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The effects of the molecular symmetry on macroscopic properties of conventional and unconventional
nematic phases are investigated theoretically. These effects concern: �1� the form of the molecular orientation
fluctuations, �2� the thermodynamic behavior and the list of stable ordered phases, �3� the effective symmetry
of the molecules in the ordered phases. The order-parameter consists of tensors forming the main harmonics of
the fluctuation distribution. In conventional models �valid for uniaxial molecules� a single tensor is sufficient
while unconventional models �valid for less symmetric molecules� need several tensors with the same rank. We
analyze the qualitative differences arising when the number of equivalent tensors varies. We show how to work
out complete models in the general case, and to calculate the sequences of stable phases and the corresponding
effective molecular symmetries. This yields, for each molecular group and each tensor rank, a complete
classification and a deep insight into the structure of thermotropic nematics. This work generalizes the ap-
proach we have applied to polar nematics recently observed in polyester compounds and to unconventional
uniaxial and biaxial phases of bent-core materials.
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I. INTRODUCTION

Although nematics are known for more than one century
�1�, they presently display a remarkably poor polymorphism.
Indeed, only the cylindrically-symmetric uniaxial �2� and the
orthorhombic biaxial �3� states have yet been unambiguously
evidenced. Moreover, in thermotropic liquid crystals the bi-
axial phase has been clearly confirmed only in 2003 �4�. This
poverty is particularly puzzling since the set of all possible
nematic phases coincides with the infinite set of three-
dimensional �3D� point groups. On the other hand, the me-
sogenic molecules present a rich variety of symmetries,
which are not directly related with the observed cylindrical
and orthorhombic macroscopic groups. The observed
uniaxial and biaxial phases result from the spontaneous onset
of nonzero components of a single symmetrical second-rank
traceless tensor �for brevity, we shall say throughout this
paper that these components “condense”�. Moreover, they
are the only phases that can be theoretically obtained with
this tensor. The corresponding “conventional” order param-
eter may be any physical second-rank tensor as, for instance,
averaged molecular-scale properties �dielectric or magnetic
susceptibilities�, intermolecular-scale properties �optic ten-
sor�, or fluctuation parameters such as the quadrupolar statis-
tical coefficient P2= �3 cos 2 �−1��5�. In contrast, “uncon-
ventional” nematics are associated with the onset of either
one tensor with rank L0�2 or of several combined tensors.

When the order parameter is a single vector �L0=1�, an
unconventional uniaxial polar phase is stabilized �6�. In a
recent theory of biaxial polar nematics �7� we have shown
that several vectors should be involved in the ordering pro-
cess when the molecular symmetry is low, yielding in addi-
tion monoclinic and triclinic ferroelectric states. Other nem-
atics predicted in Ref. �8� for L0=2 ,3 ,4 are uniaxial, cubic,
tetragonal, trigonal, orthorhombic, or monoclinic. It has been
suggested �9� that hexagonal nematics can appear between
homogeneous uniaxial and two-dimensional �2D�
translationally-ordered phases. Tetrahedral �10� and icosae-
dral �11� nematics associated with third- and fifth-rank ten-

sors have also been theoretically investigated. The observa-
tion of nematics with such unconventional symmetries is a
long standing and yet unsuccessful experimental challenge.
Reference �12� shows that dipolar interactions between disk-
shaped molecules can stabilize the uniaxial ferroelectric
nematic phase. A spontaneous polarization was first reported
in the lyotropic cholesteric phase of polypeptide polymer and
benzyl �13�, and more recently �14� in monoclinic nematic
phases. Monoclinic �15�, rhombic �16�, tetragonal �17�, and
cubic �18� structures have also been claimed to interpret vari-
ous observations and proposed for applications. However,
neither the symmetries nor the nematic characters of the cor-
responding unconventional phases are clearly established.

In the phenomenological approach the stable phases and
their macroscopic symmetries �GNem� are determined by the
rank of the tensor order parameter, whereas their relations
with the molecular symmetry �Gmol� are usually overlooked.
In order to question the validity of this approach, let us first
discuss the oversimplified pedagogical presentation of nem-
atic phases: “In the isotropic phase the molecules are com-
pletely disordered, whereas below the critical temperature
they all align parallel to a given direction,” in such a way
that GNem coincides with Gmol. This simple point of view, in
which all the orientational fluctuations are frozen at the tran-
sition, qualitatively works, for instance, in the biaxial phase
of orthorhombic micelles �GNem=Gmol=D2h�. It would work
also with cylindrically-symmetric molecules in the uniaxial
phase �GNem=Gmol=D� h�. However, it is not adapted to real
uniaxial nematics which are always formed with less sym-
metric molecules. Indeed, the orientational ordering is then
incomplete, and the unfrozen fluctuations play a crucial role
to prevent the formation of more asymmetric ordered states.

This fact is well known in the conventional uniaxial nem-
atic phases �19�. In such systems, asymmetric sticklike mol-
ecules turn isotropically around their main axis so as to form
cylindrically-symmetric “effective molecules” �that we shall
denote by “subunits” throughout this paper�, which align par-
allel to each other in the uniaxial phase. Although this more
refined example illustrates the role played by the unfrozen

PHYSICAL REVIEW E 74, 041701 �2006�

1539-3755/2006/74�4�/041701�21� ©2006 The American Physical Society041701-1

http://dx.doi.org/10.1103/PhysRevE.74.041701


fluctuations, its simplicity remains rather misleading. Indeed,
at first sight it may be thought that the cylindrical symmetry
of the subunit is a consequence of the macroscopic uniaxial-
ity. This statement is wrong, since the subunit remains cylin-
drical even in the orthorhombic biaxial phase. Accordingly,
in order to account for the full complexity of this issue, one
has to consider in fact three independent symmetry levels:
The actual molecular symmetry Gmol, the effective molecular
symmetry Geff, and the macroscopic symmetry GNem. At fre-
quencies smaller than the molecular rotation frequency, the
behavior of the system is determined only by GNem and Geff.
Thus, the nematic phase is characterized not only by its mac-
roscopic group, but also by its effective molecular symmetry.
Even though one considers only the most likely types of
nematics �uniaxial, biaxial, polar�, this yields a wide diver-
sity of possible behaviors. This diversity is actually limited
by the fact that several molecular groups lead to the same
behavior when they yield the same effective symmetry. All
the corresponding groups form then a “molecular class.” For
instance, the cylindrical subunit of the conventional model
arises for molecules with point groups in the “uniaxial” class
�Cn ,Cnv ,Dn , . . . ,n�2�. A complete classification needs thus,
fortunately, to work out only a rather small number of classes
for each nematic ordering mechanism.

In order to show how the three groups are related in the
general case, one has to investigate in detail the structure of
the order-parameter space spanned by the symmetry-
breaking components of the orientational distribution func-
tion. Indeed, for a given rank L0, this structure depends com-
pletely on the molecular symmetry. A key feature of this
space is the number of distinct tensors of the same rank L0
that it contains. This number, which has a deep statistical
meaning �several equivalent tensors are commonly used in
order to analyze experimental data such as NMR or Raman
spectra �21��, is also equal to the number of independent
molecular tensors that are permitted by the molecular sym-
metry group Gmol. For instance, a cylindrically symmetric
molecule permits a single tensor of each rank, whereas a
molecule with no symmetry permits �2L0+1� L0th-rank ten-
sors. This number, which we denote by “tensor multiplicity,”
is an important invariant of the theory, and it controls many
unconventional properties of a given system. For instance,
the list of stable phases depends on the tensor multiplicity.
Finally, the effective molecular symmetry depends on the
macroscopic group in the same way as the macroscopic
group depends on the molecular symmetry. In particular we
find that the list of possible macroscopic groups induced by a
given tensor coincides with that of possible effective groups,
even though the effective symmetry is usually distinct from
the macroscopic symmetry in a given phase. Although the
whole story may seem rather intricate, it obeys quite regular
laws relying only on the molecular symmetry and on the
rank of the order parameter. Along this line, we shall present
the methods yielding, for any nematic model �i.e., any value
of L0�:

�1� The number of tensors needed for a complete descrip-
tion of the molecular fluctuations �tensor multiplicity�, on the
one hand, and for a complete thermodynamic treatment of
the Isotropic→Nematic transition �order-parameter multi-
plicity�, for all molecular symmetry groups.

�2� The lists of phases �and the corresponding macro-
scopic point groups� that are stabilized for various values of
the multiplicities, i.e., for various molecular groups.

�3� The effective molecular symmetry in each phase and
for all types of molecules, together with the resulting classi-
fication of the actual molecular groups according to the type
of subunit they can give rise to.

As an example, let us sketch the analysis of “standard”
nematics �L0=2�. In the class of tetrahedral and cubic mol-
ecules �optically isotropic�, no second-rank tensor is permit-
ted, and no nematic ordering can occur. With cylindrical
molecules, one single copy of the tensor is sufficient to ac-
count for the molecular fluctuations, which permits to stabi-
lize the uniaxial and biaxial phases. We have recently shown
�20� that this conventional model holds in the class of mol-
ecules characterized by a preferred rotation axis of order �2
�e.g., with Gmol=C3h�. All these molecules yield the same
effective cylindrical symmetry �Geff=D� h� in both the
uniaxial �GNem=D� h� and biaxial �GNem=D2h� phases. Op-
positely, in a class of less symmetric molecules �e.g., bent-
core molecules with Gmol=C2v�, several copies of the
second-rank tensor are permitted, and qualitative differences
with the conventional model emerge. The first difference is
the possibility of stabilizing monoclinic �C2h� and triclinic
�Ci� nematics below the biaxial state when various copies are
not parallel. The second difference is the lowering of the
effective molecular symmetry, which is then either ortho-
rhombic �D2h�, monoclinic �C2h�, or triclinic �Ci�, even in the
uniaxial phase. The list of possible macroscopic symmetries
coincides thus with the list of possible effective molecular
symmetries. We shall see that this simple result can be gen-
eralized to all the nematics.

This paper establishes the building rules of phenomeno-
logical nematic models, yielding whenever it is possible,
thermodynamic and statistical completeness. In Sec. II we
present the algebraic methods relating macroscopic and mo-
lecular symmetries to the form of the statistical distribution.
They provide the “tensor multiplicities,” which control the
unconventional character of the various models. In Sec. III
we investigate the effects of the molecular symmetry on the
thermodynamic aspects of the phenomenological models,
and we show how they determine, in each case, the list of
stable phases. Section IV is devoted to the determination of
the effective symmetry groups and of the corresponding mo-
lecular classes. We review the various relationships between
the macroscopic and the actual and effective molecular
groups predicted within our approach. In Sec. V we show the
equivalence between our statistical definition of the order
parameter and that based on physical molecular tensors. In
this respect we discuss in detail a popular model of uncon-
ventional third-rank nematics in bent-core systems.

II. SYMMETRY OF THE FLUCTUATIONS

A number of physical properties characterizing nematics
depend only on the statistical distribution of molecular ori-
entations at the equilibrium. It is well known that the form of
this distribution is strongly constrained by the macroscopic
symmetry of the nematic phase. In fact, the microscopic
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symmetry group of the molecules plays also an important
role. Since the difference between these two types of sym-
metry operations is usually overlooked, this section aims at
establishing the way both symmetries act in the classical
formalism of distribution functions, and its effects on the
equilibrium form of the distribution. The latter can be sum-
marized by two simple rules that we shall call external and
internal selections, which will turn out to have deep struc-
tural and thermodynamic consequences in the following sec-
tions.

In order to describe accurately the molecular fluctuations
in molecular liquid system, we define rigorously the distri-
bution function P�� ,�� in Appendix A. P�� ,1� stands for
the �normalized� number of right-handed molecules oriented
in space by the set of Euler angles �= �� ,� ,��, whereas
P�� ,−1� holds for left-handed molecules. The distribution is
modified by the rotations with respect to the laboratory axes,
but also by the rotations of the molecules with respect to
their own reference frames. Let us now describe quantita-
tively the action of these two types of symmetry transforma-
tions, which determine many equilibrium properties of nem-
atic systems.

A. Internal and external symmetries

We call “external symmetries” the usual point transforma-
tions turning the molecules with respect to the laboratory
axes. All the molecules are then turned in the same way in
the laboratory frame 	0= �i , j ,k�. Let R


ext be such an external
rotation defined by the set of Euler angles collectively de-
noted by 
. It transforms a molecular frame initially oriented
by the rotation R� with respect to 	0 into a frame oriented by
R
R�, and P into the new distribution P�= �R


extP�. Writing,
for convenience, P�� ,�� as P�R� ,�� one has then

P��R�,�� = �R

extP��R�,�� = P�R


−1R�,�� . �1�

The external space inversion Iext changes only the handed-
ness of the molecules �see Appendix A�, hence it transforms
� into −� and 
 into 
. Therefore, the action of Iext onto P
yields a new distribution P�= �IextP� defined by

P��R�,�� = �IextP��R�,�� = P�R�,− �� . �2�

External symmetries are not sufficient to describe the ori-
entational order since they are not related to the molecular
symmetries, which play a key role for selecting the actual
distribution function and the corresponding order parameter.
So, we introduce a second type of transformations acting on
P. Such “internal operations” transform all the molecules
within their own reference frames �20,23�. For instance, in a
system where one molecule has its Z axis along the labora-
tory direction Oz, and a second molecule with its Z axis
along Ox, then a twofold internal rotation around OZ turns
the first molecule by an angle � around Oz and the second
molecule by the same angle around Ox �Fig. 1�a��.

It may be seen that R

int transforms the molecular

frame 	=R��i , j ,k� into �R�R
��i , j ,k� �Fig. 1�b��: First, ap-
ply the rotation R�

−1 to 	 in order to make it parallel to
�i , j ,k�. Afterward, rotate it by R
 and then come back with

R� to the initial observer. The resulting frame is then
�R�R
��i , j ,k�. So, the action of R


int on P yields the new
distribution P�= �R


intP� given by

P��R�,�� = �R

intP��R�,�� = P�R�R


−1,�� . �3�

The internal space inversion Iint transforms the molecular
frame �I ,J ,K� into �−I ,−J ,−K�, exactly as Iext does. Thus,
one finally gets

Iint = Iext. �4�

From now on we shall simply denote this inversion by I.
Equations �1�–�4� show that external and internal rota-

tions commute. The group containing both types of transfor-
mations can thus be written as the product

FIG. 1. �a� Action of an internal twofold rotation R00�
int around K

on a statistical set composed of two molecules. The initial distribu-
tion P is transformed into P�=R00�

int P. Since the sets associated
with P and P� are different, P is not invariant under R00�

int . �b�
Action of an internal rotation R


int onto a frame 	 oriented by the
rotation R� with respect to the laboratory frame 	0. In step 1, 	 is
put parallel to 	0 �or equivalently the laboratory frame is turned
parallel to 	�. In step 2, 	 is turned by the external rotation R
 �or
equivalently by an internal rotation in the turned laboratory frame�.
Step 3 reverses step 1 �or equivalently the laboratory frame is back
to its initial orientation�. The final internally-rotated state is thus
oriented with respect to 	0 by the rotation R�R
 after the internal
rotation R


int, while it is oriented by R�R
 after the external rotation
R


ext.
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G = SO�3�int
� SO�3�ext

� I �5�

where the groups SO�3�int and SO�3�ext contain the internal
and external rotations, respectively, and the group I is gen-
erated by I. Much care is necessary when using Eqs. �1� and
�3�, for they obey two distinct combination rules: R�

extR

ext

= �R�R
�ext and R�
intR


int= �R
R��int. The free energy of the
mixture is invariant under any external operation while, in
general, it is not invariant under internal operations since
they modify the structure of the distribution. Strictly speak-
ing, internal transformations are not dynamical symmetries,
except, of course, when they belong to Gmol.

This symmetry analysis is intimately connected with the
expansion of P�R� , ±1� into Euler spherical functions �24�

P�R�,�� = 	
L=0

�

	
m=−L

L

	
m�=−L

L

Pmm�
L+ Dmm�

L ���+Pmm�
L−

�Dmm�
L ��� ,

�6�

where the functions Dmm�
L ��� are defined from the transfor-

mation properties of the spherical harmonics Ym
L �27�:

R�YL
m=	p=−L

L Dpm
L ���YL

p. We call “fluctuation coefficients” the
components Pmm�

L,± of P. Let us denote by �L a tensor of rank
L, i.e., a set of 2L+1 functions �or components� with appro-
priate transformation properties under rotations. When the
tensor is even with respect to space inversion I it is denoted
by �L

+, and by �L
− when it is odd �e.g., �1

− is a polar vector and
�1

+ an axial vector�. Since the rotation can be either internal
or external, one has to deal with external as well as internal
tensors. The �2L+1�2 functions �Dmm�

L �, or equivalently the
�2L+1�2 components �Pmm�

L,± �, appearing in Eq. �6� for a given
L consists of a set of �2L+1� internal tensors of rank L, on
the one hand, and a set of �2L+1� external tensors, on the
other hand. This means that the functions Pmm�

L,± transform as
the tensor components Tm under external rotations and as Tm�
under internal rotations. The simultaneous presence of inter-
nal and external tensors, on the one hand, and the fact that
they share the same components, on the other hand, play an
important role in the forthcoming analysis.

Averaging Dmm�
L over P provides the statistical meaning of

the fluctuation coefficients

Pmm�
L+ =

2L + 1

16�2 �Dmm�
L � ,

Pmm�
L− =

2L + 1

16�2 ��Dmm�
L � , �7�

where the brackets indicate statistical averages: �F�� ,���
=	�=±1


F�� ,��P�� ,��d�. For instance, P00

0,+= �1� /16�2

=1/16�2 and P00
0,−= ��� /16�2= �CR−CL� /16�2 �where CR

and CL are right- and left-handed concentrations, respec-
tively�. Equations �7� show that the fluctuation coefficients
Pmm�

L,± can be measured by means of diffusion experiments.
Equation �6� is valid for any macroscopic and molecular

symmetry group. Moreover, when these groups are triclinic
�C1�, all the coefficients Pmm�

L,± take finite values. Contrari-

wise, when the groups contain nontrivial elements a number
of these coefficients identically vanish. The selection of the
surviving coefficients is presented by Zanoni in Ref. �25� for
second- and fourth-rank even tensors ��2

+ and �4
+�. The fol-

lowing paragraph is devoted to the presentation of the selec-
tion procedure for external as well as internal symmetries in
the general case.

B. Internal and external selections

The general form of the distribution function is given by
Eq. �6�. However, for a given molecule and in a given nem-
atic phase, many coefficients must vanish in this distribution,
due to the internal symmetries of the molecular point group
and to the external symmetries of the macroscopic point
group. We present now successively the corresponding selec-
tion procedures that we shall systematically use throughout
the remainder of this paper.

Due to the molecular symmetry, the distribution P must
satisfy the set of the constraints

gintP = P, gint � Gmol �8�

for all generators gint of Gmol. They restrict the number of
independent external tensors �L

ext,± appearing in P. This num-
ber may then be smaller than �2L+1�, and it may even be
zero for the most symmetric molecules. We shall call this
procedure: the “internal selection”. It consists in restricting
the number of copies of a given �L

ext,± in P, resulting from the
constraints �8�.

The construction of the restricted expansion may be
achieved by linear projection. Each component PL of P
=	L=0

� PL associated with a single value of L being sepa-
rately invariant under Gmol, PL reads

PL = �1

g
	

gint�Gmol

gint� 	
m=−L

L

	
m�=−L

L

�Pmm�
L+ Dmm�

L ���

+ Pmm�
L−

�Dmm�
L ���� , �9�

where g is the number of operators in Gmol.
We denote “tensor multiplicity” the number n0

± of inde-
pendent surviving copies of �L

ext,± in PL. It is given by the
classical formula �26�

n0
± =

1

g
	

gint�Gmol

�±�gint
sin�2L + 1��g int/2

sin �g int/2
, �10�

where �g
int is the angle of gint and gint=0 for rotations, while

�g
int is the angle of Igint and gint=1 otherwise. We shall say

that the tensor of rank L and parity � is “forbidden” when
n0

±=0. The corresponding molecules cannot lead to the for-
mation of the nematic phases associated with the condensa-
tion of this tensor. This defines a class of molecules that we
denote by “isotropic class,” which depends on L.

More generally, let us denote by n0 the number of inde-
pendent surviving copies of a given external tensor in PL. In
a chiral system the parent symmetry is SO�3�ext so that �L

ext,+

and �L
ext,− are equivalent �e.g., polar �1

− and axial �1
+ vectors�.

In this case the tensors �L
ext are labeled by the tensor rank L
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only �e.g., the vector �1�. In achiral systems the parent group
is O�3� so that �L

ext,+ and �L
ext,− are no longer equivalent.

Equation �10� shows that for chiral molecules one has always

n0
+ = n0

−.

If the system is optically pure one has in addition Pmm�
L,+

= ± Pmm�
L,− , so that

n0 = n0
+ = n0

−

represents the number of copies of �L
ext. Contrariwise, in a

chiral mixture Pmm�
L,+ and Pmm�

L,− are independent, so that

n0 = n0
+ + n0

−.

In a racemic mixture n0 represents either the number n0
+ of

copies of �L
ext,+ when one considers, for instance, the nematic

phase induced by the condensation of an even tensor of rank
L, or the number n0

− of copies of �L
ext,− for an odd tensor. For

achiral molecules n0
+ may be different from n0

−.
Table I indicates the multiplicities n0

+ and n0
− of vector

nematics �L=1� for various molecular groups. More than one
copy of an axial �resp. polar� vector arise only for C1

int and
Ci

int �resp. Cs
int�. The groups containing D2

int or Tint forbid both
vectors. Table II presents the multiplicities for second-rank
tensors �L=2�. These tensors are forbidden only for the op-
tically isotropic groups Gmol=T , O , Td , Th , Oh, etc. The
minimal tensors allowed by these groups are presented in
Table III.

Analogous constraints coming from the macroscopic sym-
metry restrict the number of independent internal tensors
�L

int,± appearing in PL. We shall refer to the corresponding
procedure as the external selection. The distribution being
invariant under GNem, PL must satisfy the following external
conditions:

gextPL = PL, gext � Gmol �11�

for all the generator gext of GNem. PL can thus be obtained by
external projection

PL = � 1

gNem
	

gext�GNem

gext� 	
m=−L

L

	
m�=−L

L

�Pmm�
L+ Dmm�

L ���

+ Pmm�
L−

�Dmm�
L ���� . �12�

The number n0�
± �internal tensor multiplicity� of surviving

tensors �L
int,± in Eq. �12� is given by

n0�
± =

1

gNem
	

gint�GNem

�±�g int
sin�2L + 1��g int/2

sin �gint/2
. �13�

Hence, Tables I–III give also the internal multiplicities, pro-
vided that one replaces the molecular group by the macro-
scopic symmetry group.

For obtaining the actual distribution when Gmol and GNem
are given, both projectors must be applied to PL. These pro-
jectors act linearly in Eqs. �9� and �12�. They can be found
explicitly by using the transformation properties of the Euler
functions

R

extDmm�

L = 	
p=−L

L

Dpm
L �R
�*Dpm�

L ,

R

intDmm�

L = 	
p=−L

L

Dpm�
L �R


−1�Dmp
L .

TABLE I. Polar �n0
−� and axial �n0

+� vector multiplicities permit-
ted by internal selection for various molecular classes.

Gmol n0
+ n0

−

C1 3 3

Ci 3 0

Cs 1 2

Cn �n�2� 1 1

Cnv �n�2� 0 1

Cnh, S4, S6 1 0

Dn, Dnh �n�2� 0 0

D2d, T, O, Td, Th, Oh

TABLE II. Second-rank odd �n0
−� and even �n0

+� tensor multi-
plicities permitted by internal selection for various molecular
classes.

Gmol n0
+ n0

−

C1 5 5

Ci 5 0

Cs 3 2

C2h 3 0

C2v 2 1

D2h 2 0

D2 2 2

Cn, Dn �n�2� 1 1

Dnh, Cnh, Cnv �n�2� 1 0

D3d, S6

S4 1 2

T, O, Td, Th, Oh 0 0

TABLE III. Minimal tensor rank �L� for tetrahedral and cubic
molecular symmetries. For each permitted even �n0

+=1� and odd
�n0

−=1� tensor, the corresponding effective group Geff is indicated in
the fourth row.

Gmol T Td Th O Oh

rank L=3 L=3 L=3 L=4 L=4

�n0
+,n0

−� �1,1� �0,1� �1,0� �1,1� �1,0�
Geff Th, Td —, Td Th, — Oh, O Oh, —
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The number of independent odd and even surviving coef-
ficients in PL after the two selections is given by n0

+n0
−

+n0�
+n0�

−. For practical calculations and a more direct under-
standing of the whole algebra presented above, it proves con-
venient to visualize the action of the projectors on the matri-
ces of fluctuation coefficients �Fig. 2�. Before the selections,
all the coefficients are nonzero. After the internal selection a
number of columns vanish, whereas after the external selec-
tion a number of rows vanish �or, more precisely, become
dependent�.

III. ISOTROPIC-NEMATIC TRANSITION

The formalism developed in the previous section has im-
mediate consequences on the thermodynamic description of
the Isotropic→Nematic phase transition associated with a
given tensor order parameter. On the one hand, external sym-
metries permit to find the free energy controlling the thermo-
dynamic behavior at the transition. On the other hand, the
selection imposed by the molecular symmetry yields addi-
tional physical features. The first one is the determination of
molecular symmetries not compatible with the considered
transition. Second, for compatible molecules the internal se-
lection determines the list of possible stable phases. It is a
fundamental result of our analysis to state that this list
changes with the molecular symmetry. For instance, with a
classical second-rank tensor, the molecular symmetry groups
C3 , C3v , C4, etc., yield only the conventional uniaxial and
biaxial nematic phases. Contrariwise, with less symmetric

molecules or micelles additional monoclinic and triclinic
phases can be stabilized. This result holds for all tensors.
Thus, the set of possible stable phases depends not only on
the rank and parity of the order parameter, but also on the
symmetry of the molecules. With the most symmetric mol-
ecules the ordering mechanism is impossible, whereas the
number of stable phases increases when the molecular sym-
metry decreases. For a given tensor, this behavior leads us to
introduce one of the key concepts in our analysis, the “SG
�subgroups� sequence,” which contains the list of groups cor-
responding to the phases stabilized for a given molecular
symmetry class.

A. Extended order parameter

In isotropic liquids all the Pmm�
L,± with L�0 vanish in Eq.

�6�, and the distribution depends only on �

P��� =
1 + ��CR − CL�

8�2 �14�

with CR=CL=1/2 in achiral systems. The order parameter
inducing the Isotropic→Nematic phase transition associated
with a given tensor of rank L0 and parity �, consists of the
set of fluctuation coefficients Pmm�

L0,± = ����Dmm�
L0 � �−L0

�m ,m��L0�, which generalize the well known quadrupolar
order parameter S= �1–3 cos2���� characterizing the conven-
tional Isotropic→Uniaxial transition.

Since the number of independent coefficients Pmm�
L0,± in PL0

±

�see Eq. �9�� is determined by internal as well as by external
selections, the properties of the transition should be also
strongly affected by the molecular symmetry. We have
shown in the previous section that external and internal sym-
metries play very similar roles in the description of the fluc-
tuations. Nevertheless, this duality is limited when one con-
siders thermodynamic effects. Indeed, the Landau free
energy F�PL0

± � �27�, which accounts for the phase transition,
is invariant under the external symmetries of the parent
phase �S�O�3�ext, but only under the internal symmetries of
Gmol, which is much smaller than �S�O�3�int. Furthermore,
some external symmetries are broken at the transition while
internal symmetries can never decrease. Therefore, in the
forthcoming analysis of the Isotropic→Nematic transition,
internal and external operations appear at different levels.

In the free energy F�PL0

± �, the form of PL0

± �see Eq. �9�� is
restricted only by the molecular symmetry �the macroscopic
symmetry results from minimization of F and cannot be im-
posed a priori�. We have shown in Sec. II that, as a conse-
quence of the internal selection, PL0

± represents in fact �2L0

+1�n0
± independent coefficients Pmm�

L0,± �or linear combinations
of the Pmm�

L0,±�, so that the number of variables in F changes
with the molecular symmetry �see Eq. �10��. Then, various
molecules can yield thermodynamically distinct models.
More formally, these coefficients form n0 �n0

+, n0
−, or n0

++n0
−�

copies of the tensor �=�L0

ext,�±� characterized by its rank �L0�
and �when the system is achiral� its parity ���. In the con-
ventional theory of phase transitions this multiplicity is
physically irrelevant because a single copy of � is sufficient

FIG. 2. Action of internal and external selections �projections�
on the matrix of fluctuation coefficients Pmm�

L,+ associated with a
single tensor rank L and parity, say �. Internal projection cancels a
number of columns whereas external projection cancels a number
of rows in the matrix. More precisely, the projections make linearly
dependent a number of rows or of columns. After a linear transfor-
mation independent of the coefficients, the fluctuation matrix takes
the form �with zero rows and columns� indicated in the figure.
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to describe the main thermodynamic features of the transi-
tion. However, this is no longer true when the symmetry
broken at the transition is continuous �see e.g, Ref. �22��, as
it is the case at the Isotropic→Nematic phase transition. In-
deed, in this case the possibility of stabilizing states where
the various copies are not “parallel” drastically modifies the
nature of the transition. In particular, additional low-
symmetry phases can then be stabilized. Increasing the num-
ber of copies increases the number of stable phases, until the
minimal symmetry associated with � �technically its “ker-
nel”�, denoted by K, appears in the list of stable phases. The
number n� of copies necessary for obtaining K, called the
“order-parameter multiplicity,” never exceeds the dimension
d� of �

n� � d� = 2L + 1. �15�

A method for computing the multiplicity n� is given in Ap-
pendix B.

To summarize, one has shown that two integer numbers
characterize a given nematic model: �i� The tensor multiplic-
ity n0, which provides the number of independent tensors
permitted by the molecular symmetry. �ii� The order-
parameter multiplicity n�, which states how many tensors are
necessary to achieve a complete symmetry breakdown. Com-
paring these two numbers provides thus a classification of
the various models with respect to the list of low-symmetry
phases that can be stabilized:

�1� Fully-extended models �n0=n��.
�2� Over-extended models �n0�n��.
�3� Under-extended models �n0�n��.
Under-extended models cannot provide the maximal set

of low-symmetry phases whereas over-extended models con-
tain several redundant copies of �, which are not useful for
completing the symmetry breakdown. The type of model is
not an arbitrary ingredient of the theory, since the molecules
forming the system impose it. Nevertheless, some freedom
remains to the phenomenologist, according to the goals of
the theory. When the molecule yields an over-extended
model, many physical properties can be safely determined by
using only the corresponding fully-extended model obtained
by suppressing a part of the initial independent degrees of
freedom. Furthermore, when only the most symmetric stable
phases foreseen with this tensor are observed, an under-
extended model may also be sufficient.

However, in this latter case one has to be careful. Indeed,
even in this case, fully- and under-extended models are not
completely equivalent. For instance, in the under-extended
nematic conventional model �L0=2+, n0=1, n�=2� �uniaxial
molecules�, a four-phase Landau point is predicted in the
uniaxial-biaxial phase diagram while it disappears in the
fully-extended model with n0=2 �bent-core molecules or
orthorhombic micelles� �20�. This absence of a Landau point
is a striking property of the fully-extended model associated
with low molecular symmetries. Considering in this case the
approximate conventional under-extended model is sufficient
to describe a number of properties of these systems, e.g., the
list and symmetries of the observed stable phases, the order
of the transitions, etc., but it fails to account for key features
of the phase diagram such as the absence of a Landau point.

As stated above, the sequence of stable phases increases
when the distribution function contains more copies of the
tensor order parameter, i.e., when n0 increases. The minimal
sequence, containing only the group �S�O�3�ext of the isotro-
pic phase, corresponds to the trivial case n0=0 indicating
that the corresponding tensor is forbidden by the molecular
symmetry. The sequence associated with n0=1 begins with
�S�O�3�ext and terminates with GL, the group of the lowest
symmetric phase obtained in the conventional approach tak-
ing into account a single copy of � �the biaxial D2h group in
the conventional model with �2

+�. The maximal sequence,
which contains K as its last element, is obtained for fully-
and over-extended models. One can associate with each se-
quence of stable phases �i.e., with each value of n0 between
0 and n�� the corresponding sequence of subgroups that we
shall denote by “SG sequence” thereafter �the SG sequences
for tensors with rank 1,2,3,4 are presented in Figs. 5–8 of
Appendix C�. All the external symmetry groups of the stable
phases associated with a given tensor belong therefore nec-
essarily to the maximal external SG sequence. Reciprocally,
any group Gi in the maximal sequence is characterized by
the minimal value of n0 permitting to stabilize it. This num-
ber, denoted by ā�Gi�, is referred to as the “group para-
metricity” of Gi. Appendix B presents methods for calculat-
ing the SG sequences and the ā�Gi�.

Table IV displays the order-parameter multiplicities n� for
low-rank tensors, together with the corresponding external
SG sequences and group parametricities. It shows, for in-
stance, that with an odd second-rank tensor ��2

−� one has
ā�C2�=2, so that at least two tensors are necessary to stabi-
lize the monoclinic phase �GNem=C2

ext�. Hence, this phase
cannot be stabilized in achiral systems consisting of mol-
ecules with the following internal symmetries: Cn, Dn, Dnh,
Cnv �n�2�, D3d, S6, S4, T, O, Td, Th, and Oh because �see
Table III� they all have n0=n0

−�2. On the other hand, in a
chiral mixture with the same order parameter ��2�, one has
still ā�C2�=2, but now molecules with symmetries Cn or
Dn�n�2� permit this phase �because n0=n0

++n0
−=2�, except

in optically pure systems �n0=n0
+=n0

−=1�. Let us notice that
the content of these tables for tensor ranks 1,2,3,4 is very
quickly and easily obtained by using the diagrams presented
in Appendix C. Obtaining similar results with tensors of rank
higher than 4 is a matter of a few minutes of calculation.
However, this table contains the central information of our
work, which permits to determine not only the list of stable
phases for each order parameter, but also, as we shall show
in the following sections, the effective symmetry groups in
each phase and for each permitted molecular symmetry.

B. Polar nematics

Let us consider as a typical example the nematic phases
stabilized when the order parameter is a polar vector ��1

− or
�1 in achiral and chiral systems, respectively�. In the conven-
tional theory �6� taking into account a single vector, only the
uniaxial polar phase is stabilized with a point group C�

ext

�chiral case� or C�v
ext �achiral case�. We have recently gener-

alized this theory to systems consisting of monoclinic mol-
ecules �7�, which permit several vectors and yield additional
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ordered phases. We are going to consider now the possibili-
ties corresponding to all the molecular groups. In the general
case the distribution P reads at the first harmonic approxima-
tion

P��,�,�,�� =
1

8�2 �1 + U� � . I���,�,�� + V� � · J���,�,��

+ W� � · K� ��,�,��� , �16�

where the Cartesian components of the three basic
vectors,

I� = �cos � cos � cos � − sin � sin �,cos � cos � sin �

+ sin � cos �,sin � cos �� ,

J� = �cos � sin � cos � + cos � sin �,cos � sin � sin �

− cos � cos �,sin � sin �� ,

K� = �− cos � sin �,sin � sin �,cos �� ,

are proportional to the nine Euler spherical functions Dmm�
1

appearing in the expansion �6�. Consequently, the Cartesian

components of the macroscopic vectors U� ±, V� ±, and W� ±, are
proportional to the fluctuation coefficients Pmm�

1,± . The vectors

U� ++U� −, V� ++V� −, and W� ++W� − transform as polar vectors ��1
−�

while U� +−U� −, V� +−V� −, and W� +−W� − transform as axial vec-
tors ��1

+�. Thus, in achiral systems with triclinic molecules
the extended order parameter consists of the three vectors

U� ++U� −, V� ++V� −, and W� ++W� −, while it consists of the full set

of six vectors in chiral mixtures. However, the internal selec-
tion reduces these numbers when the molecular symmetry
increases.

In the chiral case, one finds n�=2 and the maximal SG
sequence is then �SO�3�ext ,C�

ext ,C1
ext� �see third row of Table

IV�. In this case n0=n0
++n0

− for polar and axial vectors are
equivalent in chiral systems, except for optically pure sys-
tems where n0=n0

+=n0
−. Since n0=0 for the apolar molecules

with symmetries Dn
int, Tint, and Oint �because n0

+=n0
−=0 as one

sees in Table I�, the macroscopic polar order is then forbid-
den. Table I indicates also that no chiral molecule can lead to
the conventional case �n0=1� yielding the shorter sequence
�SO�3�ext ,C�

ext�. The fully-extended model �n0=2� permitting
the triclinic phase �C1

ext� is realized for the molecular groups
Cn

int �n�2�. The over-extended model is associated only with
triclinic molecules �C1

int�. For optically pure systems, mol-
ecules with symmetry Cn

int yield the conventional model �n0

=1� whereas no molecule yields the fully-extended model.
In the achiral case n�=3 and the maximal SG sequence is

�O�3�ext ,C�v
ext ,Cs

ext ,C1
ext� �see sixth row of Table IV�. Cnh

int, S4
int,

S6
int, Cn

int, and Cs
int molecules lead to the conventional case

�n0
−=1 in Table I� yielding the sequence �O�3�ext ,C�v

ext�. No
molecule corresponds to the model n0=2 associated with the
sequence �O�3�ext ,C�v

ext ,Cs
ext�. The fully-extended model n0

=3 permitting the triclinic phase is realized only for the tri-
clinic groups Ci

int and C1
int.

The previous polar models allow simple geometrical pic-
tures of the SG sequences and group parametricities �Fig. 3�.
When all the vectors forming the extended order parameter
are parallel, the phase is uniaxial and the symmetry is that of
a single vector: C�v

ext or C�
ext. A single vector is thus sufficient

TABLE IV. SG sequences associated with low-rank tensor order parameters. d� is the dimension of the
tensor representation and n� its multiplicity. Column 4: Symmetry of the liquid phase �ā=0�. Column 5:
Symmetry groups accessible with a single tensor �ā=1�. Column 6: With two tensors �ā=2�. Column 7: With
three tensors �ā=3�. Gathering all the groups lying in one row provides the maximal SG sequence associated
with the corresponding tensor. The nonmaximal SG sequences are obtained by gathering only the groups in
the first, first and second, etc. columns. When one of these tensors condenses as a primary order parameter,
the macroscopic �GNem� and effective microscopic �Geff� symmetry groups can only take values within the
corresponding sequences. X= �C1 ,C2 ,CS ,C3 ,D2 ,C4 ,C2v ,S4 ,D4 ,D3 ,C3h ,C3v ,D6 ,D3h ,C4v ,O ,D2d ,D� , �, Y
= �Ci ,C2h ,D2h ,C2v ,S6 ,D4h ,D3d ,Oh ,D�h�, Z= �C1 ,C2 ,D2 ,C3 ,D3 ,C4 ,D4 ,D��, B= �Ci ,C2h ,S6 ,Th ,C�h�, A
= �C1 ,C2 ,CS ,C3 ,C2v ,C3v ,C3h ,S4 ,D3h ,Td ,C�v� and C= �C1 ,C2 ,C3 ,T ,D��.

� d� n� ā=0 ā=1 ā=2 ā=3

Vector �1 3 2 SO�3� C� C1 —

2-tensor �2 5 2 SO�3� D�, D2 C2, C1 —

3-tensor �3 7 1 SO�3� C — —

4-tensor �4 9 1 SO�3� Z — —

Polar vector �1
− 3 3 O�3� C�v CS C1

Axial vector �1
+ 3 2 O�3� C�h Ci —

Odd 2-tensor �2
− 5 2 O�3� D�, D2d C2 ,C1 —

Even 2-tensor �2
+ 5 2 O�3� D�h, D2h C2h, Ci —

Odd 3-tensor �3
− 7 1 O�3� A — —

Even 3-tensor �3
+ 7 1 O�3� B — —

odd 4-tensor �4
− 9 1 O�3� X — —

Even 4-tensor �4
+ 9 1 O�3� Y — —
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to stabilize this phase. When all the vectors are coplanar but
not parallel, the symmetry is that of the plane generated by
these vectors �group which leaves invariant all the vectors of
this plane�: C1

ext �chiral case� or Cs
ext �achiral case�. At least

two vectors are necessary. When three vectors are not copla-
nar in the achiral case, there is no symmetry that leaves them
all invariant, and the triclinic phase �C1

ext� appears.
The simplest complete phase diagrams corresponding to

the previous models result from the minimization of
the free energy F, which depends on the 1, 2, or 3
vectors forming under- or fully-extended order parameters.

In models with a single vector U� , the free energy depends

only on the quadratic invariant U� ·U� , hence it reads F

=��U� ·U� � where � is a polynomial of order at least two.

With two vectors one has � �U� ·U� ,V� ·V� ,V� ·U� �, and �

�U� ·U� ,V� ·V� ,W� ·W� ,W� ·U� ,U� ·V� ,W� ·V� � with three vectors.
Examples of the corresponding phase diagrams can be found
in Refs. �6,7�.

Finally, in over-extended models the n0-n� additional
�secondary� vectors are always “parallel” to the primary n�

vectors. The simplest free energy accounting for this situa-
tion reads

F = ��U� 1, . . . ,U� n�
� + 	

i=n�+1

n0

	
j=n�+1

n0

�ijU� i · U� j

+ 	
j=1

n�

	
i=n�+1

n0

�ijU� i · U� j ,

where � �U� 1 , . . . ,U� n�
� is the fourth-order free energy of the

underlying fully-extended model. F being quadratic in the

additional vectors U� j, their equilibrium values are easily de-

termined vs U� 1 , . . . ,U� n�
. Inserting these values in F provides

then an effective free energy whose form coincides with that
of the fully-extended model � �with renormalized phenom-
enological parameters�. Let us notice that, within the phe-
nomenological point of view, the splitting between the sets of
primary �j=1→n�� and secondary �i=n�+1→n0� vectors is
arbitrary.

IV. EFFECTIVE MOLECULAR SYMMETRY

It is well known that in the conventional uniaxial-nematic
phase rodlike molecules turn around their main axis so as to
form effective cylindrically-symmetric microscopic objects.
Three erroneous statements are currently put forward to de-
scribe this rotation: �i� the microscopic cylindrical symmetry
is a consequence of the macroscopic symmetry of the
uniaxial phase, �ii� the molecular rotation is a prerequisite for
the formation of the uniaxial phase, and �iii� all the mol-
ecules giving rise to this phase exhibit this internal rotation.
In fact, we have shown in Ref. �20� that, �i� the molecular
cylindrical symmetry persists also in the orthorhombic biax-
ial phase, �ii� the molecular rotation is a consequence of the
ordering process, not its cause, and �iii� low-symmetry mol-
ecules �e.g., orthorhombic bent-core mesogens� have an ef-
fective molecular symmetry lower than cylindrical, even in
the uniaxial cylindrically-symmetric phase. We are going to
generalize these results to unconventional nematics made
with any type of molecules. Thus, we shall be able to deter-
mine, on using a simple method, the effective symmetry of a
given molecule in any nematic phase stabilized after conden-
sation of a tensor with arbitrary given rank. The rather subtle
reasoning yielding this method mixes group theory and
structural stability considerations that we shall describe
qualitatively. The main ingredient of this reasoning is the
“molecular class,” which refines the notion of SG sequence
introduced in the previous section. However, let us note �for
not discouraging the readers� that the calculation of effective
groups and the physical discussion of its consequences �car-
ried out in the last part of this section� can be achieved with-
out referring to the theoretical basis of the method.

In a given nematic phase the equilibrium distribution P is
invariant under external as well as internal symmetries. They
generate respectively the “macroscopic group” GNem and the
“effective molecular group” Geff of the system �20�. The ac-
tual molecular group Gmol is a subgroup of Geff, which coin-
cides with it only in the simplest cases. In the general case
Geff contains additional operations with respect to the actual
symmetry of the molecules. The presence of such operations
means that, in the corresponding statistical set, whenever one
finds one molecule with a given orientation, one finds also
one molecule turned by any additional transformation of Geff.
Moreover, each turned orientation has the same statistical
weight as the initial orientation. This led us �20� to define a
composite statistical object, referred to as the “subunit,”
which plays in P the role of an effective molecule with sym-
metry Geff �in the case when Gmol=Geff the subunit coincides

FIG. 3. Symmetry groups of the polar vector model. When the
model contains a single vector, or several parallel vectors �first row�
the macroscopic group GNem is C�v �achiral case� or C� �chiral
case�. When the model contains two vectors, or many vectors in a
single plane �second row�, the symmetry of the achiral case is re-
duced to one mirror plane �CS�, or it becomes triclinic �C1� in the
chiral case. With three vectors �third row�, the symmetry is triclinic
in both cases.
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with one molecule�. Strictly speaking, the subunit is a statis-
tical subset containing Geff / Gmol molecules, built by ap-
plying to one of them all the elements of Geff. Roughly
speaking, the subunit is an average molecule, usually more
symmetric than the actual molecule. Since P is invariant un-
der Geff, it is then more convenient to describe it as consist-
ing of subunits. For instance, in the conventional uniaxial
nematic with Gmol=C3h

int, the effective group is cylindrically
symmetric �Gmol=D�h

int �. Hence, one can describe this nem-
atic state as a distribution of cylindrical subunits, approxi-
mately parallel to the macroscopic optic axis. In many physi-
cal respects this system behaves as an “ideal” nematic made
with microscopic cylinders.

This section reveals how to determine the effective sym-
metry and analyzes the possible relationships between Gmol,
Geff, and GNem. Simple pictures of nematics suggest the fol-
lowing strongly and weakly “naive” relations:

Gmol = Geff = GNem �strong� ,

Gmol � Geff � GNem �weak� , �17�

which hold, for instance, in the isotropic phase or in nemat-
ics when all the molecules are parallel �in Eqs. �17�, one does
not distinguish internal from external operations�. The reality
is not always so simple, as shown by the case of the conven-
tional biaxial phase with tetragonal molecules �Gmol=C4v

int�.
Its macroscopic symmetry is D2h

ext and the naive relationships
�17� are obviously violated, since the necessary condition
Gmol�C4v��GNem�D2h� is not satisfied. The molecules are
then not parallel, otherwise the macroscopic symmetry
would be also tetragonal �C4v

ext�. We arrive thus at the impor-
tant conclusions that, in general, �i� the molecular orienta-
tions remain nontrivially disordered, and �ii� this disorder
yields distinct symmetry properties at distinct time and
length scales: GNem at macroscopic scales, Gmol at micro-
scopic and fast time scales, and Geff at microscopic length
scale and at time scale slower than the typical fluctuation
time of one molecule.

In the following paragraphs we define the two main no-
tions allowing us to calculate the effective groups, namely
the internal SG sequence and the molecular classes. In the
last paragraph we discuss the corresponding concrete possi-
bilities and their physical interpretations that arise with the
lowest-rank-tensor order parameters.

A. Internal SG sequence

Let us consider a nematic phase whose order parameter is
a tensor of rank L0. Close to the isotropic phase, the im-
proper secondary order parameters with L�L0 can be ne-
glected, and P� P0+ PL0

�±�. In order to determine the effective
molecular group within this approximation, we are helped by
the evident duality relating external and internal operations.
Indeed, the reasoning which leads from the actual molecular
group to the macroscopic symmetries of the SG sequence,
summarized in Table IV, is analogous to that leading from
the macroscopic symmetry to the possible effective molecu-
lar groups. This is because the PL0

space has exactly the

same structure with respect to internal as well as to external
transformations. In particular, the SG sequences of stable
macroscopic groups have internal analogs, which we shall
denote by internal SG sequences. The internal sequences de-
pend on n0�

±, which on its turn depends on GNem. The mini-
mal SG sequence= ��S�O�3�� is obtained when n0�

±=0 �i.e.,
for a macroscopic group belonging to the isotropic class�,
and the maximal SG sequence when n0�

±=n� �triclinic class�.
The SG sequence associated with n0�

± provides all the pos-
sible internal symmetries of PL0

± when it contains n0�
± internal

tensors of rank L0. Of course, if one takes into account the
internal selection, then only those groups of the sequence
containing Gmol can be, in fact, effective groups for this mol-
ecule.

The internal and external SG sequences coincide. Despite
this apparent analogy, there remains a deep difference be-
tween the roles of external and internal groups. Indeed, only
the lowest effective group in the internal sequence �i.e., the
symmetry of the generic position in the order-parameter
space� can be physically stable �because the free energy is
not invariant under O�3�int�. This provides the method for
finding the effective molecular group:

In a phase with macroscopic symmetry GNem, Geff is the
smallest group in the internal SG sequence associated with
n0�

± �see Eq. (13)� which, in addition, contains Gmol.
As an example, let us consider the standard nematic

phases �L0=2+ �. The SG sequences are �O�3�, D�h, D2h,
C2h, and Ci� for n0

+�2 �resp. n0�
+�2�, �O�3�, D�h, D2h� for

n0
+=1, and �O�3�� for n0

+=0. The possible stable nematic
phases are thus uniaxial, biaxial, monoclinic, and triclinic
whereas the possible effective groups are D�h

int , D2h
int, C�h

int , and
Di

int.
—In the uniaxial phase �GNem=D�h

ext�, n0�
+=1 and only two

effective molecular groups are possible: D�h
int and D2h

int. With
tetragonal molecules �Gmol=C4v

int�, D2h
int does not contain C4v

int

and the effective molecular group is cylindrically symmetric
�Geff=D�h

int �, even in the biaxial phase. With orthorhombic
�Gmol=C2v

int�, monoclinic �Gmol=Cs
int�, and triclinic �Gmol

=Ci
int� molecules, the subunit is orthorhombic �Geff=D2h

int�.
—In the biaxial, monoclinic, and triclinic phases, n0�

+

�2, and the four effective symmetries are possible. For te-
tragonal molecules, D�h

int contains C4v
int and again Geff=D�h

int ,
but the monoclinic and triclinic phases cannot be stabilized
�n0

+=1�. As stated above, the naive relation is violated since
GNem�D2h��Geff�D�h�. With orthorhombic, monoclinic, and
triclinic molecules, the three phases can be stabilized. With
orthorhombic molecules one finds Geff=D2h

int, with mono-
clinic molecules one finds Geff=D2h

int, whereas for triclinic
molecules the subunit remains triclinic �Ci

int�.
One sees that the effective molecular group and the mac-

roscopic group do not necessarily coincide, though they both
always belong to the same maximal SG sequence. For in-
stance, the uniaxial phase �D�h

ext� can be composed of ortho-
rhombic subunits �D2h

int� �e.g., in bent-core systems �20�
Gmol=C2v

int�, whereas the biaxial phase �D2h
ext� can be com-

posed with cylindrical subunits �D�h
int � �e.g., with Gmol=C4v�.

B. Molecular classes

Fortunately, it is not necessary to work out the previous
analysis with all the possible molecular groups separately.
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Indeed, generalizing the preceding examples leads naturally
to a repartition of the molecular groups in equivalence
classes. By definition, such a class contains all the Gmol as-
sociated with a given value of n0

± and giving rise in addition
to a common effective group �a more formal definition of the
classes is given in Appendix B together with a method for
computing them�. This does not mean that the molecules in
one given class exhibit the same effective group in all the
stable phases. Indeed, the effective group may change when
the system undergoes a phase transition changing its macro-
scopic symmetry, but it remains the same for all the mol-
ecules in the class for each phase. One sees immediately that
the maximal SG sequence consists of the most symmetric
groups of each class. The classes with n0

±�n� cannot lead to
the K phase. In this phase, all the molecules in any permitted
class take the effective symmetry corresponding to the most
symmetric group in this class. The molecules belonging to
the same class behave thus as subunits having the symmetry
of the maximal group in the class, yielding thereby the same
measurable physical features. In more symmetric phases two
differences arise. �i� More classes permit this phase. �ii� The
SG sequence is restricted so that the least symmetric effec-
tive groups possible when GNem=K become impossible. The
least symmetric classes have then the same effective group.
All the groups in a class have the same n0

±, but the converse
statement is not necessarily true. For instance, for L0=3, the
groups having n0

−=2, namely C3h
int, S4

int, C3v
int, and C2v

int split into
four distinct one-element classes. The SG sequences and mo-
lecular classes are represented in Appendix C for even and
odd tensors with rank �4.

In order to show how one proceeds to a complete classi-
fication, let us consider again the standard nematics with
L0=2+. Their five classes are represented in Fig. 4�a�. In the
isotropic class n0

+=0 and no such molecule can provoke the
nematic ordering. All the groups with n0

+=1 belong to the
class of uniaxial molecules �i.e., yielding Geff=D�h

int �, namely
Gmol=Cn

int, Dn
int, Dnv

int, Dnh
int, Cnv

int�n�2�, D2d
int, D3d

int, S4
int, and S6

int,
and lead to the conventional model �21,20� of nematics,
which permits only the uniaxial and biaxial phases. Oppo-
sitely, the orthorhombic �n0

±=2�, monoclinic �n0
±=3�, and tri-

clinic �n0
±=5� molecular classes yield the full set of stable

phases. In the isotropic phase, all the classes merge into a
single set for which the effective group is always O�3�. The
uniaxial phase is permitted by all the classes except the iso-
tropic one. Since in this phase n0�

+=1, only uniaxial and
orthorhombic subunits can exist. Therefore, the molecules in
the uniaxial class have cylindrically-symmetric subunits
�Geff=D�h

int � whereas the three other classes have orthorhom-
bic subunits �Geff=D2h

int�. In the biaxial phase one has n0�
+

=2, so that the four effective symmetries can exist. Thus, the
molecules in each possible class yield a subunit with the
maximal element of the class. The monoclinic and triclinic
phases can arise only with molecules in the three last classes.
Since n0�

+�2 in these phases, all the effective symmetries
can again exist and each remaining class yields a subunit
with the maximal element of the class.

More generally, there is always one class corresponding to
n0

±=0, and at least another class corresponding to n0
±=1. In

the former class no order parameter is possible so that this

FIG. 4. �a� Classes of subgroups of O�3� when the order param-
eter is an even second-rank tensor. Some group-subgroup relation-
ships are indicated by broken lines. The five groups of the maximal
SG sequence �O�3�, D�h, D2h, C2h, and Ci� are inside ovals. The
groups forming the five corresponding classes are surrounded by
thick lines. When the symmetry of one molecule belongs to the
isotropic class, no standard nematic can be stabilized. Molecules
belonging to the class of uniaxial molecules can stabilize the
uniaxial and biaxial conventional phases. Molecules belonging to
the orthorhombic, monoclinic and triclinic classes can stabilize all
the ordered standard phases �O�3�ext, D�h

ext, D2h
ext, C2h

ext, and Ci
ext�. The

noncrystallographic groups that have not been indicated on the fig-
ure all belong to the isotropic class. �b� Effective molecular groups
associated with the molecules of each class. When the phase is
impossible with the molecules of one class, the class is hatched in
gray.
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nematic transition cannot occur. We say that the correspond-
ing molecules are forbidden or “isotropic” �since then the
subunit remains spherical� for this tensor. In one of the latter
classes the subunit is cylindrically symmetric so that we say
this class is uniaxial. Let us stress that these definitions of
isotropy and uniaxiality are not intrinsic since they depend
on the rank and parity of the tensor order parameter. For
instance, orthorhombic bent-core molecules with symmetry
C2v

int are spherical for axial vectors, uniaxial for polar vectors
and biaxial for second-rank tensors. Finally there exists al-
ways one “triclinic” class containing only �C1� for odd ten-
sors and equal to �C1 ,Ci� for even tensors.

Notice that, since the SG sequences are formed with the
maximal elements of each class, the other groups in a given
class can never be effective molecular groups. Correspond-
ingly, the groups that are not in the SG sequence, can also
never be the macroscopic symmetries of a stable phase. To
summarize, one may apply the subgroup classification to in-
ternal as well as to external groups, which provides the fol-
lowing dual rules:

�i� Given the tensor order parameter, only the phases with
macroscopic symmetry groups in the maximal �external� SG
sequence can be stabilized. Furthermore, with triclinic mol-
ecules all the phases in the sequence have an extended do-
main of stability in the theoretical phase diagram. If the mol-
ecule is more symmetric, the lists of possible stable phases
are restricted to the corresponding nonmaximal �external� SG
sequences associated with the value of n0

± given by Eq. �10�.
The elements of a class, except the maximal element, can
never be associated with a stable phase.

�ii� Similarly, any effective molecular group necessarily
belongs to the maximal �internal� SG sequence. By varying
Gmol in the triclinic K phase one stabilizes all the effective
groups of this sequence. If the phase is more symmetric, the
lists of possible effective groups are restricted to the non-
maximal �internal� SG sequences associated with the corre-
sponding values of n0�

± in Eq. �13�. The elements of a class,
except the maximal element, can never be stable effective
groups.

One sees that, in this respect, the main difference between
internal and external selections lies in the fact that for gen-
erating the various groups in the SG sequences one has to
change the external �thermodynamic� parameters for the
macroscopic groups, while one has to change the molecular
symmetries �chemical parameters� for the effective groups.

C. Symmetry enhancing and symmetry-suppressing
fluctuations

The relationships between Gmol, Geff, and GNem provide a
useful insight into the symmetry and the nature of the nem-
atic orientational fluctuations. Let us call “internal fluctua-
tions” those that tend to increase the effective group with
respect to the actual molecular symmetry. They are respon-
sible on the formation of the subunit. However, this increase
in the molecular symmetry does not exhaust the effects of the
orientational disorder. The subunit orientation itself can fluc-
tuate and GNem finally results from these fluctuations. Let us
call “external fluctuations” those describing the orientational

fluctuations of the subunit. They can be responsible on the
enhancement as well as on the breakdown of the macro-
scopic symmetry with respect to Geff. It is convenient,
though quite arbitrary, to think of internal fluctuations as fast
dynamical rotations �or jumps�, and of external fluctuations
as the “slow” spatial disorder of the resulting subunits.

Table V presents the effective molecular groups for
uniaxial and biaxial standard and vector nematics. They ex-
hibit five types of group relationship.

�1� The three groups identify with each other and the
strongly naive relation, Gmol=Geff=GNem, is satisfied. For
polar vectors �L0=1�, this happens with triclinic molecules
�Gmol=C1

int� in the triclinic phase, with monoclinic molecules
�Gmol=Cs

int� in the biaxial phase, and with cylindrical mol-
ecules �Gmol=C�v

int � in the uniaxial phase. One may roughly
picture such distributions by considering almost motionless
parallel molecules. However, this parallelism is not neces-
sary, e.g., in the standard lyotropic biaxial phase �Gmol

=Geff=GNem=D2h� the micelles are not parallel since they
have six possibilities for aligning their three internal twofold
axes with the three macroscopic axes. The resulting statisti-
cal set mixes the six corresponding molecular orientations
�20�. More generally, a necessary condition for the strongly
naive relation to hold for a given L0, is that Gmol belongs to
the maximal SG sequence of the fully-extended model. In
this case the strongly-naive phase with GNem=Gmol is always
theoretically possible.

�2� The subunit is more symmetric than the molecule
�Gmol�Geff=GNem�. This happens for instance in the con-
ventional uniaxial phase for tetragonal molecules
�C4v�D�h=D�h�. Internal fluctuations enhance the subunit
symmetry and external fluctuations are qualitatively negli-
gible �have neither symmetry-breaking nor symmetry-
enhancing effects�.

�3� In other cases one finds the converse situation: �Gmol

=Geff�GNem�. This happens, for instance, in the standard
uniaxial phase for orthorhombic molecules �D2h

=D2h�D�h�. There are no internal fluctuations whereas ex-
ternal fluctuations enhance the macroscopic symmetry.

In the two previous cases both types of fluctuations lead
to an increase of the symmetry. In the first case �uniaxial
conventional phase with Gmol=C4v

int� the internal fluctuations
are associated with an isotropic rotation of the molecule
about its fourfold symmetry axis, creating a cylindrical sub-
unit. The subunits are almost parallel and determine the sym-
metry of the phase. In the second case �uniaxial conventional
phase with Gmol=D2h

int� the molecules fail to reach an effec-
tive cylindrical symmetry because there is not one preferred
twofold axis singled out in D2h

int.
�4� The case of a strict inclusion relation

�Gmol�Geff�GNem� happens in the standard uniaxial phase
for monoclinic molecules �C2�D2h�D�h�. The molecular
twofold axis can then be either parallel or perpendicular to
the macroscopic optic axis.

Non-naive situations arise when the condition
Gmol�GNem is not satisfied. The fourteen such cases found
in Table V combine internal symmetry-enhancing and exter-
nal symmetry-suppressing fluctuations. For instance, in the
triclinic polar phase of a chiral mixture formed with mono-
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clinic molecules �Gmol=C2
int�, the subunit is cylindrically

symmetric �Geff=C�
int� but the anisotropy of its fluctuations

suppresses the macroscopic uniaxiality. In all cases one gets

Gmol � Geff � GNem. �18�

Table V presents two types of such non-naive situations:
�5� The example above of a triclinic polar phase corre-

sponds to the relation GNem�Gmol�Geff.
�6� In six cases there is no inclusion relationship between

Gmol and GNem. This happens, for instance, in the standard
biaxial nematic phase with Gmol=C4v

int �Geff=D�h
int ,GNem

=D2h
ext�. The corresponding naivety breakdown is due to the

frustration between molecular and macroscopic groups,
which forces symmetry-suppressing fluctuations.

Nevertheless, the fact that one finds then GNem�Geff is
possibly due to the approximation neglecting improper sec-
ondary order parameters �i.e., non-�external� symmetry-
breaking higher harmonics �with L�L0� in the expansion of

P�. This possibility is justified when the Isotropic
→Nematic transition is weakly first order so that the order
parameter is not saturated, at least close to the transition line.
In the case of a strongly first-order transition, several higher
harmonics play a role in the qualitative behavior of the fluc-
tuations, and the effective group depends on the behavior of
each PL, and not only on the primary PL0

. The true effective
molecular group is the intersection of the effective groups
obtained, by the external selection, for all primary and sec-
ondary PL giving non-negligible contributions to the equilib-
rium distribution function.

In Appendix C we present the classes and sequences for
tensors with rank �4 in achiral systems. They permit any-
body to determine immediately the stable phases and the
corresponding effective symmetry groups for all the mol-
ecules. For tensor of higher ranks, or in chiral systems, the
same procedure can be achieved after the �slightly longer�
preliminary calculation of the classes, group parametricities
and SG-sequences, as described in Appendix B.

TABLE V. Effective molecular symmetries in the nematic phases induced by various tensors �L
�±� vs the

molecular groups �Gmol� permitting these tensors. �a�: Polar vector �1
− in an achiral system. �b�: Vector �1 in

a chiral mixture. �c�: Vector �1 in an optically pure chiral system. �d�: Even second-rank tensor �2
+. �e�:

Second-rank tensor �2 in a chiral mixture. �f�: Second-rank tensor �2 in an optically pure chiral system.

a GNem=C�v GNem=CS GNem=C1

Gmol=C1 C�v CS C1

Gmol=CS C�v CS

Gmol=Cnv ,Cn C�v

b GNem=C� GNem=C1

Gmol=C1 C1 C1

Gmol=Cn C� C�

c GNem=C� GNem=C1

Gmol=C1 C1 C1

Gmol=Cn C�

d GNem=D�h GNem=D2h GNem=C2h GNem=Ci

Gmol=C1 ,Ci D2h Ci Ci Ci

Gmol=C2 ,CS D2h C2h C2h C2h

Gmol=D2 ,D2h D2h D2h D2h D2h

Cn�v,h� ,Dn�h� ,D2d ,D3d ,S4 ,S6 D�h D�h

e GNem=D� GNem=D2 GNem=C2 GNem=C1

Gmol=C1 C1 C1 C1 C1

Gmol=C2 C2 C2 C2 C2

Gmol=D2 D2 D2 D2 D2

Gmol=Cn ,Dn D� D� D� D�

f GNem=D� GNem=D2 GNem=C2 GNem=C1

Gmol=C1 D2 C1 C1 C1

Gmol=C2 D2 C2 C2 C2

Gmol=D2 D2 D2 D2 D2

Gmol=Cn ,Dn D� D�
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V. DISCUSSION

A. Molecular tensors and fluctuation coefficients

In the previous sections, the nematic order parameter has
been defined in a rather abstract way as a collection of coef-
ficients arising in the distribution function P�� ,��. Although
such coefficients are familiar in the nematic science, a more
intuitive approach in terms of molecular physical quantities
�e.g., the molecular polarization� is also useful. In this ap-
proach we consider the thermodynamic averaged values of
molecular tensors. Indeed, we shall show that all the distri-
bution coefficients can be expressed as combinations of such
tensor components �and reciprocally�, so that one can deal
equivalently with the statistic representation of the nematic
state or with its mean-molecular-tensor representation. More-
over, this equivalence permits us to reply to an elementary
objection concerning our theory, which deeply relies on the
numbering of independent tensors involved in the condensa-
tion process: When one considers additional macroscopic
mean tensors, such as the mean polarization or susceptibility,
the number of tensors can increase unboundedly and the fi-
nite tensor multiplicities used in the previous sections be-
come meaningless. This objection fails naturally when one
remarks that all these additional tensors are linear combina-
tions of the fluctuations coefficients and, hence, cannot be
considered as independent degrees of freedom. Expressing
the full theory on using either statistical or mean tensors is a
matter of convenience. All the results presented above can be
obtained along both ways. In fact, the two presentations are
related to two types of classical experiments. On the one
hand, the interpretation of x ray, NMR, or Raman spectra
lead to using the statistical degrees of freedom, whereas, on
the other hand, electric, magnetic, optic, etc. experiments
give results in terms of mean molecular tensors.

Let us first introduce a physical interpretation of the fluc-
tuation coefficients Pmm�

L,± in terms of molecular properties,
which completes the statistical interpretation given by Eqs.
�7�. Each molecular tensor can be expanded onto a tensor
basis, which is defined in analogy with the 3 geometrical
molecular vectors I ,J ,K �see Appendix D�. Let 
�m�

L+ and


�m�
L− �−L�m�L� be the corresponding complex bases of

even and odd tensors. Similarly, i , j ,k denotes the laboratory
basis of polar vectors and ���m�

L± � the laboratory bases of

Lth-rank tensors. Each basis molecular tensor 
�m�
L± turns with

the molecule, so that its 2L+1 components 
�m�
L±,p on the

laboratory basis ��p�
L± can fluctuate. Their statistical mean val-

ues �
�m�
L±,p� are related to the fluctuation coefficients by �see

Eq. �D11� in Appendix D�

�
�m�
L±,p� =

16�2

2L + 1
Ppm

L±*. �19�

Every physical tensor carried by the molecule is a linear
combination of the 
�m�

L± �e.g., the molecular polarization
reads p�0= pxI+ pyJ+ pzK�. Its corresponding components are
constant �they depend on the Hamiltonian of the molecule
but almost not on the thermodynamic conditions� so that its
fluctuations are completely described by Eq. �19�. Accord-

ingly, no new thermodynamic degree of freedom is intro-
duced by considering physical molecular tensors, with re-
spect to the set of parameters �
�m�

L±,p�� Ppm
L,±.

Equation �19� provides a more intuitive interpretation of
the selection rules than that given by Eq. �7�. Indeed, the
number of independent tensors that a given molecule can
physically carry is actually smaller than 2L+1 and depends
on its symmetry �e.g., a uniaxial molecule can carry a single
physical polar vector parallel to its rotation axis, otherwise
its symmetry would break below uniaxiality�. Equation �19�
states then that the list of independent molecular physical
tensors permitted by the molecular symmetry coincides with
the list of fluctuation tensors permitted by the internal selec-
tion rule.

For instance, in the case when the order parameter is a
polar vector and the molecule is vectorially uniaxial �e.g.,
Gmol=Cnv with n�2�, one finds from Eq. �19� that the inter-
nal selection rule yields �I�= �J�=0. This result is the mac-
roscopic counterpart of the absence of physical vectors par-
allel to I or J on such molecules. On the other hand,
according to the external selection in the uniaxial phase, the
macroscopic symmetry C�v

ext cancels the components �KX�
and �Ky� of the remaining macroscopic vector �K�. In other
words, internal fluctuations first create cylindrical subunits
without modifying the molecular polarization p�0= p0K, for it
is parallel to the molecular rotation axis. External fluctua-
tions rotate then the subunit about the macroscopic optic

axis, reducing the mean polarization P� /n= p0�Kz�k with re-
spect to p�0 ��Kz�� P00

1,−*�. At saturation �Kz�=1 so that mea-

suring P� provides also the magnitude of p�0. Conversely,

when one knows p0, measuring P� provides �Kz� and, hence,
the primary first harmonic P1=3�Kz��D00

1 /16�2 of the ori-
entation distribution P�� ,� ,� ,��.

Thus, beside classical diffusion experiments �21� Eq. �19�
provides an alternative macroscopic method for measuring
the fluctuation coefficients. For instance, in standard nemat-
ics �L0=2+ � measuring the five components of the dielectric
susceptibility �even second-rank tensor� at five different fre-
quencies permit to determine the twenty-five relevant coeffi-
cients Pmm�

2,+ appearing in the first nonzero harmonics of the
distribution. Along this line, an explicit construction of P2 is
presented in Ref. �20� for bent-core molecules. In this case,
due to the orthorhombic molecular symmetry �yielding n0

+

=2 from the internal selection�, only two frequencies are
necessary.

To summarize, instead of the fluctuation function PL0
, the

order parameter of the Isotropic→Nematic transition can be
alternatively defined as a set of measurable mean physical
molecular tensors. Indeed, Eq. �19� shows the two ap-
proaches are equivalent. In this respect, we shall discuss
hereafter unconventional models corresponding to L0=3−.

B. Third-rank tensor model

Lubensky and Radzihovsky �28� have proposed a model
of unconventional nematic phases in bent-core systems. It
involves one polar vector, one �even� second-rank tensor and
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one �odd� third-rank tensor as order parameters, which are
proportional to the macroscopic averages of the first, second,
and third mass moments of a bent-core molecule �Gmol

=C2v
int�. This model yields a rich polymorphism of complex

phases with uniaxial, tetrahedral, orthorhombic, rhombic,
and monoclinic symmetries. Some of these phases can arise
after the spontaneous onset of the third-rank tensor alone
�which in these phases is thus the primary order parameter�.
In this case, the list of stable phases has been determined by
Bul’bich �8�, giving �using our terminology� the following
maximal SG sequence: C1, C2, CS, C3, C2v, C3v, C3h, S4, D3h,
Td, C�v �we have corrected the list of Ref. �8� by suppressing
the group D2d because it belongs in fact to the class of Td�.
The corresponding classes are indicated in Appendix C, Fig.
7. It can be seen that in the case of the bent-core symmetry
group, C2v

int, the tensor multiplicity n0
−=2, so that the two-

tensor model is necessary to describe correctly the orienta-
tional fluctuations while the model �28� has a single tensor.

Let us now describe the molecular physical tensors per-
mitted on bent-core molecules. The internal selection applied
to such molecules permits one molecular polar vector �
�0�

1−

=K� along OZ �parallel to the twofold axis� and forbids axial
vectors. Two even �
�0�

2+ ,
�2�
2+ +
�−2�

2+ � and one odd �
�2�
2+

−
�−2�
2+ � second-rank tensors, and one even �
�2�

3+ +
�−2�
3+ � and

two odd �
�0�
3− ,
�2�

3− −
�−2�
3− � third-rank tensors are also per-

mitted in the molecule. For instance, the third mass moment
used in Ref. �28� can be expressed as the linear combination
m0
�0�

3− +m2�
�2�
3− −
�−2�

3− �, where m0 and m2 are constant char-
acteristics of the molecule. Accordingly, a complete descrip-
tion of the fluctuations needs at least one additional even
second-rank and, as stated above, one additional odd third-
rank tensors with respect to the model �28�. On the other
hand, we have shown �see Appendixes B and C� that all the
phases occurring in the third-rank model can be stabilized
with a single tensor �i.e., n�=1�. Thus, although the one-
third-rank tensor approach of Ref. �28� is not complete at the
viewpoint of fluctuations, it provides a fully-extended ther-
modynamic model.

Let us now determine the form of the distribution function
and some characteristic properties of the tetrahedral and
trigonal phases T and V+3 predicted by Lubensky and
Radzihovsky. The external selection in the tetrahedral T
phase �GNem=Td

ext� forbids all the macroscopic vectors, the
second-rank and the even macroscopic tensors, whereas it
permits a single macroscopic odd third-rank tensor ���2�

3−

−��−2�
3− �. Taking also into account the internal selection, one

sees it remains only two odd ��
�0�
3−� and �
�2�

3− −
�−2�
3− �� and

one even ��
�2�
3+ +
�−2�

3+ �� order parameters of rank smaller
than 4. After setting the threefold axes of T along the diag-
onal directions of the laboratory frame, one finds: �
�0�

3−�
=T0���2�

3− −��−2�
3− � and �
�2�

3− −
�−2�
3− �=T2���2�

3− −��−2�
3− �. We have

shown above that the knowledge of the macroscopic mean
tensor values is equivalent to the knowledge of the corre-
sponding harmonics in the distribution function P. Hence,
within the third-harmonic approximation the equilibrium dis-
tribution reads

P =
1

8�3 +
7�

16�2 �T2�D22
3 + D−2−2

3 − D2−2
3 − D−22

3 � + T0�D20
3

− D−20
3 �� . �20�

T0 and T2 are the two effective components of the order
parameter, which vary freely with temperature in T. Since
the actual molecular symmetry C2v

int belongs to the SG se-
quence associated with a single odd third-rank tensor �see
Appendix C, Fig. 7, Table IV, and Ref. �8��, one has Geff
=Gmol. This shows that phase T is weakly naïve, with the
following relationships between its characteristic groups:
Gmol=Geff=C2v�Td=GNem.

Let us now deal with the trigonal subphase of T denoted
by V+3 in �28�. This phase is non-naive since there is no
group-subgroup relationship between Gmol=Geff=C2v

int and
GNem=C3v

ext. Its macroscopic symmetry permits one macro-
scopic polar vector, one even second-rank tensor, one even
and two odd third-rank tensors. Thus, Eq. �20� provides
again the even third harmonics of P, whereas additional vec-
tor, second-rank, and odd third-rank terms give its
symmetry-breaking contributions with respect to its expres-
sion in the tetrahedral phase T. The vector and the axis of the
uniaxial optic tensor are directed along the threefold rotation
axis of C3v

ext �say i+ j+k�. They are given by

�
�0�
1−� = p���0�

1− + ei�/4��1�
1− − e−i�/4��−1�

1− � ,

�
�2�
2+ − 
�−2�

2+ � = C��i��−2�
2+ − i��2�

2+� + �i − 1���1�
2+ + �1 + i���−1�

2+ � ,

whereas the odd third-rank tensors read

�
�0�
3−� = T0� + T0���,

�
�2�
3− − 
�−2�

3− � = T2� + T0���,

where

� = ��2�
3− − ��−2�

3− ,

�� = �5�1 − i���3�
3− − �3��1�

3− + 8��0�
3− + �3��−1�

3−

− �5�1 + i���−3�
3− .

Finally, the even third-rank tensor takes the form

�
�2�
3+ + 
�−2��

3+ � = E���2�
3+ − ��−2�

3+ � .

These expressions together with Eq. �20� provide the se-
lected expansion of P up to the third harmonics vs seven
fluctuation coefficients. T0 and T2 exist already in the T
phase whereas p, C, T0�, T2�, and E form the order parameters
associated with the T→V+3 first-order transition. Let us
stress that each of them alone is sufficient to break com-
pletely the tetrahedral symmetry.

Let us finally note that in Ref. �28� a number of phases are
lacking with respect to the maximal SG sequence of the
third-rank tensor, namely those with the macroscopic groups:
C1

ext, C3
ext, C3h

ext, and S4
ext. This result is puzzling since we have

shown that the one-tensor model is fully extended, so that the
full set of phases should be stabilized. However, to obtain a
phase diagram in which all the phases have extended do-
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mains of stability, the free energy expansion of the fully-
extended model must, in addition, take into account high-
degree polynomials of the tensor components. More
precisely, in this model the free energy actually depends on
six basic invariant polynomials, the highest invariant being
of the sixth degree. Thus, the free energy should be expanded
at least to the twelfth degree for stabilizing the least-
symmetric phases of the SG sequence. Since the free energy
used in Ref. �28� is expanded only up to the fourth degree,
the stability domains of some low-symmetry phases collapse
within this approximation.

C. Conclusion

Taking into account the molecular symmetry within the
phenomenological approach to the nematic phases permits a
complete description of the orientation fluctuations together
with a rigorous construction of the thermodynamic behaviors
at the transition. More particularly, the list of stable phases,
and hence the phase diagrams, are strongly dependent of the
molecular symmetry. We have shown how to determine this
list, and how to build the corresponding Landau model
�order-parameter space+invariant polynomials�, vs the rank
and parity of the tensor order parameter, on the one hand,
and the molecular symmetry, on the other hand. This yields a
larger variety of models and possible behaviors than what is
expected in the conventional theory, which is valid only in a
limited class of molecular symmetries. Indeed, in addition to
the new phases, stabilized when the internal groups permit
several tensors, each phase can appear under various quali-
tatively distinct “states.” Indeed, the physical properties of a
nematic system depend not only on its macroscopic group
�which defines the phase� but also on the effective molecular
symmetry. Accordingly, in a given nematic phase, systems
made with molecules that do not belong to the same class
correspond to states exhibiting qualitatively distinct physical
properties. They can be experimentally distinguished pro-
vided the experimental set up is sensitive to molecular prop-
erties averaged at the appropriate time and space scales.

This diversity is accounted for by only three integer num-
bers: The tensor multiplicities n0

± and n0�
±, on the one hand,

and the order-parameter multiplicity n�, on the other hand,
which can be computed by simple algorithmic procedures.
Knowing these numbers is sufficient to determine the list of
stable phases and the possible effective molecular symme-
tries resulting from a given model. In this respect our work
provides the building rules on which relies any phenomeno-
logical model of nematics, which can be easily applied to
any type of tensor with any molecular symmetry. So, we
have not really attempted, as in our previous papers �7,20� to
work out extensively concrete examples. Instead, we have
illustrated our methods by superficially discussing some as-
pects of the classical vector, second-rank and third-rank
models. Among the general results demonstrated here, let us
note the fact that the effective molecular symmetries and the
possible macroscopic symmetries associated with a given
tensor belong to a common class of groups, namely the
maximal SG sequence. However, these two groups do not
necessarily coincide in a given system, and the determination

of the subunit symmetry needs the molecular classification
together with the tensor and order-parameter multiplicities.
For instance, the fact that the cylindrically-symmetric sub-
unit in conventional nematics is stable in a limited class of
molecules, and that it must be replaced with orthorhombic,
monoclinic or triclinic subunits in other cases, is an impor-
tant and not completely trivial result.

Nematic phases associated with tensors of rank L0�2
have never been unambiguously reported. Nevertheless,
clarifying the properties of such tensors is not only of pro-
spective or academic interest. Indeed, various such tensors
appear as secondary order parameters in the rich family of
smectic and columnar structures, in which they describe the
local orientation and fluctuations of the molecules. For in-
stance, the phase denoted by SmCP �29� �or R phase in Ref.
�30�� in bent-core systems presents a puzzling situation in
which the local point groups are CS, C2v, and C2h according
to the position considered in the structure. The position C2h
is particularly intriguing because there is no group-subgroup
relationship between C2h and the molecular symmetry C2v.
The orientational order parameter consists then of one
second-rank tensor, one axial and one polar vector �30� vary-
ing with position, and the C2h position is obviously non-
naive.

Reliable experimental data concerning unconventional
nematics are rather rare. We have already discussed those
concerning �possible� polar nematics �L0=1−, n0

−=2� in poly-
ester compounds �7� and classical �L0=2+, n0

+=2� bent-core
nematic phases �20�. Let us note that almost all the mol-
ecules forming classical nematic phases are in fact uncon-
ventional, since their symmetry groups seldom belong to the
uniaxial class. However, their unconventional character
should be weak �i.e., the additional tensor equilibrium values
are much smaller than the main tensor� due to the fact that
rodlike or disklike molecules have usually an approximate
cylindrical symmetry. However, we have shown that qualita-
tive differences emerge with respect to actually conventional
molecules. Careful experiments sensitive to the effective mo-
lecular symmetry must evidence this unconventional charac-
ter, as for instance the ordering of the small molecular axes
in the uniaxial phase �since the internal cylindrical rotation
does not hold for such molecules�. Moreover, in the continu-
ously increasing new families of mesogens, there exist surely
many that are not approximately cylindrically symmetric and
should display strong unconventional properties even in the
classical uniaxial phase �as orthorhombic micelles and bent-
core molecules�.

Although we have only studied chemically pure systems,
our approach extends naturally to mixtures on making P de-
pendent of an additional index associated with the molecular
species. It extends also easily to magnetic complex fluids
�see, e.g., Ref. �31�� by introducing a new index changing its
sign under time-reversal symmetry �as � changes under the
space inversion I�. In order to account for flexible molecules,
additional internal degrees of freedom must also appear in P.
However, in this case the molecular configurations might
also undergo symmetry-breaking transformations, which
would require a wide deepening of the theory. Moreover,
many nematogenic molecules have more than one con-
former, some of them with no symmetry. Finally in systems
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formed with macromolecules, it might be necessary to in-
clude new types of molecular symmetries. For instance, in
many respects DNA molecules can be considered as one-
dimensional infinite objects with an approximate internal he-
lical symmetry, which is not accounted for by a point group.

APPENDIX A

In order to characterize quantitatively the orientation dis-
tribution of a mixture consisting of right-handed and left-
handed rigid molecules of the same type, let us first rigidly
tie a set of orthogonal frames on each molecule in the sys-
tem. The symmetry group of a chiral molecule Gmol= �g1

=e ,g2 , . . . ,gg� contains g rotations. Thus, for consistency
one ties g right-handed frames on each right-handed mol-
ecule. The orientation of the first frame, denoted by 	1
= �I ,J ,K�, is chosen arbitrarily in the molecule. The other
frames tied to the same molecule, denoted by 	q=gq	1 �q
=2, . . . ,g�, are turned with respect to 	1 by the operations gq

of Gmol. Likewise, one ties g left-handed frames on each
left-handed molecule: 	1�= �−I ,−J ,−K�, 	2�=g2	1�, etc. For
an arbitrary orientation of the molecule in space, the frames
orientations are described by g rotation matrices R� �or
equivalently by their Euler angles �= �� ,� ,��� which trans-
form the laboratory frame 	0= �i , j ,k� �resp. 	0�= �−i ,−j ,
−k�� into the molecular frames 	q=R�	0 �resp. 	q�=R�	0��.

In a mixture consisting of N0=NL+NR molecules, one de-
notes by NL and NR the numbers of left- and right-handed
molecules respectively. Let N�� ,��d� �d�=sin �d�d�d��
be the number of frames characterized by the handedness �
��= +1 or −1 for right- and left-handed frames respectively�
and the orientation R�. The corresponding statistical distri-
bution P�� ,��=N�� ,�� /N0g is related to the concentration
of left-handed molecules CL=NL /N0=


P�� ,−�d� and to
that of right-handed molecules CR=NR /N0=


P�� ,
+1�d� �CR+CL=1 and CR=CL=1/2 in achiral systems�.
P�� ,−1� /CL is the probability of finding one left-handed
molecule with one of its frames oriented by R� whereas
P�� , +1� /CR is the same probability for one right-handed
molecule. For achiral molecules the two types of frame are
tied to the same molecule, and the functions P�� ,1� and
P�� ,−1� become dependent. One defines henceforth the ori-
entations of the left-handed frames with respect to 	0�= �−i ,
−j ,−k�, so that one has P�� ,1�= P�� ,−1� when the mol-
ecule is centrosymmetric.

APPENDIX B

The conventional order parameter � describing a phase
transition spans an irreducible representation � �set of matri-
ces associated with the symmetries of O�3�� of the high-
symmetry phase. The “kernel” K is defined as the subgroup
associated with the identity matrix in � �30�. An equilibrium
state is represented by a vector in the abstract vector space of
the order-parameter components. A vector lying along the
general direction in the � space represents the least-
symmetric stable phase �denoted by L phase�. However,
when the broken symmetry is continuous, it may happen that

the group GL of this phase is larger than the kernel. In this
case, neighboring general directions have different symme-
tries. Their groups belong to a continuous class of isomor-
phic subgroups, the intersection of which coincides with the
kernel. Considering now an “extended order parameter” con-
sisting of several isomorphic copies of �, say ��1�, ��2�, ��3�,
etc., opens the possibility of breaking the symmetry beyond
GL. Taking, for instance, ��1� and ��2� in two distinct general
directions in the � space yields a phase whose symmetry
group G belongs to the intersection of their groups
�K�G�GL�. Increasing the number of nonparallel copies
resumes the process until the kernel is reached �G=K in the
K phase�. The number n� of copies necessary for achieving
this process, called the “order-parameter multiplicity,” de-
pends on the representation, but it never exceeds the dimen-
sion d� of �. Indeed, the linear symmetry group leaving in-
variant a set of d� nonparallel vectors in the d� dimensional
� space leaves all the vectors of this space invariant, and is
thus confused with the kernel.

Let us expose now the methods yielding the SG se-
quences, the classes, the group parametricity ā�Gi� and the
order-parameter multiplicity n�. Consider an Isotropic
→Nematic transition associated with a representation � of
the symmetry group GHS of the parent phase. Let �Gi� be the
set of subgroups of GHS. More precisely, each Gi represents a
continuous family of conjugate subgroups �e.g., CS repre-
sents the set of all mirror planes whatever their orientations
be in space�. To each Gi one associates two integers: �i�
��Gi� is the dimension of the family ���Gi�=0 for Gi

= �S�O�3�, ��Gi�=2 for Gi=CS, Cn, Cnh, Sn�n�1�, C�v, D�,
D�h, and ��Gi�=3 otherwise�. �ii� ���Gi� is the dimension of
the order-parameter subspace consisting of vectors whose
common symmetry is one given group in the family Gi �this
number is independent of the choice of the group in the
family�. It is equal to the multiplicity of the totally symmet-
ric representation in the decomposition of � as a direct sum
of irreducible representations of Gi. In the case when � is
irreducible ���Gi� is given by n0

± in Eq. �10�. provided Gmol

is replaced by Gi in the sum, whereas when � is reducible
the contributions of each irreducible part must be summed
up. Finally, ���Gi� is the dimension of the order-parameter
subspace comprising vectors representing all the domains of
the phase associated with the family Gi. One finds obviously
���Gi�=���Gi�+��Gi�.

Consider the set of Gi associated with a given value of
���Gi�. Each one possesses a subset of maximal elements,
defined by the fact that they are not subgroups of other
groups in the set. To each maximal element is associated one
“class,” comprising the Gi in the set which are subgroups of
this maximal element. The maximal elements form the “SG
sequence.” Determining the SG sequence is a straightforward
algorithmic procedure.

Consider transitions where � contains b copies of an ir-
reducible tensor representation �: �=� � ¯ � �=b�. Then,
���Gi�=b���Gi�=bn0

±. When b=0 the SG sequence is re-
stricted to GHS. When b=1 the SG sequence starts at GHS
and terminates at GL. Increasing b inserts new phases in the
SG sequences. When K is reached, the SG sequence is called
the “maximal SG sequence” of �. To each Gi in the maximal
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SG sequence one associates its “group parametricity” ā�Gi�
equal to the minimal number of � copies in � �i.e., b� nec-
essary to stabilize the phase with external symmetry Gi. ā�K�
is the “order-parameter multiplicity” n�. The determination
of ā�Gi� is based on the fact that, if �1� ���Gi��dim���, and
�2� there is no Gj �Gi with ���Gi�=���Gj�, then Gi belongs
to the SG sequence of �. Hence, the minimal element Gm in
the SG sequence of � is characterized by: ���Gm�
�dim��� while, for any Gp such that Gm�Gp, one has ei-
ther ���Gp��dim��� or ���Gp�=���Gm�. Then, any proper
subgroup of Gm is excluded from this sequence.

Let us illustrate the method with polar nematics ��=�1
−�

in an achiral system. The ��=n0
± are given in Table I. The

maximal SG sequence contains O�3����=0�, C�v���=1�,
Cs���=2�, and C1���=3�. Since ���C�v�=1.1+2=3
=dim��� and ���Cs�=1.2+2=4�dim���, C�v is the mini-
mal element of the first �nontrivial� SG sequence:
�O�3� ,C�v�. Then, �2��C�v�=2.1+2�6=dim�2��, �2��CS�
=2.2+2=6 whereas �2��C1�=2.3+0=6, hence CS is the
minimal element of the second SG sequence �O�3� ,C�v ,CS�.
Finally, since �3��CS�=3.2+2�9=dim�3�� whereas �3��K
=C1�=3.3+0=dim�3��, the third sequence is maximal. One
finds thus ā�O�3��=0, ā�C�v�=1, ā�CS�=2, and ā�C1�=n�

=3. Consider now a third-rank odd tensor ��=�3
−�. The

maximal sequence contains O�3���=0��, C�v���=1�,
Td���=1�, D3h���=1�, C3h���=2�, S4���=2�, C2v���=2�,
C3���=3�, C2���=3�, CS���=4�, and K=C1���=7�. Since
���CS�=4+2�7=dim��� whereas ���C1�=7=dim���, the
first SG sequence is maximal and n�=1.

APPENDIX C

We present the SG sequences and molecular classes for
tensors of rank L=1,2 ,3 ,4 in achiral systems �Figs. 5–8�.
One class contains the molecular groups having always the
same effective symmetry. The elements of one class have
also the same value of n0

+ or n0
− �or of n0�

+, n0�
− when the

groups are external�, which are indicated beside the classes.
The maximal elements of all the classes form the maximal
SG sequence. This sequence contains the groups correspond-
ing to nematic phases that can be stabilized when one or
several Lth-rank tensors condense. The number ā �group
parametricity� of tensors necessary to stabilize the phase as-
sociated with one of these groups is indicated beside the
group in the sequence. The order-parameter multiplicity n� is
the value of ā corresponding to the kernel, C1 �odd tensors�
or Ci �even tensors�. A SG sequence is obtained by keeping
only the groups of the maximal SG sequence with ā� fixed
integer.

The SG sequence can also be used to determine effective
molecular groups arising in the nematic phases. Let us take,
as an illustrating example, molecules with symmetry C2

int

when the order parameter is an even second-rank tensor ��2
+�.

Figure 6 shows that C2
int belongs to the class �C2 ,Cs ,C2h�.

This means first that, in all the possible nematic phases, mol-
ecules with one of these groups behave equivalently. In par-
ticular, they have always the same form of the first harmonic
of the distribution function, and the same effective symme-

try. Moreover, this effective symmetry is always larger or
equal to C2h

int. The number of tensors �2
+ arising in the orien-

tational distribution of such molecules is n0
+=3 �see Fig. 6�.

Thus, all the possible stable phases that can be stabilized
with 3 tensors are permitted in the phase diagram associated
with these molecules. Since the maximum number of tensors
�n�� needed to stabilize all the phases �see Fig. 6� is 2 �ā
=2 in the least symmetric phase, Ci

ext�, such molecules can
be associated with the full list of stable phases in the maxi-
mal SG sequence: �O�3� ,D�h

ext ,D2h
ext ,C2h

ext ,Ci
ext�. In the uniaxial

phase with symmetry D�h
ext, the number of permitted internal

tensors is n0�
+=1 �see Fig. 6�. Hence, the number of indepen-

dent coefficients in the distribution function P is n0
+ n0�

+=2.
With n0�

+=1, the internal permitted symmetries �see Fig. 6�
are �O�3� ,D�h

int ,D2h
int� �list of groups in the maximal SG se-

quence with ā�1�. All these groups contain Gmol=C2
int. Con-

sequently, the effective symmetry group is the least symmet-
ric in this list, Geff=D2h

int. In the biaxial phase �GNem=D2h
int�,

n0�
+=2 �yielding four independent parameters in P� and all

the groups of the maximal SG sequence are candidate for the
effective symmetry of the molecule. Since Ci

int does not con-

FIG. 5. Molecular classes when the order parameter is an axial
��1

+� or a polar ��1
−� vector. The classes are surrounded by thick

lines. The maximal element of each class lies inside an oval. The
value of n0

± �or of n0�
±� common to all the groups in one class is

indicated beside the class. Some group-subgroup relationships are
indicated by broken lines. The maximal SG sequence is presented
on the right. Each group in this sequence is represented with its
group-parametricity, ā. The order parameter multiplicity is n�

= ā�C1� or ā�Ci�. Straight lines represent the group-subgroup rela-
tionships between the elements of the maximal SG sequence. The
successive nonmaximal SG sequences are formed with all the
groups having ā�0,1 ,2 , . . . ,n�.
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tain Gmol, the effective group is the least symmetric remain-
ing group in the sequence, namely C2h

int. In the monoclinic
phase �GNem=C2h

ext�, n0�
+=3, and six independent coefficients

arise in P, whereas in the triclinic phase �GNem=Ci
ext�, n0�

+

=5, and ten independent coefficients arise in P. In both cases
all the effective groups are possible so that, once again, the
actual effective symmetry is C2h

int.
Let us now focus on the biaxial phase, and calculate the

effective symmetry associated with higher harmonics of P.
Since C2h

ext contains I, no odd tensor appears in the distribu-
tion function. Moreover it forbids also the presence of an
axial vector. On the contrary, it permits one third-rank �n0

+

=1 in Fig. 7� and three fourth-rank tensors �n0
+=3 in Fig. 8�.

Figures 7 and 8 show that C2 molecules belong to the class
of C2h for both tensors, so that the effective symmetry cannot
decrease below C2h

int. With one third-rank tensor the permitted
effective groups are not limited in the maximal SG sequence,
but since C2h is the least symmetric group of the sequence
containing Gmol=C2, the effective symmetry of this har-
monic is C2h

int. With three fourth-rank tensors the permitted
effective groups are neither limited in the maximal SG se-
quence. Again C2h is the least symmetric group of the se-
quence containing Gmol=C2, so that the effective symmetry
of this harmonic is also C2h

int. We conclude that the harmonics
up to the fourth order do not modify the effective symmetry

C2h
int resulting from the primary tensor. In fact, it is obvious

that this result holds for all the harmonics since C2h
int is gen-

erated by C2
int and Iint= Iext�GNem �see, Eq. �4��.

APPENDIX D

We formalize the relationship between macroscopic ten-
sors Pmm�

L,± and the microscopic basis tensors 
�m�
L±,p carried by

one molecule. Let us begin with polar vectors lying on a
chiral triclinic molecule �Gmol=C1

int�. The molecular complex
vectors I�m=0,±1� �I�±1�= �±I− iJ� /�2, I�0�=K� transform under
internal rotations as

R

intI��m� = 	

p=−1

1

Dmp
1 �R


−1�I��p� �D1�

The laboratory basis �i�m�� transforms under external rota-
tions as

R

exti��m� = 	

p=−1

1

Dmp
1 �R


-1�i��p�. �D2�

In general the molecule is rotated with respect to its ref-
erence orientation �conventionally defined by I�m�= i�m�� by
the external rotation R�

ext :I�m����=R�
exti�m�. Hence, from Eq.

�A2� one finds

FIG. 6. Molecular classes and maximal SG-sequence when the
order parameter is an even ��2

+� or an odd ��2
−� second-rank tensor.

FIG. 7. Molecular classes and maximal SG sequence when the
order parameter is an even ��3

+� or an odd ��3
−� third-rank tensor.
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I��m���� = 	
p=−1

1

I�m�
p i��p� = 	

p=−1

1

Dmp
1 �R�

−1�i��p� = 	
p=−1

1

Dpm
1 �R��*i��p�,

�D3�

where I�m�
p are the complex components of I�m� on the labo-

ratory frame �i�p��. In a chiral mixture the right-handed
frames �I�m�� are tied to right-handed molecules whereas the
left-handed frames �−I�m�� are tied to left-handed molecules.
Let us define I�m��� ,��=�I�m����. After averaging over P
one finds

�I�m�
p ��,��� = ��Dpm

1 �R��*� =
16�2

3
Ppm

1−*. �D4�

Elementary algebra yields the transformation properties of
the average molecular vectors

R

int�I��m�� =� I��m��R��P�R�R


−1�d� = 	
p=−1

1

Dmp
1 �R


−1�I��p�,

R

ext�I��m�� =� I��m��R��P�R


−1R��d� = R
�I��m�� ,

I�I��m�� = − �I��m�� . �D5�

One defines also a complex basis of molecular �resp. labo-
ratory� axial vectors J�m���� �resp. j�m�� on the right-handed
molecules. Axial vectors do not depend on the molecules
handedness, so that J�m��� ,��=J�m����. This leads to

�J�m�
p ��,��� = �Dpm

1 �R��*� =
16�2

3
Ppm

1+*, �D6�

�I�m�� and �J�m�� transform under rotations according to the
same rules �Eqs. �D5�� whereas

I�J��m�� = �J��m�� . �D7�

For more symmetric molecules the number of indepen-
dent molecular vectors is �3. For instance, when Gmol
=C2

int �K parallel to the twofold axis� no physical vector can
arise along I and J. The number of independent physical
vectors is equal to the internal selection multiplicity n0

− �Eq.
�10� with L=1�. n0

−=0 when Gmol is nonpolar �containing
Ci

int, D2
int, or Tint�, n0

−=1 if Gmol contains a single rotation
axis, n0

−=2 when Gmol=CS
int, and n0

−=3 for Gmol=Ci
int. In the

latter case, the three independent physical vectors may be
chosen parallel to I, J, and K. When n0

−=2, one may choose
the two vectors parallel to I and J �i.e., K normal to the
molecular mirror plane�, and when n0

−=1, one may choose
the single physical vector parallel to the rotation axis K. The
distribution P being invariant under the internal twofold axis,
one has -�I�=C2

int�I�= �I�, i.e., �I�=0 and similarly for �J�.
One thus recovers, in a more transparent way, the results of
the internal selection. It remains only 3 vector coefficients in
P, corresponding to the components of �K�.

The standard complex basis ��m�
L+ �−L�m� +L� in the

space of laboratory Lth-rank even contravariant tensors

���L�
L+ = j�1� � · · � j�1�, ��m−1�

L+ = L̂ ���m�
L+ /�L�L+1�−m�m−1��

transforms as

R

ext��m�

L+ = 	
p=−L

L

Dmp
L �R


−1���p�
L+ ,

I��m�
L+ = ��m�

L+ ,

��−m�
L+ = �− 1�m��m�

L+*, �D8�

whereas the molecular basis 
�m�
L+ �
�L�

L+ =J�1� � ¯ � J�1��
transforms as


�m�
L+ �R�� = R�

ext��m�
L+ . �D9�


�m�
L+ has the same components on the molecular frame �I�m��

as ��m�
L+ has on the laboratory frame �i�m��. Thus

R

int
�m�

L+ �R�� = 
�m�
L+ �R�R
� = 	

p=−L

L

Dmp
L �R


−1�
�p�
L+�R�� ,

R

ext
�m�

L+ �R�� = 
�m�
L+ �R
R�� = 	

p=−L

L

Dmp
L �R�

−1R

−1R��
�p�

L+�R�� ,

FIG. 8. Molecular classes and maximal SG sequence when the
order parameter is an even ��4

+� or an odd ��4
−� fourth-rank tensor.
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I
�m�
L+ �R�� = 
�m�

L+ �R�� . �D10�

Comparing Eqs. �D10� with Eqs. �3� and �1� shows that
much care must be paid with the transformation algebra.

�m�

L+ has the same components on the basis of both left- and

right-handed molecules, and we can define 
�m�
L+ �R� ,��

=
�m�
L+ �R��. Along the same way we define a standard basis

of odd tensors 
�m�
L− �R� ,��=�
�m�

L− �R� ,��. They obey the

same rotational properties �Eq. �D8�� as even tensors, but
with I
�m�

L− =−
�m�
L− . Equations �D8� and �D9� show that the

functions Dpm
L �R��* and �Dpm

L �R��* coincide with the com-
ponents 
�m�

L+,p�R�� and 
�m�
L−,p�R�� of 
�m�

L+ �R� ,�� and


�m�
L+ �R� ,�� on ��p�

L+ and ��p�
L−, respectively. Thus, one gets

after averaging on P and taking Eq. �D10� into account

�
�m�
L±,p� =

16�2

2L + 1
Ppm

L±*. �D11�
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