ~i!
Dodecapole,R51.00a. The white circles indicate the position of
the rods.

FIG. 3. ~a! Setup for the computation of the coupling efficiency.
~b! Gaussian frequency profile of the incident pulse.~c! Normalized
transmission through the cavity as a function of frequency.
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On the other hand, modes outside the gap can be transmitted
efficiently; some frequencies have a transmission coefficient
close to unity. This suggests that the modes undergo little
scattering or reflection as they propagate through the crystal.
The rapid fluctuations of the transmission at low frequencies
are not real features of the system; they arise from the small
signal-to-noise ratio at the edges of the Gaussian frequency
profile.

Figure 3~c! also shows the presence of a sharp resonance
inside the gap. The coupling efficiency from the incident
plane waves to the resonant mode is determined by the
height of the peak. Since the resonant mode radiates into a
wide range of angles, and since the transmission is computed
at a single point in space, only a fraction of the transmitted
fields is detected. The coupling efficiency is computed to be
slightly larger than 50%.

C. Quality factor

The quality factorQ is a measure of the losses in the
cavity. Since the reflectivity of the crystal surrounding the
defect increases with the number of rods, we expect thatQ
will also increase with the size of the crystal. To computeQ,
we choose to use an approach which first involves pumping
energy into the cavity, then monitoring its decay. We recall
that the quality factor is defined as13

Q5
v0E

P
52

v0E

dE/dt
, ~6!

whereE is the stored energy,v0 is the resonant frequency,
and P52dE/dt is the dissipated power. A resonator can
therefore sustainQ oscillations before its energy decays by a
factor ofe22p ~or approximately 0.2%! of its original value.
After exciting the resonant mode, the total energy can be
monitored as a function of time, andQ can be computed
from the number or optical cycles required for the energy to
decay.

Before presenting the results, we note that theQ factor
could also have been computed using a different method. We
recall thatQ can be defined asv0/Dv, whereDv is the full
width at half-power of the resonator’s Lorentzian response.
By computingDv from transmission calculation, we could
have estimated the value ofQ. This method, however, would
have led to larger uncertainties, especially for large values of
Q.

We consider again a finite-sized crystal made of dielectric
rods where a single rod has been removed. The crystal di-
mensions areN3N, whereN is an odd number. We compute
Q for several values ofN.

In order to excite the resonance efficiently, the initial con-
ditions are chosen such that the pump mode and the resonant
mode have a large overlap. Since the resonant mode is a
monopole, we chose to initialize the system with a Gaussian
field profile centered around the defect. The energy inside
the cavity was then measured over time. During the initial
stages of the decay, every mode—except the high-Q one—
quickly radiated away, leaving only the energy associated
with the resonant mode inside the cavity. The mode contin-
ued its slow exponential decay. From the rate of decay, we
computedQ.

The value ofQ is shown in Fig. 4 as a function of the size
of the crystal.Q increases exponentially with the number of
rods. It reaches a value close to 104 with as little as four
lattices on either side of the defect, in agreement with our
previous results, which showed strong confinement at the
resonance. Since the only energy loss in the structure occurs
by tunneling through the edges of the crystal,Q does not
saturate even for a very large number of rods.

IV. THREE-DIMENSIONAL CRYSTALS

In order to control every property of a resonant mode, the
mode must be completely isolated from the continuum.
Three-dimensional photonic crystals have the ability to iso-
late a mode by opening a complete band gap along every
direction in 4p steradians.

A. Crystal geometry

The fabrication of three-dimensional~3D! crystals poses a
great challenge. It is equally as important to find a geometry
which lends itself to microfabrication as it is to design a
structure that generates a large gap. In the past five years,
several different geometries have been suggested for the fab-
rication of 3D crystals.14–18Figure 5 shows one such geom-
etry. It is designed to be built layer by layer using two dif-
ferent materials. The materials are chosen such that one may
be removed at the end of the fabrication process. The result-
ing structure is a connected dielectric network filled with air.
Since the size of the gap scales with the index contrast be-
tween the different materials, the use of air optimizes the size
of the gap.

FIG. 4. Quality factor as a function of the size of the crystal.

FIG. 5. Three-dimensional photonic crystal. The dielectric ma-
terial is shown in gray, with edges in black. The rest of the structure
is filled with air.

7840 54VILLENEUVE, FAN, AND JOANNOPOULOS



The structure shown in Fig. 5 could be fabricated, for
example, with GaAs and AlxGa12xAs; the connected net-
work could be made of GaAs, while AlxGa12xAs could be
used as a sacrificial material. After selectively removing the
Al xGa12xAs, the resulting gap would extend from
f50.52c/a to f50.66c/a, assuming a refractive index of 3.4
for GaAs at 1.55mm.19 A more detailed description of the
fabrication process of this crystal can be found in Ref. 18.

B. Resonant mode

As we have shown in Sec. III, the introduction of a defect
in a 2D crystal can create one or more sharp resonant modes
in the vicinity of the defect. The same holds for 3D crystals.
In the case of 3D crystals~such as the one shown in Fig. 5!,
a defect can be made either by adding extra dielectric mate-
rials, or by breaking a rib. Either of these defects could be
implemented during the growth sequence in one of the lay-
ers.

In this section, we choose to break a single dielectric rib
at the center of the crystal shown in Fig. 5. The defect is
created by cutting across one of the vertical ribs with an air
disk. The radius of the disk is 0.27a, wherea is the lattice
constant of the crystal. The overall size of the defect is ad-
justed by varying the heightH of the disk. If the size of the
defect is properly chosen, a single localized state appears in
the gap. Figure 6 shows the frequency of the state as a func-
tion ofH. Again, the frequency can be tuned by changing the
size of the defect. Since the defect consists of removing di-
electric material, the resonance appears at the bottom of the
gap and moves upward as the size of the defect increases. As
we have shown in Fig. 1, the curve which runs through the
points need not vary linearly with the size of the defect.
Furthermore, the volume of dielectric material removed does
not vary linearly withH. WhenH50.16a, the disk begins to
overlap with the horizontal dielectric ribs, and has the effect
of removing a larger volume of material per unit lengthH.

The error bars arise from numerical uncertainty which is
due to size limitations in our simulations. The modes are
computed in a 23232 supercell with 32 FFT points per unit
cell length ~or a total of 2.63105 FFT points!. To estimate
the size of the error bars, the frequency of the resonant mode
was computed at both theG andX points of the first Bril-
louin zone in reciprocal space. TheX point—which lies in
the vertical direction in Fig. 5—was chosen since the mode

exhibits the largest delocalization along that direction, which
should lead to the largest deviation in frequency from the
computed value atG. As expected, the error bars decrease in
size when the resonant mode moves toward the center of the
gap since the mode becomes more strongly localized, i.e., the
attenuation through each unit cell becomes larger.

A vector plot of the resonant mode is shown in Fig. 7 for
the specific case whereH50.32a. The electric field is shown
in a vertical plane through the middle of the defect. The state
is localized in all three dimensions, and the field has even
symmetry with respect to the plane. The electric field
‘‘jumps’’ from one edge of the broken rib to the other, while
the magnetic field has the shape of a torus and runs around
the electric field. The frequency of the mode isf50.59c/a.
The symmetry of the mode can be changed by choosing a
different type of defect with a different shape or size.

A time-domain analysis reveals the same overall results as
those presented in Secs. III B and III C; incident light can
transfer energy to the resonant mode by the evanescent field
across the crystal, and the quality factorQ increases expo-
nentially with the size of the crystal. We computed theQ
factor for the mode shown in Fig. 7 as a function of the size
of the crystal, using a similar excitation scheme as the one
used in Sec. III C. Results are shown in Fig. 8. The overall
cell size is plotted along thex axis. In the case of a crystal
with dimensions 2n32n32n, the defect is surrounded byn
unit cells in every direction. Since the resonant mode is sur-
rounded in three dimensions, the only loss mechanism occurs
from coupling to the continuum through the walls of finite
thickness.

FIG. 6. Frequency of the resonant mode as a function of the
defect height in units of lattice constants. The defect is introduced
by breaking one of the dielectric ribs. The shaded regions indicate
the edges of the band gap.

FIG. 7. Vector plot of the electric field in a vertical plane pass-
ing through the middle of the defect. The overlay indicates the
edges of the crystal. The defect is located at the center of the crys-
tal, and is created by breaking one of the dielectric ribs.

FIG. 8. Quality factor as a function of the size of the three-
dimensional crystal.
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The growth rate ofQ per unit cell is proportional to the
localization strength of the resonant mode. For the case
shown in Fig. 8, the resonance is located at midgap, a dis-
tance~vedge2v0!/v0 of 12% from the edges of the gap. For
purposes of comparison, the resonance in the 2D crystal
shown in Fig. 4 was located a distance of 11% from the
closest gap edge. Since both resonances are located at almost
equal distances from the closest gap edge, the exponential
growth ofQ is similar in both cases.

V. CONCLUSION

We have shown that photonic crystals can be used for the
fabrication of high-Q microcavities. By introducing a defect

in a photonic crystal, sharp resonant states can be created in
the vicinity of the defect. The properties of these modes—
frequency, polarization, symmetry, and field distribution—
can be controlled by changing the nature and the size of the
defect. Furthermore, the resonant states can couple to exter-
nal modes by the evanescent field across the crystal, and the
quality factorQ increases exponentially with the crystal’s
size.
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