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We use a solution of the spin fermion model which is valid in the quasistatic #fi wg, found in the
intermediate(pseudoscalingregime of the magnetic phase diagram of cuprate superconductors, to obtain
results for the temperature and doping dependence of the single particle spectral density, the electron-spin
fluctuation vertex function, and the low frequency dynamical spin susceptibility. The resulting strong anisot-
ropy of the spectral density and the vertex function lead to the qualitatively different behaviot [@round
k= (,0)] andcold[aroundk= (7/2,77/2)] quasiparticles seen in ARPES experiments. We find that the broad
high energy features found in ARPES measurements of the spectral density of the underdoped cuprate super-
conductors are determined by strong antiferromagri&g correlations and incoherent precursor effects of an
SDW state, with reduced renormalized effective coupling constant. Due to this transfer of spectral weight to
higher energies, the low frequency spectral weighth@fstates is strongly reduced but couples very strongly
to the spin excitations of the system. For realistic values of the antiferromagnetic correlation length, their Fermi
surface changes its general shape only slightly but the strong scattering of hot states makes the Fermi surface
crossing invisible above a pseudogap temperafyre The electron spin-fluctuation vertex function, i.e., the
effective interaction of low energy quasiparticles and spin degrees of freedom, is found to be strongly aniso-
tropic and enhanced for hot quasiparticles; the corresponding charge-fluctuation vertex is considerably dimin-
ished. We thus demonstrate that, once established, strong AF correlations act to reduce substantially the
effective electron-phonon coupling constant in cuprate superconducs@k63-1829)01421-6

. INTRODUCTION HgBaCaCu;0g, and ThBa,CaCuy0;, Systems, if one de-
fines an optimally doped system as that which possesses the
In addition to their high transition temperatures and thehighest superconducting transition temperature within a
dy2_y2 symmetry of their superconducting state, the cupratgyiven family, then optimally doped systems are in fact un-
superconductors possess a remarkable range of normal stg{grqoped.
anomalies. Seen first as charge response anomalies in tranS'Attempts to understand the different regimes of this phase
port, Raman, and optical experiments, and subsequently fa4ram have been based on strong magnetic precdrors,

Spin _response anpmalles In nucle_ar magnetlc' resonantfie formation of dynamical charge modulations in form of
(NMR) and inelastic neutron scatteriffNS) experiments, stripes!! the appearance of preformed Cooper pairs above

recent specific heat and angular resolved photoemissiaP 8-10 o the separation of spin and charae dearees of
spectroscopyARPES experiments have shown that these_ ¢’ 12.13 P b 9 9

anomalies are accompanied by, and may indeed originate ilt{eedom. . - . .
anomalous planar quasiparticle behavior. It is convenient to, A phase dlagram similar to Fig. 1 was independently de-
discuss the temperature and doping dependence of this “unfived from studies of the charge response by Hwang, Bat-
formly” anomalous behavior in terms of the schematic phase®99, and their collaboratqlr’é and from an analysis of the
diagram shown in Fig. 1. There one sees that overdoped arf@ frequency NMR exp_enmerﬂt'éby Barzykin and Pine§?
underdoped systems may be distinguished by the extent tbhe latter authors identified the upper crossover temperature,
which these exhibit crossover behavior in the normal state ', from measurements of the uniform susceptibiljy, in
underdoped systems exhibit two distinct crossovers in norKnight shift experiments, which show that for underdoped
mal state behavior before going superconducting, whileystemsy, possesses a maximum at a temperaflife
overdoped systems pass directly from a single class oivhich in underdoped systems, increases rapidly fignas
anomalous normal state behavior to the superconductinthe doping level is reduced. The fall-off in susceptibility for
state! In a broader perspective of this schematic phase diatemperatures beloWw® was first studied in detail by Alloul
gram, which is applicable to the YB@wO,_ 5, etal,’” and led Friedéf to propose that it might arise from
YBa,Cu,Og, Bi,SrL,Ca Cw,0q., 5, HgB&aCuQy, 5, a near spin density wavésDW) instability; he coined the
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T AN both wg and ¢! exhibiting linear inT behavior, while the
%: rapid increase T, T, or what is equivalentpg, found
S| below T* suggests that strong pseudogap is an appropriate
&2 weak . . .
<1 T \ pseudogap descriptor for _th|s behawqr.
I regime An alternative perspective on weak and strong pseudogap
apoike | | behavior comes from ARPE3? and tunneling
: pszt;gggap experimentg; which focus directly on single particle excita-
I regime tions. AboveT*, ARPES experiments show that the spectral
3 : density of quasiparticles located near the,@) part of the
200K 1S | T Brillouin zone, develops a high energy feature, a result
S : which suggests that the transfer of spectral weight from low
_;-_g I energies to high energies for part of the quasiparticle spec-
< Superconductor - trum may be the physical origin of the weak pseudogap be-
doping havior seen in NMR experiments. Beldk¥, ARPES experi-

) ) ments disclose the presence of a leading-edge gap, a
the presence of two different crossover temperatufés: which relative to the chemical potential by an amount up to

characterizes the onset of sizable antiferromagnetic correlation%o meV for quasiparticles nearr(0); it seems natural to

and T*, which signals the onset of a considerable loss of low e.n.-associate the strong pseudogap behavior seen in the NMR

ergy spectral weight in the quasiparticle spectrum leading to a mini- . . is | in R n nnelin
mum of the characteristic spin-fluctuation enekgy. The region experiments with this leading edge gap. Recent tunneling

betweenT® andT* is the weak pseudogap regime discussed in thise_xperlments have shown th‘f’“ both the hlgh_energy fgature
paper. (i.e., weak pseudogap behaviand thg strong smglt_e particle
pseudogap can also be observed in the tunneling conduc-
tance, with the high energy feature occurring primarily in the
term pseudogap to explain its behavior, in analogy to th%ccupied part of the spectrum.
quasiparticle pseudogap seen in charge density W@k&V) Strong pseudogap behavior is also seen in specific heat,
systems. Barzykin and Pines identified further crossover begyc transport, optical experiments, and Raman experiments.
of the *3Cu nuclear spin-lattice relaxation im&T, , asthe < T, has been extracted from the optical conductivity us-
temperature was reduced beldi. They noted that between ing a single band pictur®. This suggests that excitations in
T and a lower crossover temperatur;, the product the pseudogap regime are more coherent than expected by
®3T,T decreases linearly in temperature, while shortly belowextrapolation from higher temperatures. This point of view is
T* this product has a minimum, followed by an increase asupported by recent Raman experimé&htéwhich observe
the temperature is further lowered, an increase which isn the By, channel, sensitive to single particle states around
strongly suggestive of gaplike behavior. They proposed thak— (7 0), a suppression of the broad incoherent Raman con-
these two crossovers were accompanied by changes in dynuum and a rather sharp structure at about twice the single
namical scaling behavior which could be measured directlyarticle gap of ARPES experimerffsResistivity measure-
if NMR measurements of°T; could be accompanied by ments also show that beloW, the systems gets more con-
measurements of the spin-echo decay tifi,c. Above  dycting than one would have expected from the linear resis-
T they argued that the rati§>T, T/%°T5;, would be inde- tivity at higher temperature®,
pendent of temperature, a result equivalent to arguing that |t is natural to believe that the pseudogap in the spin
the characteristic energy of the spin fluctuationg, would  damping, as observed ifi*T;T measurements, the single
be proportional to the inverse square of the antiferromagnetiparticle pseudogap of ARPES and tunneling experiments,
correlation length¢. BetweenT® andT* they proposed that and the pseudogap of the scattering rate are closely related
the ratio ®3T; T/%*T,¢ would be independent of temperature, and must be understood simultaneously. Furthermore, it is
which means that an underdoped system would exfibit essential for any theory of the strong pseudogap to account
=1 scaling behavior, i.eq¢ would be proportional tg~*;  properly for the already existent anomalies abdye, be-
below T* they found that the increase ing would be ac-  cause they are likely caused by the same underlying effective
companied by a freezing out of the temperature-dependeititeractions. As can be seen by inspection of Fig. 1, strong
antiferromagnetic correlations; i.€; %, which was propor- pseudogap behavior in underdoped cuprates only occurs
tional toa+bT betweenT® andT*, would approach a con- once the system has passed the weak pseudogap state.
stant. This behavior has recently been confirmed in NMR In this paper we concentrate on the weak pseudogap
measurements on YB&u,Og by Curroet al!® while z=1  (pseudoscalingregime aboveT, and give a more detailed
pseudoscaling behavior has been found in INS experimentsccount of the preliminary results we obtained using a spin-
on La geSr 14CuQ, by Aeppli et al?° fluctuation model of normal state behavidit is our aim to
Because pseudogap behavior of different character iprovide a quantitative understanding for-T, of quantities
found betweenT® and T*, and betweenT* and T., the reflecting strong pseudogap behavior belby. We derive a
terms weak pseudogap and strong pseudogap behavior weselution of the spin fermion model in the quasistatic limit
coined to distinguish between the two regimeé3hus inthe #T> wsf, relevant for the intermediate weak pseudogap re-
weak pseudogap regime one finds 1 pseudoscalingbe- gime of the phase diagram. We demonstrate that the broad
cause the scaling behavior is not univerdaghavior, with  high energy features of the spectral density found in ARPES
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measurements of underdoped cuprates are determined by overdoped underdoped
strong antiferromagnetic correlations and incoherent precur- ‘ ' ' ‘
sor effects of an SDW state. The spectral density at the Fermi
energy and the electron-spin fluctuation vertex function are
strongly anisotropic, leading to qualitatively different behav-
ior of hot [around k=(,0)] and cold [around k
=(m/2,71/2)] momentum states, whereas the Fermi surface
itself changes only slightly. We present results for the effec-
tive interaction of quasiparticles with spin and charge collec-
tive modes. In distinction to the strong coupling of hot qua-
siparticles to spin excitations, we demonstrate that their
renormalized coupling to charge degrees of freedom, includ-
ing phonons, is strongly suppressed. Finally, we show that FIG. 2. ARPES spectra from Ref. 30 for momektat and close

the onset temperaturd,”, of weak pseudogap behavior is to (,0), for two different doping concentrations. Thig=78 K
determined by the strengthj, of the AF correlations. sample is slightly overdoped whereas ffie=88 K sample is un-

Our theory also allows us to investigate the low frequency-erdoped.
spin and charge response functions. In a subsequent publica-
tion, we will discuss the suppression of the spin damping and Il. ARPES EXPERIMENTS
further generic changes in low frequency magrjetic behavior ARPES experiments offer a powerful probe of the quasi-
seen in NMR experiments as well as the optical response,,icie properties of cuprates. Since they provide unusually
particularly as far as thB,,-Raman continuum is concerned. girong experimental constraints for any theory of optimally

From our calculations it also becomes obvious that ougyoped and underdoped cuprate superconductors, we summa-
theory of fermions coupled to quasistatic spin excitations igize in this section the main experimental results obtained by
not applicable in the low temperature, strong pseudogap rehjs experimental technique
gime. Here we expect that spin fluctuation induced pairing |n Fig. 2, we show ARPES spectra close to the momen-
fluctuations play an essential role. tum k=(,0), for two different doping concentratiof%.

The paper is organized as follows. In the next section wenhile for the overdopedT.=78 K, sample a rather sharp
summarize important findings of ARPES results which will peak occurs, which crosses the Fermi energy, the spectral
later on be explained by our theory of the weak pseudogapensity of the underdoped;.;=88 K, sample exhibits in-
regime. Next, we give the basic concept of the spin fluctuastead a very broad maximum at approximately 200 meV.
tion model and derive the spin fermion model. In the follow- Thus, the entire line shape changes character as the doping is
ing, fourth, section we discuss in detail our solution of thereduced. The other important difference between the two
spin fermion model in the quasistatic limit, with particular charge carrier concentrations is the appearance of the leading
attention to the new physics of the spin fermion model foredge gapLEG), i.e., a shift of the lowest binding energy
intermediate coupling. Our solution is obtained by the Comjelgtive to the_chemical potential, for the underdoped system.
plete summation of the perturbation series, and is motivatednis LEG varies between 20 and 30 meV and is therefore
in part by a theory for one-dimensional charge density wavdiardly visible in Fig. 2, but is discussed in detail in Refs. 22

systems developed by SadovsKiiwe have extended his and 23. . ) i
theory to the case of two spatial dimensions and isotropi In addition to this strong doping dependence, the spectral

spin fluctuations and, in so doing, found that we could avoi unction of underdoped systems is also very anisotropic in

several technical problems of the earlier approach. Technicgpomentum space, as can be seen in Fig. 3. Here, the position
details of the rules we used for computing diagrams are pre-

Intensity (arb. units)

| (r,0.18m)

L 1 1 L
-500.0 -250.0 0.0 -500.0 -250.0 0.0
energy [meV] energy [meV]

sented in Appendixes A and B. Readers not interested in %10 : '
these technical aspects can skip the theory section and should . -
be able to follow the discussion of our results for the spectral  o.00 | ; \ ‘ .
density and vertex functions in the fifth and sixth sections, HJ Ny
respectively. In particular, results for the single particle prop- . | ‘N i |
erties are discussed at length and compared with ARPES E/ A :
experiments. Finally our theory for the weak pseudogap re- 1 £ A gaad,

0.20 : ?l'\ .

gime is summarized in the last section, where we also con- - }

sider the physics of the strong pseudogap state and summa-

> A ;,‘ =— underdoped

rize some predictions and consequences of our theory. We -030 { A—A underdoped ]
argue that a proper description of the higher temperature & Coverdoped

weak pseudogap regime is essential for a further investiga- _, ,, . .

tion of the low temperature strong pseudogap state and argue (0,0) (1) (1,0) (0.0)

that the strong pseudogap state and precursors in the pairing

channel are the quantum manifestation of strong antiferro- FIG. 3. The position of local maxima of the spectral function
magnetic correlations whereas the spin density wave precutlong the high symmetry lines of the Brillouin zone is shown for an
sors are the classical manifestation of it. overdoped and underdoped systéiata from Ref. 31



670 JORG SCHMALIAN, DAVID PINES, AND BRANKO STOJKOVIC PRB 60
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FIG. 4. Fermi surface for an overdoped and underdoped system,
obtained fromk points where local maxima of the spectral function
cross the Fermi energylata from Ref. 31

FIG. 5. Spectral function of a hot quasiparticle above and below
the superconducting transition temperat(data from Ref. 2p

pand T, shown in Fig. 1. This leads us immediately to two
conjectures(1) There is a relationship of the physics of the
gper crossover temperatur€ and the high energy feature,

of local maxima of the spectral function along certain hig
symmetry lines of the Brillouin zone is shown for an over-
doped and underdoped system. This is usually done becau¥
the maxima of the spectral density correspond to the positioff> well as between the strong pseudogap temperajuend

of the quasiparticle energy. However, as we discuss in detall'® LEG.(2) As a strong pseudogap state is impossible with-

below, this interpretation is not correct in underdoped sys—OUt a weak pseudogap state at higher temperatures, the LEG

tems for momentum states close ta,0) where the line can only appear after the system has established the high
shape changes qualitatively. Close t@,0), one sees for energy features. N .

overdoped systems, in agreement with Fig. 2, a peak at low As noted above, these fascmatlng expenment'al resul'gs
binding energy, which crosses the Fermi energy betwee epresent a set of very strong constraints for the microscopic
(.,0) and @, ), whereas the 200 meV high energy feature escription of underdoped cuprates we develop below.

is the only visible structure for the underdoped system. It is

flat and seems even repelled from the Fermi energy between 1. THE SPIN FLUCTUATION MODEL

(7,0) and @r,7). The situation is different for momentum ) , o

states along the diagonal, where a rather sharp peak crossesThe2 3r31early antiferromagnetic Fermi liquidNAFL)

the Fermi energy between (0,0) angl/2,w/2); the velocity modef?33 of the cuprates offers a possible explana'glon for'
of the latter states, seen in the slope of their dispersion if€ observed weak and strong pseudogap behavior. It is

Fig. 3, is independent of the doping value, while no LEG ha ased on the spin fluctuation model, in which the magnetic
been observed for those quasiparticle states. interaction between the quasiparticles of the Gulanes is

In Ref. 31, the authors constructed the Fermi surface foféSPonsible for the anomalous normal state properties and
the two doping regimes by determining thepoints where a € s?’ggfrconductmg state with high and d,2_2 pairing
maximum of the spectral function crosses the Fermi energySt€-""~ In a recent letter, we have shown how the weak
Their results are replotted in Fig. 4. Consistent with Fig. 3 a°S€udogap regime can be understood within this NAFL
large Fermi surface occurs for the overdoped material>¢€Naro: _ _ _
whereas only a small Fermi surface sector close to the diag- N common with many other approaches, within the spin
onal could be identified in the underdoped case. Even thoughtctuation model the planar quasiparticles are assumed to be

this appears to be in agreement with the formation of a hol&haracterized by a starting spectrum which reflects their
pocket closed around(2,7/2), with reduced intensity on barely itinerant character, and which takes into account both

the other half of the pocket, ARPES data below the super_neareSt neighbor and next nearest neighbor hopping, accord-

conducting transition temperature, shown in Fig. 5, show tha"d t©

for momenta close to+#,0), a sharp peak appears at lower

binding energy. This behavior, for the underdoped case is  &x= —2t(cosk,+ cosk,)—4t’ cosk, cosk,—u, (1)
completely consistent with a large Fermi surface which is

only gapped due to the superconducting state. The obviougheret, the nearest neighbor hopping term0.25 eV, while
guestion arises: how could a transformation from a small to &he next nearest neighbor hopping terth, may vary be-
large Fermi surface occur on entering the superconductingveent’~ —0.4% for YBa,Cu;Og, s and t’'~—0.25 for
state? La, ,Sr,CuG;.

We should also mention that in Ref. 30, the authors In distinction to many other models, the spin fluctuation
showed that the two energy scaldhe LEG and the high model starts from the ansatz that the highly anisotropic ef-
energy featurebehave as a function of doping in a fashion fective planar quasiparticle interaction mirrors the dynamical
which is quite reminiscent of the two temperature scalgs, spin susceptibility’>
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a 52 0,m) (m,m)

Xo(@)= —, @ \
1+ £20- Q%1 -

peaked nea@Q=(.7), via N N

VIAFL (g, 0) = g2x4( @), 3) S~ —

an ansatz which enables us to construct directly a theory \

which focuses solely on the relevant low energy degrees of ¢

freedom. In Eq(3), g is the coupling constant characterizing \ =6 \

the interaction strength of the planar quasiparticles with their \ N

own collective spin excitations. In this model, changes in o .

quasiparticle behavior both reflect and bring about the mea- ~o N

sured changes in spin dynamics. The dynamic susceptibility, e -

Eq. (2), was introduced by Millis, Monien, and Pirféso

explain NMR experiments, which can be used to determine F|G. 6. A typical bare Fermi surface in the first quarter of the

the correlation length¢, the constant scale factar, and the Bz, closed around the momentum poink,¢r), for different AF

energy scala, which characterizes the overdamped naturecorrelation lengths. The thick sections characterizehibigparts of

of the spin excitations. It follows from the experimental datathe Fermi surface.

that the static staggered spin susceptibiity= aé?is large

compared to the uniform spin susceptibilifyy, and the re- The distinct lifetimes of hot and cold quasiparticles can be

laxational mode energy correspondingly small compared t@btained from transport experiments: a detailed analysis

the planar quasiparticle band width®® For optimally doped ~ shows that, due to the almost singular interaction, the behav-

and underdoped systems one finds that over a consideraliter of the hot quasiparticles is highly anomalous, while cold

regime of temperatures, quasiparticles may be characterized as a strongly coupled

Landau Fermi liquid® The presence of incommensurate
wg<mT (4)  peaks in the spin fluctuation spectrdft® and hence in the
NAFL interaction, although difficult to calculate, may be ex-

and it is only asT falls below T, thatws becomes compa- pected to amplify the role played by hot quasiparticles in the

rable to and eventually larger thatT. In detail, betweefT determination of system behavior.

and T one finds wg/(7T)~0.17 for YBgCuOg and In the spin fluctuation model the anomalous behavior of

wg/(mT)~0.14 for YBgCu;Og 63 rather independent of the cuprates is assumed to originate in a strong interaction

T.1® As a result of this comparatively low characteristic en-petween fermionic spins;= %EkwrCan%aerar which

ergy found in the weak pseudogap region, the spin systenprings about intermediate rangg€>1) antiferromagnetic

for g~Q, is thermally excited and behaves quasistaticdily; spin correlations and overdamped spin modes. Here, the op-

the quasiparticles see a spin system which acts like a statigratorc!  creates a quasiparticle which consists of hybrid-

deformation potential, a behavior which is no longer foundizeq copper 8,2_,» and oxygen P, states'® The quantity

below T, where wg increases rapidly and the lowest en-  of central physical interest is the dynamical spin susceptibil-
ergy scale is the temperature itself. it

Since the dynamical spin susceptibilify(w) peaks at
wave vectors close tor, ), two different kinds of quasi- Xo(T= 7)) =(TSE(7)s (7)), (6)
particles emerg&“>hot quasiparticleswith

which after Fourier transformation in frequency space and
lex—ex+ql <vIE, (5) analytical continuation to the real axis is assumed to take the
form, Eq. (2). The intermediate and low energy degrees of
located close to those momentum points on the Fermi surfadeeedom are characterized by an effective acfion
which can be connected b9, feel the full effects of the
interaction of Eq.(2); cold quasiparticleswith |, — &y ol B B 1 , ,
>vl/¢, located not far from the diagonalk,| = k|, feel a S=- fo deo dr (kz}r Cho( 7Gx (7= 7 )Ciee(7')
“normal” interaction. In Fig. 6, we show the Fermi surface
in the first quarter of the BZ and indicate the evolution with ,2 ) ,
¢ of its hot regions, which satisfy Ed5), by a thick line. T3 EQ Xo( 7= 7)8(7)-So(7') |, ()
Note that even for a correlation lengé+1 a different be-
havior along the diagonal and away from it is expected. Fowhere G, }(7—7')=—(d,+ &) 8(7— ') is the inverse of
larger values o, the hot regions become smaller while their the unperturbed single particle Green’s function with the
effective interaction increases. Close Tg, typical values bare dispersion, Eq1). In using Eq.(7), we implicitly as-
for ¢ of underdoped but superconducting cuprates ar& 2 sume that the effect of all other high energy degrees of free-
<8, depending on doping concentratithy is the magni- dom, which are integrated out to obtain the act®mio not
tude of a typical Fermi velocity in the corresponding mo- affect the Fermi liquid character of the quasiparticles. In Eq.
mentum regions. (7), the effective spin-spin interaction is assumed to be fully
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renormalized; thus it reflects the changes in quasiparticle bewegligible. Furthermore, in the limitrT> w, Xq(ivm) is
havior it brings about, and can be taken from fits to NMRdominated by the Matsubara frequeney=0, so Eq.(9)
and INS experiments. We will also assume that the spin detgkes the form

grees of freedom are completely isotropic and that all three

components of the spin vector are equally active. In the case ) ~, 1

of intermediate correlation lengths<lé<8, this is the ap- Si(ion) =92 S(Q)F: (10
propriate description of the spin degrees of freedom. Only I n Tk+Qtq

for much largeré exp(consfr), does one enter the regime \ith g2=g24T and

in which even without long range order only two transverse

spin degrees of freedom are actfiteThe physics of the 1
crossover, driven by a collective-mode interaction, between S(q)= et (11
these two regimes, is beyond the scope of this paper. & °+q

. The quantities of .primary interest to us are theTsingIe I:JarPhysicaIIy, this use of a static approximation for the spin
ticle Green's functionGy ,(7—7')=—(TC(7)C,(7"))  gegrees of freedom reflects the fact that since the frequency
which provides information about the quasiparticle spectra| 4 iation of xo(w) takes place on the scale;, once T

. . . . . q Sy
density determined in angular resolved photoemission exs. , " a relevant collective spin degrees of freedom are
periments, the dynamical spin susceptibility itself, and they,ermally excited and the phase space restrictions for scatter-
corresponding charge response functions. As noted above, ng phenomena due to the quantum mechanical nature of the

calculating _these _quantities for interme_diate _correlatior_gpins are irrelevant. It follows that we can then neglectdhe
lengths the interaction between the collective spin modes iSariation of Yo(®)
q(®).

irrelevant. In Appendix A we show that under these circum- For the system we study, experiment shows that the domi-

stances the Green’s function nant momentum transfer of the spin fluctuations is close to
A , the antiferromagnetic wave vect@= (7, ), so that we can
Gl 7= 7") =G kool 7:7'|9)0 (8  expand the energy dispersion as

can be expressed as a Gaussian avefage), of electron _ 12
propagators with a time dependent magnetic potential Ek+Q+q~ Ek+QT Vk+qQ M (12

(9//3)S4(7), with respect to collective bosonic spin 1 vari- vt velocity v, o= dex+q/ K, . Note that in distinction to
ablesS,(7). The corresponding model is often referred to as, gne_dimensional problem, the linearization of the electron
the spin fermion model. We give in Appendix A the dia- spectrum in two dimensions is not straightforward. In Eq.
grammatic rules of this problem, which will be essential for(lz) we have linearized with respect to thransferredmo-

the solution of the spin fermion model in the quasistaticmentuquQ:(w ), an approximation which is justified
limit. In the next two sections, we derive new expressions for, oyigedq deviates only slightly from the antiferromagnetic
the single particle Green’s function, and the spin-fermion .o vectorQ, i.e., for systems with a sufficiently large

g_nd Ch?‘rgel'fefm"]f” vertex fu(;lcltlonsl_ dOff the quas%t_anc tWIO'antiferromagnetic correlation lenggh Therefore, technically
Imensional spin fermion model, valid for intermediate Val- +~1 s considered to be a small quantity and all related mo-

ues of the spin fermion coupling, by extending an earlien,onym integrals are evaluated accordingly. On comparing

study by Sadovskif for one-dimensional charge density g approximate treatment with a complete numerical evalu-
wave systems. ation, we find that it can be applied oncge>1. At k

=(m,0), the velocityv, vanishes and one must take higher

IV. THEORY OF THE QUASISTATIC LIMIT order terms ing— Q into account. We assume that the phys-

We begin this section by first motivating the quasistaticicS Of this van Hove singularity is irrelevaftue to three-
limit and discussing its physical consequences by investigadimensional effects and the presence of possible additional
ing the second order diagram with respect to the couplingCattering mechanismand introduce a lower velocity cut
constantg. We then present a solution of the spin fermion©ff vc~(vi)rs. The remaining momentum integration can
model which is not restricted to the weak coupling regimeth?” _eaS|Iy be (_:ar+r|ed out. It follows, after analytical continu-
and provides insight into the intermediate coupling behavio@iONi@,— @ +i0", that
relevant for underdoped cuprates.

— A2
. S 2(w)= > >
A. The second order diagram and the static limit \/(Uk+Q/§) +(w—&y10)
In second order perturbation theory, the quasiparticle self-
o LT W= Ek1Q
energy is given by X |E—arctan76 > 2) ,
\/(Uk+Q/§) +(w—eyiq)
1
iw)=02= iy )—_ (13

Zlion)=0"5 2 xolivmi g, — . O

whereA2=g?aT log(1+(£A)?) and A~ is the upper cut-

If, for a given temperatur@, the characteristic frequency of off of the momentum summation. Since we are technically at
the spin excitationswg is small compared to the intrinsic high temperatures, our results depend on this cut off, which
thermal broadening of the electronic states, the energy trangs undesirable. We avoid this problem by expressing any
fer iv, of this state due to an inelastic scattering process isutoff dependence of the theory in terms of measurable
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quantities. Thus on using the local moment sum K(88)
=3TZm gXq(ivm), We find thatA can also be expressed as

A?=gX(S)I3. (14)

We therefore can use this expression forand determine )
(S?) from the experimentally determined susceptibility ¥

Xq(ivm) Of EQ.(2). This guarantees a reasonable estimate for i, 7. jilustration of the sequenda} for a self-energy dia-

the total spectral weight of the spin excitation spectrum forgram of orderg®. n; is the number of spin fluctuation lines above
the spin fluctuation induced scattering processes. the jth fermionic Green’s function.

Consider a givek point on the Fermi surfaces(=0). If
the Fermi surface is such that the momentum transfeQby higher order diagrams in the next paragraph, it will be help-
takes you to another Fermi surface point, i&.; o=0, it  ful to introduce the following representation of the second
follows from Eq. (13) that for this momentum state, a so- order self-energy:
calledhot spof =€y, o=0, the real part of the self-energy
decreases like logf)/w if w>v/é§, close to the 1 behav- o [P e
ior which is a signature of precursor effects of a spin density Sp(w)=- Ingo dte'l k+Q)t¢k+Q(t)v (18)
wave? More generally, anomalous scattering processes will
continue to modify the single particle spectrum dramaticallywhere
for those momentum states for which

1 .
— - -qt
ey~ srs gl <VIE. (15) ¢k+Q(t)_§ =L Vg at, (19

This entire region of the BZ behaves in q.u.alltanvely differ- Evaluation of the momentum summation yields foroo:
ent fashion from the rest of the system; it corresponds to
the definition of hot quasiparticles discussed recently by )= 27K (t / 20
Stojkovic and Pines?® Yt o) =2mKoltvio/8), 20

We call attention to the fact that only for the hot quasi- whereK, is the modified Bessel function. Using the approxi-
particles can we justify neglecting the higher Matsubara freimation of Eq.(16), this simplifies to

quencies. For cold quasiparticles withy — &y o|>v/¢ the

characteristic energy scale of the spin fluctuations is no Y g(t) ~e kol (21)
longer w¢ but turns out to be- wgé?,%8 a quantity which is o o

proach, while properly accounting for the anomalously large€gime so far relies on the applicability of the second order
scattering rate and related new physics of the hot quasipartRerturbation theory: visible effects can only occur once the
cles, will tend to overestimate the scattering rate for coldcorrelation length exceeds the electronic length sagle
quasiparticles. Put another way, differences in behavior be=v/A~2v/g. In a weak coupling treatment, the above dis-
tween hot and cold quasiparticles will be underestimated iffussion is applicable only for large correlation length: one
our theory. therefore has to go beyond second order perturbation theory
In order to make explicit the role played by the presence© be certain whether or not SDW precursors are r(_aleyant for
of SDW precursors in the quasistatic regime, we evaluatecuprates with intermediate correlation length. This is pos-
for illustration, the above momentum integrals within the Sible only if &, is only a few lattice constants; it implies that

approximation we have to investigate an intermediate coupling regime.
Therefore, we present in the next paragraph a procedure
¢! ¢l which enables us to sum the entire perturbation series.
SO~ s e (16)
& aj & q; B. Diagram summation in the quasistatic limit
whereq), ) is the projection ofy parallel(perpendicularto To evaluate all higher order self-energy diagrams within

the velocity v, . Note, this approximation will only be the quasistatic limit, we first derive a compact expression for
used to derive several intermediate results for illustrativean arbitrary diagram and then, as a second step, alim
purposes. The final numerical results are base®(@) as diagrams of the perturbation series to obtain the self-energy
given in Eq.(11). Using Eq.(16), we then obtain and single particle Green's function. This summation is
made possible by the fact that many diagrams with rather
different topology are, apart from a factor which describes
(17 multiplicity and sign, identical.

As first shown by Elyutin in the context of optical re-
an expression which, apart from a logarithm, has the samsponse in a random radiation fiéftidiagrams can be char-
anomalous behavior as E(.3). In the limit {-—~ A is the  acterized by the sequence of integer numieg$, wheren;
spin density wave gap and the poles of the resulting Green's the number of interaction lines above ftie Green'’s func-
function are the two branches of the mean field SDW stat¢ion; for an example, see Fig. 7. In the following we prove
discussed by Kampf and SchrieffeFor the investigation of that in the quasistatic regime, diagrams with the same se-

AZ

2(w)=

0= g qtiviiglé’
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quence{n;} are proportional to each other. The proportion- ™™

ality factor will be determined below. M N ;"Mq"z
An arbitrary diagram of orderi2 can, up to a constant, be

expressed as

I®(k0)=gM XSGy San) T
RERRRREIN

FIG. 8. Self-energy diagrams of ordgf and g8, which are,
N within the quasistatic approximation, identical apart from multiplic-
X H Go,k+2 Rj,aqa(w)v (22) ity and sign, because the number of spin fluctuation liseswn by
=1 a=1 wiggly lines for transverse and dashed lines for longitudinal spin
excitations on top of a given electron propagatsolid line) are the
same.

2N-1

whereq,=q,— Q and the[ (2N—1)x N] matrixR; , deter-
mines whetherq, (e¢=1...N) occurs as a momentum
transfer in thejth Greens functionj=1 ...2N—1) of the
diagram, i.e.R; ,=1 or 0. In general, each diagram is fully
characterized byR; .. It is important to notice than; is
given by the expression

(24). Equation(26) is only valid for hot spots where the
velocities v and v, o are almost perpendicular to each
other. For cold quasiparticles this condition is not satisfied,
so that our theory can only give a qualitative account for
N their scattering processes. It has been recently pointed out by
n = E R . (23) Tchernyshyof? that Eq.(26) is in fact not satisfied in the
= original one-dimensional solution of Ref. 29. Therefore, the

) _ ideas developed in Ref. 29 seem to be much more appropri-
Since each of the momentg, of Eq. (22) is separately ate for our two-dimensional case.

constrained to lie in a region close dg~Q, we can expand SinceR; , is either 0 or 1, it follows immediately from
. N Eq. (26)

Bkt D) Rj’aqa~8k+jQ+Vk+jQ21 Rj.«(d,—Q), (29 N

- I iRy at) = O (1)), 27
where we have used the fact timtis even(odd) if j is even “
(odd) since at each verter; changes by+1 andn;=1.  With n; given by Eq.(23). Inserting this result and collecting
Shifting all momentag,—Q—q, and introducing, as we all the prefactors, if follow&’
have done for the second order diagranN-21 auxiliary

(2N) —(_i)2N=1A2N
time variabled; , it follows that 2k, @)=(=1)T7A
2N-1 w
SO (K0)=(~)? TGN T (g S(aw) <L J vt
Ao
2N-1 . (28
it w—¢e . -_— . N . . . .
8 11:[1 fo dtjey ™ i et R, which proves that a given diagram of ordeX 2s fully de-

termined by the sequen¢ae;} as well as provides an explicit
(25)  expression for these diagrams.
On making use of the simplified evaluation of the mo-

With Vi j=Vi+jq. In this proper time representation of the \anym integrals, Eq16), it follows with the help of Eq.
self-energy, the different momentum integrals decouple; ON20), that

using Eq.(19) it follows that
2N-1

_ 1
N-1 (2N) (| o) = AZN
SN (K )= ()N TGN [ dtjel(@=ekr o) 2k, ) ]1;[1 o= ors o N ug, /€'
i=1 Jo

(29

N a result which is useful in determining the multiplicity of a
given diagram.
X}l P+ iRy at)- (26) For the actual evaluation of all diagrams, it is essential
that for each sequend@;}, there is a unique mapping to a
In the last step we used the fact that the momentum transfefiagram without crossing interaction lines, since for each
is sufficiently close ta@Q that we can neglect contributions of {n;} there exists one and only one diagram without crossing
order @—Q)* in S(q), i.e., we have assumed tha(x interaction lines. Note, unigue is meant in the sense of the
+y) = ¢ (X) i (y) as would be exact if one us&6q) in Eq.  topology of a diagram, not whether it contains longitudinal
(16). Note, it is not the asymptotic behavior of the suscepti-or transverse spin fluctuations; for details see Appendix B.
bility, far away from the antiferromagnetic wave vector This is illustrated for two cases in Fig. 8, where we show two
(m,7), which is most essential, but rather that close to thisself-energy diagrams of ordef* and g8, which are, within
momentum point wherg is peaked. This is consistent with the quasistatic approximation identical apart from a propor-
the restriction to momentum transfers closeqte Q which  tionality factor. From these considerations, it follows that it
motivated the linearization of the electron spectrum in Eqgsuffices to sum up only the noncrossing diagrams taking into
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account the identical crossing diagrams by their proper mulvvhereHg‘B(i wp|9) is the irreducible particle hole propagator
tiplicity factors. The remaining problem is to determine, for afor a given spin field configuration

given order in the coupling constant, how many identical

diagrams exist. In the case of charged and uncharged bosons, 1

this problem has been solved by Sadovékithe generali- M0 9=-7 > Tr{oC:quiQnnsiom|S)

zation (see Appendix Ato the case of spin fluctuations is 4 womm
not straightforward, because of the additional1)€ factor .
of crossed spin conserving and spin flip lines. X PGy _qu(iQy n oS} (34)
In Appendix B we derive the multiplicity of a given class
of diagrams, i.e., the number of identical diagrams of a giverHere Tr ... refers only to the trace in spin space and

order of the perturbation series, by solving the problem in the) , .= w,,+ w,,. This result is obtained by neglecting all re-
special casg— and using the fact that the combinatorics ducible contributions in taking the functional derivative with
of the diagrams does not depend on this limit. Having deterrespect to an external time dependent magnetic field coupled
mined these multiplicities, it is possible to sum the entireto the electron spins(7).
perturbation series analytically. We find the following recur-  The diagrammatic rules described in Appendix A for the
sion relation for the Green'’s functic@k(w)EG(kJZO)(w): single particle Green'’s functio®,(w) can be extended in

. _ _ straightforward fashion to the spin susceptibility, which can

GP(w) t=g(w) 1—k;11A2G{"(w) (300  be expressed in terms @ (w) and the electron spin fluc-
tuation vertex function:

with «;=(j+2)/3 if j is odd andk;=j/3 if j is even and

» ~ 1 _ : .
g(kj)(w):_ifo dtei(w—5k+jQ)¢k+jQ(t)i_ (31) Xq('Vm):E % Gy(iwn) Gy g(iwnt+ivy)
X

s ..
Equation(30) is one of the central results of our theory. This I k+qion,ioqtivy). (35

recursion relation, closed b&{"(w)=g{"(w) for some S _
large value ofL, enables us to calculate the single particle Thus, a knowledge of the vertex function gives immediate
spectral functionA(k, ) to arbitrary order 2 in the cou- information about the irreducible part of the dynamical spin
pling constanty [we useL~10?—10°%; Eq. (30) converges Susceptibility. A similar relation exists for the corresponding
for L~10%; about the convergence in the most danger0u§harge_sus_cept|b|llty. In th!s paragrap_h we outll_ne the exact
caseé—», see Appendix B determination of‘ﬁﬁq(w+|0+,w+ v+i0™) obtained after
analytical continuation to the real axis. For the determination
of the susceptibility on the real axis we will also need the
analytical continuatior’} {) ((w—i0",w+v»+i0") which
Within the quasistatic limit of the effective low energy has to be determined independently but can be obtained in a
quasiparticle interaction, we can obtain an exact expressiogimilar way.
for the irreducible part of the dynamical spin susceptibility ~ As was the case for the electronic Green’s function, the
and the electron spin fluctuation vertex. Note that we are nofertex function is obtained in two steps: first, based on
able to calculate the total susceptibility. Since we are assunpurely diagrammatic arguments we obtain a general expres-
ing that the interaction line is given by the fully renormalized sjon for the vertex function in terms of the previously deter-
spin susceptibility, a direct approach would lead to an overmined Green’s function and some combinatorial prefactors
counting of diagrams. Therefore, we only calculate the irrewhich take the proper multiplicity of the diagrams into ac-
ducible part}gﬂ(iwn) of the total susceptibilitwgﬁ(iwn). count; second, these prefactors are determined in the limit
The latter can be expressed as &—. This is possible because the combinatorics of the dia-
grams does not depend on the actual valué.dfinally, we

C. Spin susceptibility and vertex function

YA w,) obtain a closed expression valid for all values¢of
Xgﬁ(iwn)=+ﬁr_1, (32 In the case of the Green’'s function each diagram was
1-foxg"(iwp) proportional to a rainbow diagram. The corresponding con-

. . . clusion for the vertex function is that each vertex diagram is
where the restoring forcé,, is determined by the renormal- jgengical to a diagram of the ladder approximation and the
ization of the spin exchange fermion-fermion interactiongngire perturbation series can be obtained by summing the
through high energy excitations in all other channélsis  |3qder series with appropriate weighting factors. The proof
then _related_ ina nontrivial fashion to the underlylng_m|cro-of this statement is almost identical to the corresponding
scopic Hamiltonian of the system and has to be considered agqof for the Green’s function. Because an arbitrary diagram

an additional input quantity. , _can be related to a ladder diagram, it follows that the ver-
By following a procedure analogous to that in determm—tex s (w+iO*,w+v+iO*)EF(kO)'S(C)(w+iO+,w+ Y

ing the Green’s function in Eq®8), one can show that the +i0%) kc’gwqbe generated by two rendkrmalized Green's func-

irreducible part of the dynamical spin susceptibility is giveny s and an effective verteR(klﬁf(C)(wHO*,er p+i0%)
by S Ktq .
which includes all those processes not taken into account by

~aBy: By one spin fluctuation propagator crossing the external bosonic
Xq" (o) =(Ig"(iwn|9)o, (33 line. For the spin vertex, we find the recursion relation
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(T) (T ) 2.0 ; . \

1+1
(0,m) (m,m)

- I‘14-1

FIG. 9. Diagrammatic illustration of the recursion relation of the =
vertex function, which is similar to the ladder approximation of the =
irreducible vertex. All nonladder diagrams are taken into accountby 3 19

B
X
<<

L 0,0

(m,0)

the corresponding weighting factorg, ;.
I (0+i0" 0+ v+i0")
=1-1;A2G((0) Gy (0 + TR

X(w+i0", w+v+i0"). (36)

~08 -06 -0.4 -0.2 0.0 0.2
Here, the Green's functio6{")(w), Eq. (30), takes into ac- o [eV]

count that for the diagram under consideration one has at

least one interaction line above each fermionic propaddtor.
A comparison with perturbation theory shows that the mul-
tiplicity factor which enters Eq(36) is given byr,;=%. The
minus sign in Eq(36) results from the dlagrammatlc rules of ) _
Appendix A. Since the higher order vertex function can be An identical proc+edure can Pe performed for the charge
determined in exactly the same way as E3f), one obtains  VENexI'y (@ +i0", w+v+i0"). One obtains in place of

FIG. 10. The spectral density multiplied with Fermi function on
the Fermi surface foé=3. The distinct behavior of hot and cold
quasipatrticles is visible.

the recursion relation Eq. (37) the “result
<k')kiq(w+|0+ w+v+i0™) (kl)kiq(w""OJr w+v+i0")
=1-1,,,A26{ " ()G D(w+v) =1+ K1 1A%G ()G P+ )
XT{ DS 0 +i0%, 0+ v+i07), (37) XTI w+i0" 0 +v+i0?), (38)

which can be evaluated using the Green’s functions from Egsince for the charge vertex is replaced by- «,, with x| as
(30) and a starting valuE")=1. In Fig. 9 the diagrammatic given in the line below Eq(30).
motivation for this recursion relation is given: there one sees
that the problem is similar to the summation of the IaddeV QUASIPARTICLE PROPERTIES: THEORY COMPARED
series for the vertex, with the difference that all nonladder WITH EXPERIMENT
diagrams are taken into account by the corresponding
weighting factors |, ;. Once these prefactors are known, the  We consider first the frequency and momentum depen-
vertex function can be determined up to arbitrary order of thedence of the spectral density (w)= — (1/7)Im Gy (w), for
coupling constant. The, are defined diagrammatically by a typical underdoped system. In Fig. 10 we show, in the
the fact that 8I1}_,r, is the number of skeleton diagrams of inset, the Fermi surface, defined by thdsepoints which
orderg?" which contribute to the vertex functiofNote, that ~ satisfy
nonskeleton diagrams are diagrams with interaction lines
which only renormalize the Green’s functions. w=¢g,+Re3(w) (39

The combinatorial determination of the is somewhat
cumbersome. We proceed by using the general expressiofor w=0, for interacting quasiparticles whose bare spectrum
Eq. (37), to calculate the irreducible susceptibility given in js specified byt=—0.25 eV,t’=—0.3%, at a hole doping
Eq. (35), while determining the irreducible susceptibility in- concentrationn,=0.16. In this and all subsequent plots we
dependently in the limit— oo analytically by evaluating the gssume 0g=0.8 eV, in agreement with transport
path integral of Eq(33). On comparing these two results for measurement® This corresponds to an intermediate regime
§—co order by order in the coupling constant we are able tofor the coupling constant since it is similar to the total band-
determine the prefactors. On carrying out this calculation width. The calculation is carried out at a temperature such
for arbitrary momentung, we findr,=1 if | is even and’;,  that ¢£&=3, which, as we shall show, lies in the weak
=(1+2)/9if | is odd. pseudogap regime well beloW". In the main part of Fig.

This completes the specification of the vertex function,10, we show our results fok,(w)f(w), wheref(w) is the
Eq. (37), of the spin fermion model and enables us to calcu+ermi function for several points on the Fermi surface.
late both the irreducible spin susceptibiliﬁ{q(w), and the Ay(w)f(w), the quantity measured in ARPES experiments,
effective spin fluctuation induced pairing interaction. Note,is strongly anisotropic. For a representative cold quasiparti-
since we preserve this symmetry in our theory and becausgle (a), located close to the diagonal, withs,— ey g
we sum all diagrams of the perturbation theory, we know>uv/¢, the peak in the spectral density crosses the Fermi
that all Ward identities are satisfied. surface. For these quasiparticles, the quasistatic magnetic
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Fig. 11, foré=1, the FS is basically unaffected by the cor-
relations, a situation very similar to the one obtained within a
self-consistent one loop calculation. This confirms the result
obtained by Monthou that vertex corrections, neglected in
the one loop framework, are indeed of minor importance for
small correlation lengthsNote that while our calculations
are based on the fact that the dominant momentum transfer
occurs near the antiferromagnetic wave vector, which im-
plies at least an intermediate correlation lengtlit is useful
to consider the limiting case~1, even though in this re-
gime different theoretical approaches may be turn out to be
more appropriaté.On increasing to values which are real-
0.0) o istic for underdoped cuprate€2---8), we find slight

’ changes of the FS shape for momenta close#@®) and

FIG. 11. Fermi surfacésolid ling), in comparison with the bare (0.); however, the general shaprge FS closed around
Fermi surfacddotted ling and the visible part of the Fermi surface (7,7) and equivalent poinfsemains the same. If one fur-
(thick solid line, i.e., only for momenta where a maximum of the ther increaseg to values larger than 10 lattice constants,
spectral density crosses the Fermi energk itrosses the Fermi Serious modifications of the FS, caused by a short range or-
surface. der induced flattening of the dispersion of the quasiparticle

solution, begin to occur. This follows from the solution of
correlations simply produce a thermal broadening of theEq. (39) for finite w. It is only for such large correlation
spectrum, as is characteristic of a Landau Fermi liquid atengths that a hole pocket starts to form along the diagonal.
small but finiteT. Eventually, at some large, but finite value &four solution

The situation is completely different for the hot quasipar-gives a closed hole pocket. We conclude that for underdoped
ticles at (d) which are located close tow(0). Here, but still superconducting cupratéwith £<8), the shape of
lex— e+ ol <v/é. A large amount of the spectral weight is the FS remains basically unchanged, while our theory can
shifted to higher energies, a shift which gives rise to weakpotentially describe the transition from a large Fermi surface
pseudogap behavior. As will be discussed below, the posito a situation with a hole pocket arouner/Q,7/2), which
tion of the maximum of this broad feature, which representsnay be the case very close to the half filling.
the incoherent part of the single particle spectfise, does The above results provide a natural explanation for what
not correspond to a solution of E@39)], is similar to the is seen at temperatures below the superconducting transition
quasiparticle bands of a mean field spin density wave statén ARPES experiments on the underdoped cuprates: the sud-
Thus, even though incoherent in nature and considerablglen appearance of a peak in the spectrum of quasiparticles
broadened, this high energy feature is the precursor effects ¢tdcated near £,0). According to our results, this is to be
a spin density wave state. A second interesting aspect of thexpected, since abfalls belowT,, the scattering rate of the
calculated hot quasiparticle spectral density is that althoughot quasiparticles drops dramatically; the superconducting
there exists a solution of E¢39) at =0 those quasiparti- gap has suppressed the strong low frequency scattering pro-
cles[and quite generally those near,Q)] do not possess a cesses which rendered invisible the peak in the normal state,
peak. This part of the FS is therefon®t observable in an and a quasiparticle peak emerges. Since this sudden appear-
ARPES experiment. Experimentally, a FS crossing can onlynce of the quasiparticle peak beldw is inexplicable in a
be determined if a local maximum of the spectral densityhole pocket scenario, the ARPES experimental results sup-
crosses the Fermi energy. The calculatéible part of the  port the large Fermi surface scenario we have set forth
FS, where our calculated spectral function exhibits a maxiabove.
mum at w=0, is shown in Fig. 11(thick lines. It is in Another interesting aspect of the calculated results shown
agreement with experiment. While this behavior appears tin Fig. 10 is the sudden transition between hot and cold
be similar to that expected for a hole pocket, below we disquasiparticles, justifying the usefulness of this terminolagy
cuss the important differences between our results and a hofsteriori To demonstrate explicitly the anisotropy of the
pocket scenario. spectral function for low frequencies, we show, in Fig. 12,

The reason for the ‘“disappearance” of pieces of theA,(w=0) along the Fermi surface as a function of the angle
Fermi surface in the weak pseudogap regime is the followg=arctank, /k,) betweenk and thek, axis. Even though
ing. The finite imaginary part of the self energy @t=0 no gap occurs in the hot quasiparticle spectral density in the
invalidates, as always fofF+# 0, a rigorous quasiparticle pic- weak pseudogap regime, the low frequency spectral density
ture and can even affect the occurrence of a maximum of this considerably reduced. It is therefore not possible to con-
spectral density in the solution of E¢39). This is what sider the behavior above the strong pseudogap crossover
happens for hot quasiparticles in the weak pseudogap reéemperatureT, , where our theory should apply, as being
gime. Due to their strong magnetic interaction the relatecconventional.
large scattering rate causes the hot quasiparticle peak to be We compare, in Fig. 13, the calculated variation of the
invisible in the weak pseudogap regime and care must bmaximum of A (w) in momentum space with the ARPES
taken to properly interpret the calculated Fermi surface.  results of Marshalet al3! for two different doping concen-

Consider now the evolution of the Fermi surface withtrations. For an overdoped system, we assumed a correlation
temperature, or what is equivalent, wghAs can be seen in lengthé=1 and a charge carrier concentratigy=0.22. The

(m,0
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FIG. 12. The spectral densiy,(w=0) along the Fermi surface (0,0 (m,0)

as a function of¢e=arctank, /k,). ) ) . ) ) )
FIG. 14.k points withn,= 5 for different correlation lengths in

. . . . ., comparison with the results for an uncorrelated Fermi system.
resulting dispersion corresponds to that of the original tight P y

binding band with slightly reduced bandwidth. The plonedwhereA%DW: 2A2, as can be obtained from the saddle point
maxima foré=1 all correspond to broadeqed coherent q,“a'approximation of the Borel summe#i—o perturbation se-
siparticle states. We chogé=—0.3% leading to a Fermi o (see Appendix B This provides an explicit demonstra-
surface crossing along the diagonal as well as betweed) (- jo, that the high energy feature is indeed an incoherent pre-
and (m, ) in agreement with experiments. The situation iS¢, .sor of an SDW state. The agreement between theory and
different for an underdoped system, which we assumed t@yeriment regarding the detailed momentum dependence of
have a charge carrier concentratiop=0.16 and a correla- e high energy feature, is an important confirmation of the
tion length&=3, similar to other underdoped but SUPErcon-general concept of our approach.

ducting cuprates. We use the same value —0.35 for the While the overall position of the high energy feature
next nearest neighbor hopping integral. Along the diagonali~ 00 meV in the present casgepends on the value bf,

we still find a Fermi surface crossing and, in agreement Withne general momentum dependence of these states remains
experiment, no doping dependence of the Fermi velocity ofyp st against any reasonable variatiort'obr the coupling

cold quasiparticles. However, for hot quasiparticles close Qonstantg. We note that the experiment of Marshatlal 3!
(m,0), only the incoherent high energy feature aroundyas performed in the strong pseudogap state. It is however
200 meV is visible. The momentum dependence of this highyayral to expect that the high energy feature remains unaf-
energy feature, even though incoherent in its nature, is SiMiacted by the opening of the low frequency leading edge gap;

lar to the dispersion of a mean field SDW state: it will thus be the same in the weak and strong pseudogap
state, and will be little affected by the superconducting tran-
1 Ek—Ek10)2 sition.
Ef=§(sk+ gxrQ) ™ \/(T +AZ%5,, (40 In ARPES experiments at half filling, it is found that the

location of momentum states with half of the intensity of a
completely occupied state, i.e., with,=3, is nearly un-
¥ changed compared to the case at large doping. We show in
\ Fig. 14 our calculated results for the momentum points with
X ny=73; our results are quite similar for the physically rel-
M-AA evant values % ¢<4 and change only slightly for large cor-
k A relation lengths. Note, that in the latter caggvaries only
—— S =OLE \ 1 gradually. Even very close tor(,0) it would be hard to de-
termine experimentally whethex,_ . ) is larger or smaller
than one half. Our results are therefore in agreement with the
experimental situation; they demonstrate that there is a
“memory” in the correlated system which, as far as the total
A A charge of a giverk state is concerned, behaves quite simi-
larly to the case without strong antiferromagnetic correla-
\¢ tions.

Finally, we address the question of why, for moderate
values of the correlation length, we obtain such pronounced

FIG. 13. The momentum dependence of local maxima of theanomalies. In addition tg, the only length scale in the prob-
spectral density as a function éfand hole doping concentratio, €M is the electronic lengtliy~v/A~2v/g. It is natural to
is compared with the experiments of Ref. 25 for argue that onc&>¢, some new behavior of the quasiparti-
Bi,Sr,Ca _ 4Dy, C,0q, s With x=0.1 (triangle$ and x=0.175 cles due to short range order might appear. Within standard
(diamond$. Only maxima with relative spectral weight10% are  weak coupling theoriest, is by construction a large quan-
shown. tity, and the theory is trustworthy only for very large The
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FIG. 15. ¢ dependence of the spectral density at the hot spot. FIG. 16. The spectral densitf () and spin vertex function
The appearance of SDW precursors f¢2 can be seen. For I'{,,o(0+i0",0+i0") for a hot quasiparticle with momentum
smaller values ot the system behaves conventionally. transferQ and zero frequency transfer as a function of energy are

shown for two correlation lengths.
summation of the entire perturbation series in our calculation
however enables us to take account for the situation were We are mostly interested in the vertex function for frequen-
can be of the order of a few lattice constants, i.e., for thecies w which correspond to the quasiparticle energies at the
intermediate coupling constant regime. That this qualitativé=ermi surface. For the case of an unchanged Fermi surface,
argument is also quantitatively correct, can be seen in Fighe bare dispersion, determines the quasiparticle energies
15, where we show thé dependence of the spectral density at this Fermi surface. Once hole pockets are formed, these
at a hot spot for whicls, =, o . For the above given set of are given by the SDW energi& of Eq. (40). On evaluat-
parametersé,~2 and SDW precursors occur as soonéas ing Eq.(41) at the SDW energies = Ek of Eq. (40) and for
> £&,. This is in striking agreement with, and provides a mi- v=0 in the limit £&—, we find, =%, the spin vertex is
croscopic explanation for, the prediction by Barzykin andreduced. For the case of long range antiferromagnetic order,
Pines that one find§(T=T%)~2 at the crossover tempera- with only two spin degrees of freedom left;=0 vanishes,
ture T, where the magnetic response changes character. as was shown by Schrieffét On the other hand, if one takes

We conclude that the quasiparticle excitations in the wealnto account that in the weak pseudogap regime the Fermi
pseudogap regime are intermediate between a conventionsilirface is basically unchanged and evaluates (Bd) at
system with a large Fermi surface and a spin density wavemall frequenciesov=»=0 for a hot spot withe,=¢ ;g
system with a small Fermi surface. The fact that both aspects 0, it follows that
are relevant explains the failure of any approach which con-
centrates on only one of these. A?

Is=1+—¢&2, (42)
3v 2
VI. SPIN AND CHARGE VERTEX FUNCTIONS . ) .
i.e., the vertex is considerabnhancedIn the case of the

We turn now to the coupling of quasiparticles of the weakcharge vertex the prefactgrin Eq. (41) has to be replaced
pseudogap state with the collective spin and charge degregy —1 and one findd'°=4 if one considers—o~ andI'®
of freedom. This is of interest in its own right, and is of =1—(A?/v?)£? in the case of an unchanged Fermi surface.
importance for an understanding of the charge and spin reFhese considerations demonstrate that which energies one
sponse functions discussed in Sec. Il. The quantities whicBonsiders and how the Fermi surface evolves is crucial for an
characterize the interaction of quasiparticles with the spirunderstanding of the role of vertex corrections, i.e., enhance-
and charge degrees of freedom are the vertex functionsient vs suppression. It also shows that only a careful and

kk+ (0+i0",0+v+i0") and I‘k K+q (o+i0",w+v  self-consistent analysis can reveal in which way the renor-
+|0+) In order to have an idea of the behavior of thesemalized charge and spin interactions vary. This we now do.
vertex functions we first consider their behavior analytically In Fig. 16 we show the spin vertekg ,, o(w+i0",
in the lowest nontrivial order of the perturbation series. Our+i0*) for hot and cold quasiparticles with momentum
subsequent numerical results are obtained from the full soluransferQ and zero frequency transfer as a function of en-
tion of the problem. For the spin vertex, we find on using Eq.ergy and, for comparison, the corresponding spectral func-
(37) and Eq.(16) for S(q) that, up to second order <A,  tion, A(w). As in the case for the spectral function, the
vertex function is strongly anisotropic; for cold quasiparti-

Fﬁ'k+q(w+ i0", w+v+i0t) cles vertex corrections are negligible, whereas the strong low
5 frequency enhancement b, o(0+i0",w+i0") for hot
—1— A 1 1 (41) quasiparticles demonstrates that despite their reduced low

?w—skﬂv/g otv—egotiv/§’ frequency spectral weight, hot quasiparticles interact
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FIG. 17. Spin verteX'} , o(@+i0",w+i0") for =0 along FIG. 18. Charge verteKy . o(w+i0",0+i0") for 0=0 as a
the Fermi surface as a function gt= arctank, /k,). function of ¢pe=arctank, /k,).

strongly with the spin fluctuations. Thus, for physically rea-Cuprates: the irrelevance to transport phenomena in the nor-
sonablet values, the low frequency vertex is not reduced butmal state of the total electron phonon coupling,

enhanced. This is important and must be taken into account ol

) i N -ph.__ ~el.-ph.(0)~c N+ Nt

in constructing an effective theory for the low energy de- kg ~Yka )Fk,k+q(0+'0 0+i07), (43
grees of freedom of the strong pseudogap state. Even withoggpite their pronounced ionic structure, which in fact sug-
detailed calculations, it is evident that in the spin quctuatlongests a strong bare interacticgﬁ'g]ph'(o) of charge carriers

model the strong coupling nature of the low frequency de'with the poorly screened lattice vibrations.

grees of freedom is crucial since it demonstrates that quasi- These considerations show that an effective low energy

particles anq spin fIl_Jctuations .do not decouple. This is esseqheory of the weak pseudogap state must take the strong and
tial to_obtain a spin fluctuation induced SlJperCOr“jucunganisotropic spin fermion interaction into account; it can

state. Thus, the conclusion of Ref. 45 that the pairing inter'safely neglect the coupling to phonons of hot quasiparticles

action of the spin fluctuation mechanism vanishes if one in4 ¢ el as any other interaction they might have with charge

cludes vertex corrections does not apply for doped cuprat€g, iitations, This is an important theoretical constraint for the

with short ranged antiferromagnetic spin correlatlon_s. Fur—Strong pseudogap state.
thermore, our results suggest that new strong coupling phe-
nomena are likely to occur once the temperature decreases

and the system changes character due to the suppression of
the quasiparticle scattering rate. We have used our solution of the quasistatic spin fermion
We further note that these results are frequency depefnodel of antiferromagnetically correlated spin fluctuations to
dent. Thus when we consider the vertex at frequencies develop a description of the intermediate weak pseudogap
close to the high energy features, we find a moderate redugtate of underdoped cuprate superconductors. Based on the
tion, which has the same origin as the vanishing vertex of thexperimental observation that the characteristic energy scale
long range ordered state. of overdamped spin excitations is small compared to the
The anisotropy of the spin vertex function can be seen itemperature, oncE lies between the two crossover scales
Fig. 17, where we plot the spin vertd . o(@+i0",0  andT®, we conclude that the spin degrees of freedom behave
+i0") for =0 along the Fermi surface as a function of quasistatically, i.e., the spin system is thermally excited and
¢e=arctank, /k,) (solid line). The rather sharp transition the scattering of quasiparticles with their own collective spin
between hot and cold quasiparticle behavior is similar to thainodes can be regarded as resulting from a static spin defor-
seen for the spectral density, in Fig. 12. mation potential, characterized only by the strength and spa-
The corresponding behavior for the charge vertex functial extent of these spin fluctuations. On neglecting the quan-
tion is shown in Fig. 18, which shows thd’fﬁykm(w tum dynamics of the spin modes, we were able to solve this
+i0",w+i10™) behaves in opposite fashion to the spin ver-spin fermion model by summing all diagrams of the pertur-
tex. At low frequencies, the quasiparticles are almost com-bation series for the single particle Green’s function and the
pletely decoupled from potential collective charge degrees o$pin and charge vertex functions. This enabled us to directly
freedom This effect is strongest for hot quasiparticles, andinvestigate the spectral function, measured in angular re-
occurs for momenta transfegsaround (0,0) as well as those solved photoemission experiments, the effective interactions
close toQ. The formation of incoherent spin density wave of quasiparticles with spin as well as charge collective modes
precursors obviously leads to a decoupling of the low energynd the spin and charge response behavior.
quasiparticles from the charge degrees of freedom. In our Our results demonstrate that for intermediate values of the
theory, its origin is the dominant interaction of the quasipar-antiferromagnetic correlation length and intermediate cou-
ticles with collective spin degrees of freedom. It is thus im-pling constantg, one is dealing with the rich physics of a
possible that any kind of static or low frequency dynamicalcrossover between nonmagnetic and spin density wavelike
charge excitation can substantially affect the charge carridpehavior. While the Fermi surface of the quasiparticles re-
dynamics of hot quasiparticle states in cuprates. Furthemains unchanged their highly anisotropic effective interac-
more, this result explains another important puzzle of thdion leads to two different classes of quasiparticlest and

VII. CONCLUSIONS
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cold, with only the hot quasiparticles feeling the full strength or optimally doped systertfor which T is not too high, it
of the antiferromagnetic interaction. For the latter, a transfeill turn out that aboveT®, where y,(T) is maximal, the
of spectral weight to high energy features occurs. These highigh energy features will disappear. We also expect impor-
energy features are the incoherent precursors of a spin detant insights into the role of impurities and high magnetic
sity wave state; their momentum dependence is in excellerftelds. Nonmagnetic impurities should affect the weak
agreement with corresponding high energy structures giseudogap state only slightly. Their strongest effect will oc-
around 200 meV seen in recent ARPES experiments. Fagur slightly belowT® where impurities causé to decrease
low energies, hot quasiparticles have a reduced spectrsd &imp. Providedéin,<£&,~2<¢, an impurity driven tran-
weight, a weak pseudogap characteristic, and the coherefition out of the weak pseudogap state occdis.will be
quasiparticle poles are completely overdamped due to theonsiderably more sensitive to impurities because for
strong scattering rate. The drop in scattering rate found in th@article-particle excitations with a tendencydavave pair-
strong pseudogap state is not sufficient to make this quasing, honmagnetic impurities act destructively and the strong
particle pole visible. It is only belowl, that the rate drops Pseudogap state may even completely disappear.
sufficiently that the pole becomes visible. This scenario ex- High magnetic fields provide another indicator of the dif-
plains the appearance of a sharp peak, invisible abgyeat ~ ferences between strong and weak pseudogap behavior. In
low frequencies in the superconducting state of underdopethe weak pseudogap regime no sensible effects for all
cuprates. The high energy features on the other hand agchievable field strengths will occur, because the relevant
expected to be unchanged as temperature is lowered. Coupling of the magnetic field is the Zeeman interaction with
Finally, we used our calculation of the irreducible vertexthe spinsz<H-s, which has to compete with the much stron-
functions to investigate the effective interaction of the qua-ger short range correlations of these spins. In the strong
siparticles with spin and charge modes. We find that thiseudogap state, we expect that the dephasing due to the
effective interaction is likewise highly anisotropic; the low minimal couplingp— p—(e/c)A will strongly affect the be-
energy electron-spin fluctuation interaction is strongly en-havior in the pairing channel, causing a suppression of strong
hanced whereas the coupling to charge degrees of freedomR§eudogap behavior. From this perspective, it immediately
reduced. The enhancement of the spin vertex is essential fé@llows that the transport experiments by Anebal* in a
the development of a spin fluctuation induced superconduciulsed high magnetic field demonstrate that weak pseudogap
ing state and is an indicator as well of anomalous behavior dtehavior is prolonged to lower temperatures. It is tempting to
lower temperatures. The reduction of the charge vertespeculate that for very strong magnetic fields the weak
causes a reduced electron-phonon coupling constant for hgseudogap regime crosses directly over into an insulating
quasiparticles as well as a decoupling of hot quasiparticlegne.
from potential charge collective modes. In general, for decreasing temperature the weak
This scenario applies, as discussed, for temperatures beseudogap regime can therefore cross over to a strong
tweenT, andT®. BelowT, , the characteristic frequency of Pseudogap state or to an insulator and, under certain circum-
the spin system increases for decreasing temperature, makiggnces, directly into the superconducting state. The latter
it impossible to consider the system as exhibiting quasistati’dy occur for systems with very large incommensuration,
behavior. Thus, here we expect that the quantum nature ¢¥hich tend to reduce the scattering rate of a quasistatic spin
the spin degrees of freedom becomes essential; it bringgystem:’ it is likely of relevance for La_,St,CuQ;.
about a strongly reduced phase space for the inelastic scat- Our results for the low frequency spin dynamics and op-
tering of quasiparticles and spin fluctuations, and causes #al response as well as the Raman intensity in g
sudden drop in the corresponding scattering rate of the syshannel will be compared with experiment in a subsequent
tem. Nevertheless, since we expect the high energy featur@aper. There we also demonstrate that we can explain the
to remain unchanged, the spectral weight of hot quasipartigeneric changes of the low frequency magnetic response at
cles is strongly reduced while their interaction is enhancedthe upper crossover temperatdié.**
This strong coupling behavior can bring about precursor to
superconducting state behavi6f’”®-1°Above T, the sys- ACKNOWLEDGMENTS
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sical manifestation. o , _ APPENDIX A: SINGLE PARTICLE GREEN'S FUNCTION
What are the consequences of this microscopic scenario AND DIAGRAMMATIC RULES
for the crossover behavior of underdoped cuprates? Our
theory predicts that upon measuring the uniform susceptibil- In this appendix we derive the diagrammatic rules of the
ity xo(T) and the spectral function for a slightly underdopedspin fermion model under circumstances that the interaction
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between collective spin modes is neglected. Note, these dia- 1 . . L
grammatic rules do not rely on the quasistatic approximation, Gke(7—7")= = (G kao( T, 7'[S)exp{trIn(—=G(S) " H})o,
but are completely general for the spin fermion model. (A9)

Using the generating functional
where the average

1
1= = T _ T T
Wi7,7] zf be'Deexp = (Stcintyic)} (Al <"'>°:zif DS - - exg{—S.) (A10)
B

S

with partiion functionZ=DgDoe™, effective action of is performed with respect to the free collective action of Eq
it = (B i .
Eq. (7) and shorthand notatio’ = [od 72k, Cy, 7k, the (A3). This is a standard exact reformulation of Hg) of

single particle Green’s function can be obtained via a func- . e . L 5
tional derivative- collective spin fields which has the appeal that explicit fer

mion degrees no longer occur and that Wick's theorem of the
2 + Bose field S can be used to evaluate the single particle
oWl 7,7'] - :
= (A2)  Green’s function.
57;&0( T) 0N (T") = nt=0 Since we do not expect the interaction of the spin modes
. ) to be relevant, we neglect nonline@drigher order inS than
As usualc, 7', etc. are Grassman variables. In order to perquadrati¢ terms of the spin field, assuming that no modifi-
form this functional derivative it is convenient to introduce acations due to Spin ﬂuctuation_spin fluctuation interactions

collective bosonic Spin 1 erI(Sq by addlng an irrelevant occur beyond those a|ready inc|udedxi5(w)_ Using renor-

Gy,o(7=7")

Gaussian term to the actidh—S+S,, where malization group arguments, it has been shown by Millis
118 p that indeed the system is characterized by a Gaussian fixed
s(S9==|"4d J' d+ -1, __ S (7). point as far as t.he low frequency spin dynamics is concefrned..
o(S) 2fo 7 0 T Eq: Xg (7777 S-o(T) The mathematical consequence of these two assumptions is

(A3) that we can use the approximation

to integrate with respect to this spin field and to divide by the _A(Q) 1IN A
corresponding partition functiodg of this ideal Bose gas. eXRrin(=G(S) Hi~2. (ALY)
Finally, we shift(after Fourier transformation from time to Contributions of second order Bican be ignored, since they
frequency the variable of integration as would renormalizex,(w), which is assumed to be the ex-
perimentally determined, i.e., fully renormalized susceptibil-
_ ) 29 ) ity. Equation(A1l) leads to a considerably simplified ex-
Syli wn) — S(iwy) — ﬁ)(q(lwn)sq(lwn)a (A4)  pression for the Green’s function:

leading to the effective action of thepin fermion model Gio( 7= 7) = (G koo 7.7'[9))o- (A12)

B Consequently, the diagrammatic series for the determina-
S=-— f drE clgnglckUnL S tion of the single particle Green'’s function reduces to that of
0 ke a single particle problem with time dependent spin “impuri-
ties.” Inversion of the Green’s function matrix of EGA8) in

+ Z_QJBdTE () S_g(7). (A5) spin space yields for the-spin matrix element
\/§ ° a o 2 o -1 -1
After this Hubbard Stratonovich transformation, we can in- G _(S)=|G,'- _gszg_so—( Gol+—gsz> s7|
tegrate out the fermions, yielding V3 3 V3
(A13)
1 R C co ot i .
W[ 7, 7' :_j DSexpl— (S.(S) — 77G(S) )}, with S”=S5~ if o=*1. Here, we still have to take the ma-
L7.7] ZZy A= &S =nCS7) trix nature ofG, andS (in momentum and frequency space

(A6) into account since they are diagonal in different representa-

with the action of the collective spin degrees of freedom  tions (G, in momentum and frequency spacijn coordi-
nate and time spageConsidering the limiting case of only

S:(S)=—trin(—=G(S) " H+S,(9). (A7)  one longitudinal spin mode generated $Bygives after aver-
aging
Here, we have introduced the matrix Green’s function
R * g2 N
G (7|9 =G (7= 1') S0 (Gi(9)o=Go X (g) (SG,SG)Y),, (A1)

g , where we used the fact that odd ordersSfvanish without
- ﬁ&*k’(ﬂ S(r—7')-0, (A8 global symmetry breaking. Using this representation of the
Green’s function, the diagrammatic rules which correspond
which describes the propagation of an electron for a giverio the averaging with respect & follow straightforwardly.
configurationS of the spin field. Performing the above func- The averages can be evaluated via contractions based on
tional derivative with respect tg and " gives finally Wick’s theorem using(Sé(r)SZ_q(r’))():Xq(r— 7'). This
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leads to the diagrams of a theory of fermions interacting with m
a scalar time dependent field. Here, the topology of each s ! — 42

diagram is identical to the topology of the contraction sym-

bols which occur by applying Wick's theorem. Alternatively, Pray ;IPN»LL&
one can also consider the case of two transverse modes lead- ,,_ {, s %, ,, o .4 5
ing to

g 2 . :‘,f"";,?-t;; "\,“. S ';‘\(v\_i | Srr,‘\,\;‘.i.

* N
<Gt(s)>0=Goz (?) <(SiGoS+Go)N>o (A15)
N=0

FIG. 19. Self-energy diagrams of the spin fermion model up to
which is identical to a theory of fermions interacting with a orderg*, including signs and multiplicities. The wigglidashe
“charged” time dependent field. Again Wick’s decomposi- lines correspond to spin fligspin conserving processes. Each
tions using <SJ(T)S:q(T/)>0:2Xq(T_ ') can be per- crossing of alwiggly anq Qashed line causes a prgfaepbrand
formed. each wiggly line an additional factor of 2. The solid line corre-

The situation becomes more complicated if one consider&P0"ds to the bare fermion propagator and each vertex to the cou-
simultaneously longitudinal and transverse modes. Here, R“ng constang/3™=.

follows from Eq.(A13) Multiply with a prefactor (1) in front of the diagram,

= g2\ where C is the number of crossings of dashed and wiggly
G, (S)=Gg, (S X (—) (S Go, o(S)S Go, o SNY, lines. . .
’ N=0 | 3 ’ ’ Finally one has to sum over all possible diagrams gener-

(A16)  ated by this procedure. In Fig. 19 we plot all diagrams for the
self-energy up to ordeg®, including signs and multiplicities.
The occurrence of the additional crossing sign which results
N from the interference of longitudinal and transverse modes
(A17)  certainly complicates the situation. If there were only one or
two components of the SB) spin vector, the diagrammatic
. rules reduce to the special case of only longitudinal or trans-
qu_Jat|o_ns(A16) apd (A17) mean thgt for any tr_ansvgrse verse interaction Iinez. Here, the probI}(/am ig identical to that
(spin flip) scattering event all possible longitudingpin of uncharged or charged bosons, respectively. Only the si-

cor][szrvm%_ plrocessei OC.CU{'h The compllcatlfotr;] of'th|sf mt- multaneous consideration of both phenomena, which is nec-
Serﬁ partial summation Is ﬁ occurrence ot the sign tac Oéssary to preserve spin rotation invariance, leads to the pref-
(o)™ of down spins. The { 1)" factor occurs, if there are

. N actor (—1)° and reflects the fact that the collective mode of
contractions out of longitudinal processes for an odd numb

&he system is &pin fluctuation
of §* fields of ac=| =—1 Green’s functiorG, |(S’). If a Identical di tic rul | be derived for th ;
$* is paired with anothe®’ of the sameG,, | (S7), they occur entical diagrammaic ries tan e derived for the spin

. ber with difving the sian. The T)N fluctuation vertex function. In Fig. 20 we show, as an ex-
In an even number without mo |fzy|_ng the sign. Th AL ample, the spin flip verteX; as well as the spin conserving
enters only if a longitudinal fiel®” is contracted with one

’ : vertexI',. Even though our approach is not constructed to be
which refers to a Green’s functio, ;(S?). In order to ' g PP

’ L HeF ) manifestly spin rotation invariant, this symmetry must of
reachG,, (), the corresponding line of th&" contraction . ,rse pe satisfied once the transverse and longitudinal spin

has to cross an qdd number of 'trans.verse contractions. Frogﬂjsceptibilities, represented by the wiggly and dashed lines
these considerations, the following diagrammatic rules for an¢ ihe above diagrammatic rules, are the same. As can be

arbitrary diagram of order/@ result. _ seen from the lowest order vertex corrections, the above de-
Draw 2N+ 1 solid lines with N vertices which can be

2L spin conservingN — L spin lowering andN— L spin rais-
ing vertices, referring to vertices of longitudinal processes
($9), leaving transverse processes § and entering trans- =
verse processesSt), respectively. For the transverse verti-
ces one has to ensure that two subsequent spin r&isiwg
ering vertices are separated by one spin lowerfrajsing
and an arbitrary number of spin conserving vertices.
Connect the spin lowering vertices pairwise with spin
raising ones by a wiggly line. I} =-mmmmmn
Connect the spin conserving vertices pairwise with
dashed lines.
Insert for any solid line a Green’s functid®,, (i w,), for
any vertexg/+/3, for any wiggly or dashed lingy(i w,) and R
take momentum and energy conservation at the vertices into
account.
Multiply with a prefactor 2'~% which accounts for the FIG. 20. Longitudinal(spin conserving and transverséspin
two transverse spin degrees of freedddtL is the number flip) vertices up tog?. Note that the derived diagrammatic rules
of wiggly lines). guarantee, as expected, spin rotation invariabge:I'; .

where

Go($)=Go 2, (W(iszeo

V3
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rived diagrammatic rules guarantee indeed fhatI',=T"%, we have to replace in all expressiogd/3 by g/ N. For
as expected. It can be shown order by order in the couplingxample one has to generalize the expression
constani that our procedure guarantees spin rotation invari-

ance, as is essential for a system with isotropic spin fluctua- , 1,

tions. AT=x9 (S (B4)

APPENDIX B: DETERMINATION OF THE MULTIPLICITY for the gap energy, etc. Here, the partition sum of the bosons
OF DIAGRAMS is given by Zg=1r I (M2)(2A%/g?)M? with r;=2, r,

=2, andr;=41, respectively. FowW=1 and 2, the ana-

_In this appendix we calculate the multiplicity of identical |ytical inversion of the Dyson equation is evident, faf
diagrams for a given order of the perturbation series. This=3 it follows

will be done in two steps. First, we solve the problem in the

limit £&—o0; second, we use the general expression of Eq. g

(29), valid for an arbitrary diagram and finit¢ and deter- —Hy

mine the missing-independent multiplicity factors from the G ()= Gok St o V3 S b,
£ solution. For the special cases of only longitudinal or 7 kX (gS)2 Kk (gS)Z  TkktQr
transverse modes, our solution is the same as Sadovkii's. 1- 3 Hi 1- 3 Hk

It is important to notice that without the result of H§9) it
would not be possible to determine uniquely the diagramThe second, nonspin rotation invariant, term vanishes after

multiplicity from the infinite £ limit. averaging, Eq(B3), and we can finally write
a. Solution for £é— o« Gu(w) 1 (B5)
w)=
The limit é£— is not free of complications: First, we “ o (99)°/3
expect that in this limit the longitudinal and transverse spin @ 8k w—griql |

degrees behave differently. We can ignore this problem here
because we are only interested in the spin rotation invariarit follows that the full Green’s function, obtained in the limit
situation for finite¢ and use the limit only for the mathemati- £é—~, is an averaged second order Green’s function with

cal purpose of determining diagram multiplicities. Thus wefluctuating SDW gapA=(gS?/3. For arbitrary .\, the
assume spin rotation invariance also or-c. Second, the  ¢;me result occurs if one replaces the gap By

local moment of the susceptibility in EQR) diverges in the _ JO9TN ; ; ;
R L . = (g9 */N. Performing the angular integration of the vec-
static limit logarithmically foré—coc. This problem can also tor S, the integral of Eq(B3) can be written as

be avoided, because the use of Ef6) avoids this diver-
gence, but does not change the multiplicity of the diagrams. r JN N o _

Third, the rather straightforward result that for a given order Gy(w)= —N(—N‘) J' dZ|Z|N*1e*(/\//2)(NA)2

in g each diagram foé—« is besides sign and multiplicity 2Zg\ g o

identical, leads to the following perturbation expansion of

the Green'’s function: < ~1 _ (B6)
w—sk—AZ/w—sk+Q

2

3

n

Gu(w)=G >, (2n+1)!! Hg, (B1)  The remaining one-dimensional integral demonstrates the
n=0 different behavior for differentV. For A’'=1, the distribution
whereHy =G Gok+ o, Which is in fact a divergent series. function of the SDW gap is centered argund zero whereas for
One can then obtain a convergent result using Borel summay=2 and 3 it has a maximum for finitd. Performing the
tion of this series. This is however not the most transparensaddle point approximation fok'=2 or 3 yields SDW-like
way to solve this problem; we choose an alternative aPyolutions with reduced gap :@Awo.mm for N=2
proach, using the path integral representation of the Green’s 5 °
function derived in Appendix A, which of course gives the @1d Ao= \/;A”0-81653 for N’=3. However, even for\’

same result. =1, the contribution of the tails of the distribution function
In the limit of infinite antiferromagnetic correlation changes the behavior qualitatively compared to the saddle
|ength, the On|y relevant Spin Configuration is pOint apprOXimation and solutions similar to an SDW state
occur. It is interesting to note EB6) is the Borel integral
Sk =Sk +0 (B2) representation of the formally divergent perturbation series

in the limit é—o. With the path integral approach, we did
not encounter this divergence, thus demonstrating that it was,
1 - in fact, a spuriou; one. _
(- '>°:Z_f gVs. .. 9°5724% (B3) The integral with respect to the fluctuating SDW gap can

B be evaluated using the integral representation of the incom-
Here, the spin rotation invariant case of present physical inP/ete Gamma function
terest isN=3. If N=1 or 2 the system consists only of
longitudinal or transverse modes, respectively. In the follow- T(¢4,2)=
ing we solve the problem for all three situations. In doing so, A=y Jo z+t

and the path integral of EA10) simplifies considerably to

e %V (ee Yt ¥

dt, (B7)
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with t=NA%/(2A%) and y=1-AN2 and z=-3(w mined integer numbaer; of the jth insertion of the continued
—sk)(w—8k+Q)/A2. Using the continued fraction represen- fraction, which is independent of the correlation length, we
tation of I'(¢,z),>2 we obtain the following result for the use the fact that for a given ord&®N of the perturbation

single particle Green’s function: theory, only one sequend@;} occurs withn;=N. This re-
fers to diagrams which are identical to the rainbow diagram
1 of order 2N. The only way that this can be satisfiedris
Cy(w)= A2 =j. Thus we obtain the solution of the spin fermion model
w— & — L > for finite correlation length based on the approximation of
KA Eq. (16):
(1)_8k+Q_ K3A2 . X .
D G(w) =0 (0) 1= kj118%G{ (0)  (B1O)
W—Egig— _
(B8)  with
with k;=J/Nif j even andkj=(j+N—1)/Nif j odd. For _ 1
the special cases of’=1 and 2, this is identical to Sa- 9 (w)= Ton (B11
dovskii’s resul?® Furthermore, we can obtain an analytical w—eysjoti .5}
expression for the single particle Green’s function for the ¢

case\/=3 which corresponds to the spin fermion model. which generates the continued fraction representation of the
single particle Green’s function, similar to the one-
b. Generalization to the case of finit§ dimensional case.

Using, for the moment, the approximation of Ef6), the The general solution, independent of H46), follows
solution for finite antiferromagnetic correlation length can beffom the fact that the only difference from the strict two-
inferred from Eq.(B8) and Eq.(29), valid for an arbitrary ~dimensional case is the functiaf . o(t) of Eq. (19), which
diagram and finite. From Eq.(29) we know that, compared Was approximated by Ed21). The decoupling of the mo-
to the limit £— o0, the only way the correlation length enters mentum integrals in the proper time representation and the

the problem is via diagram multiplicities, i.e., the¢;, do not depend on the
. actual choice ofy, o(t), and the only difference compared
0= Exrjo— W~ ExrjoTiNjUkiqg,/é, (B9  to Eq. (B10) is the functiong{’(w), which in terms of

where|j refers to the order of the continued fraction with ¥k+o(t) can be expressed as

nominatorKjAz. On the other hand, in Eq29), the integer _ w _

numbern; has a specific diagrammatic meaning. Since we gd(w)= —iJ dte'(“”ekﬂQ)wkﬂQ(t)J. (B12)
can generate an arbitrary diagram by expanding the contin- 0

ued fraction of Eq(B8) with respect taA?, we can perform  On using the result of Eq(20) for U+ o(t), together with
the replacement of EqB9) within the continued fraction Eg. (B10), the solution of the Green’s function of the spin
representation Eq(B8). In order to fix the not yet deter- fermion model is that given in Eq30).
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