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Microscopic theory of weak pseudogap behavior in the underdoped cuprate superconductors:
General theory and quasiparticle properties
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We use a solution of the spin fermion model which is valid in the quasistatic limitpT@vsf , found in the
intermediate~pseudoscaling! regime of the magnetic phase diagram of cuprate superconductors, to obtain
results for the temperature and doping dependence of the single particle spectral density, the electron-spin
fluctuation vertex function, and the low frequency dynamical spin susceptibility. The resulting strong anisot-
ropy of the spectral density and the vertex function lead to the qualitatively different behavior ofhot @around
k5(p,0)] andcold @aroundk5(p/2,p/2)] quasiparticles seen in ARPES experiments. We find that the broad
high energy features found in ARPES measurements of the spectral density of the underdoped cuprate super-
conductors are determined by strong antiferromagnetic~AF! correlations and incoherent precursor effects of an
SDW state, with reduced renormalized effective coupling constant. Due to this transfer of spectral weight to
higher energies, the low frequency spectral weight ofhot states is strongly reduced but couples very strongly
to the spin excitations of the system. For realistic values of the antiferromagnetic correlation length, their Fermi
surface changes its general shape only slightly but the strong scattering of hot states makes the Fermi surface
crossing invisible above a pseudogap temperatureT* . The electron spin-fluctuation vertex function, i.e., the
effective interaction of low energy quasiparticles and spin degrees of freedom, is found to be strongly aniso-
tropic and enhanced for hot quasiparticles; the corresponding charge-fluctuation vertex is considerably dimin-
ished. We thus demonstrate that, once established, strong AF correlations act to reduce substantially the
effective electron-phonon coupling constant in cuprate superconductors.@S0163-1829~99!01421-6#
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I. INTRODUCTION

In addition to their high transition temperatures and
dx22y2 symmetry of their superconducting state, the cupr
superconductors possess a remarkable range of normal
anomalies. Seen first as charge response anomalies in t
port, Raman, and optical experiments, and subsequentl
spin response anomalies in nuclear magnetic reson
~NMR! and inelastic neutron scattering~INS! experiments,
recent specific heat and angular resolved photoemis
spectroscopy~ARPES! experiments have shown that the
anomalies are accompanied by, and may indeed originat
anomalous planar quasiparticle behavior. It is convenien
discuss the temperature and doping dependence of this ‘
formly’’ anomalous behavior in terms of the schematic pha
diagram shown in Fig. 1. There one sees that overdoped
underdoped systems may be distinguished by the exten
which these exhibit crossover behavior in the normal st
underdoped systems exhibit two distinct crossovers in n
mal state behavior before going superconducting, wh
overdoped systems pass directly from a single class
anomalous normal state behavior to the superconduc
state.1 In a broader perspective of this schematic phase
gram, which is applicable to the YBa2Cu3O72d ,
YBa2Cu4O8, Bi2Sr2Ca1Cu2O81d , HgBa2CuO41d ,
PRB 600163-1829/99/60~1!/667~20!/$15.00
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HgBa2Ca2Cu3O8, and Tl2Ba2Ca2Cu3O10 systems, if one de-
fines an optimally doped system as that which possesse
highest superconducting transition temperature within
given family, then optimally doped systems are in fact u
derdoped.

Attempts to understand the different regimes of this ph
diagram have been based on strong magnetic precursor2–7

the formation of dynamical charge modulations in form
stripes,11 the appearance of preformed Cooper pairs ab
Tc ,8–10 or the separation of spin and charge degrees
freedom.12,13

A phase diagram similar to Fig. 1 was independently d
rived from studies of the charge response by Hwang, B
logg, and their collaborators14 and from an analysis of the
low frequency NMR experiments15 by Barzykin and Pines.16

The latter authors identified the upper crossover temperat
Tcr, from measurements of the uniform susceptibility,xo , in
Knight shift experiments, which show that for underdop
systemsxo possesses a maximum at a temperatureTcr,
which in underdoped systems, increases rapidly fromTc as
the doping level is reduced. The fall-off in susceptibility fo
temperatures belowTcr was first studied in detail by Alloul
et al.,17 and led Friedel18 to propose that it might arise from
a near spin density wave~SDW! instability; he coined the
667 ©1999 The American Physical Society
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668 PRB 60JÖRG SCHMALIAN, DAVID PINES, AND BRANKO STOJKOVIĆ
term pseudogap to explain its behavior, in analogy to
quasiparticle pseudogap seen in charge density wave~CDW!
systems. Barzykin and Pines identified further crossover
havior in this pseudogap regime by examining the beha
of the 63Cu nuclear spin-lattice relaxation time,63T1 , as the
temperature was reduced belowTcr. They noted that betwee
Tcr and a lower crossover temperature,T* , the product
63T1T decreases linearly in temperature, while shortly bel
T* this product has a minimum, followed by an increase
the temperature is further lowered, an increase which
strongly suggestive of gaplike behavior. They proposed
these two crossovers were accompanied by changes in
namical scaling behavior which could be measured dire
if NMR measurements of63T1 could be accompanied b
measurements of the spin-echo decay time,63T2G . Above
Tcr they argued that the ratio,63T1T/63T2G

2 , would be inde-
pendent of temperature, a result equivalent to arguing
the characteristic energy of the spin fluctuations,vsf , would
be proportional to the inverse square of the antiferromagn
correlation length,j. BetweenTcr andT* they proposed tha
the ratio 63T1T/63T2G would be independent of temperatur
which means that an underdoped system would exhibz
51 scaling behavior, i.e.,vsf would be proportional toj21;
below T* they found that the increase invsf would be ac-
companied by a freezing out of the temperature-depen
antiferromagnetic correlations; i.e.,j21, which was propor-
tional toa1bT betweenTcr andT* , would approach a con
stant. This behavior has recently been confirmed in NM
measurements on YBa2Cu4O8 by Curro et al.19 while z51
pseudoscaling behavior has been found in INS experim
on La1.86Sr0.14CuO4 by Aeppli et al.20

Because pseudogap behavior of different characte
found betweenTcr and T* , and betweenT* and Tc , the
terms weak pseudogap and strong pseudogap behavior
coined to distinguish between the two regimes.21 Thus in the
weak pseudogap regime one findsz51 pseudoscaling~be-
cause the scaling behavior is not universal! behavior, with

FIG. 1. Schematic phase diagram of underdoped cuprates.
the presence of two different crossover temperatures:Tcr, which
characterizes the onset of sizable antiferromagnetic correlati
and T* , which signals the onset of a considerable loss of low
ergy spectral weight in the quasiparticle spectrum leading to a m
mum of the characteristic spin-fluctuation energyvsf . The region
betweenTcr andT* is the weak pseudogap regime discussed in
paper.
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both vsf and j21 exhibiting linear inT behavior, while the
rapid increase in63T1T, or what is equivalent,vsf , found
below T* suggests that strong pseudogap is an appropr
descriptor for this behavior.

An alternative perspective on weak and strong pseudo
behavior comes from ARPES22,23 and tunneling
experiments,24 which focus directly on single particle excita
tions. AboveT* , ARPES experiments show that the spect
density of quasiparticles located near the (p,0) part of the
Brillouin zone, develops a high energy feature, a res
which suggests that the transfer of spectral weight from l
energies to high energies for part of the quasiparticle sp
trum may be the physical origin of the weak pseudogap
havior seen in NMR experiments. BelowT* , ARPES experi-
ments disclose the presence of a leading-edge gap
momentum-dependent shift of the lowest binding ene
relative to the chemical potential by an amount up
30 meV for quasiparticles near (p,0); it seems natural to
associate the strong pseudogap behavior seen in the N
experiments with this leading edge gap. Recent tunne
experiments have shown that both the high energy fea
~i.e., weak pseudogap behavior! and the strong single particl
pseudogap can also be observed in the tunneling con
tance, with the high energy feature occurring primarily in t
occupied part of the spectrum.

Strong pseudogap behavior is also seen in specific h
dc transport, optical experiments, and Raman experime
Below T* , a reduced scattering rate for frequenciesv
,pT* has been extracted from the optical conductivity u
ing a single band picture.25 This suggests that excitations i
the pseudogap regime are more coherent than expecte
extrapolation from higher temperatures. This point of view
supported by recent Raman experiments26,27 which observe
in the B1g channel, sensitive to single particle states arou
k5(p,0), a suppression of the broad incoherent Raman c
tinuum and a rather sharp structure at about twice the sin
particle gap of ARPES experiments.26 Resistivity measure-
ments also show that belowT* the systems gets more con
ducting than one would have expected from the linear re
tivity at higher temperatures.28

It is natural to believe that the pseudogap in the s
damping, as observed in63T1T measurements, the singl
particle pseudogap of ARPES and tunneling experime
and the pseudogap of the scattering rate are closely rel
and must be understood simultaneously. Furthermore,
essential for any theory of the strong pseudogap to acco
properly for the already existent anomalies aboveT* , be-
cause they are likely caused by the same underlying effec
interactions. As can be seen by inspection of Fig. 1, stro
pseudogap behavior in underdoped cuprates only oc
once the system has passed the weak pseudogap state.

In this paper we concentrate on the weak pseudo
~pseudoscaling! regime aboveT* and give a more detailed
account of the preliminary results we obtained using a sp
fluctuation model of normal state behavior.21 It is our aim to
provide a quantitative understanding forT.T* of quantities
reflecting strong pseudogap behavior belowT* . We derive a
solution of the spin fermion model in the quasistatic lim
pT@vsf , relevant for the intermediate weak pseudogap
gime of the phase diagram. We demonstrate that the br
high energy features of the spectral density found in ARP
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measurements of underdoped cuprates are determine
strong antiferromagnetic correlations and incoherent pre
sor effects of an SDW state. The spectral density at the Fe
energy and the electron-spin fluctuation vertex function
strongly anisotropic, leading to qualitatively different beha
ior of hot @around k5(p,0)] and cold @around k
5(p/2,p/2)] momentum states, whereas the Fermi surf
itself changes only slightly. We present results for the eff
tive interaction of quasiparticles with spin and charge coll
tive modes. In distinction to the strong coupling of hot qu
siparticles to spin excitations, we demonstrate that th
renormalized coupling to charge degrees of freedom, inc
ing phonons, is strongly suppressed. Finally, we show
the onset temperature,Tcr, of weak pseudogap behavior
determined by the strength,j, of the AF correlations.

Our theory also allows us to investigate the low frequen
spin and charge response functions. In a subsequent pub
tion, we will discuss the suppression of the spin damping
further generic changes in low frequency magnetic beha
seen in NMR experiments as well as the optical respon
particularly as far as theB1g-Raman continuum is concerne

From our calculations it also becomes obvious that
theory of fermions coupled to quasistatic spin excitations
not applicable in the low temperature, strong pseudogap
gime. Here we expect that spin fluctuation induced pair
fluctuations play an essential role.

The paper is organized as follows. In the next section
summarize important findings of ARPES results which w
later on be explained by our theory of the weak pseudo
regime. Next, we give the basic concept of the spin fluct
tion model and derive the spin fermion model. In the follo
ing, fourth, section we discuss in detail our solution of t
spin fermion model in the quasistatic limit, with particul
attention to the new physics of the spin fermion model
intermediate coupling. Our solution is obtained by the co
plete summation of the perturbation series, and is motiva
in part by a theory for one-dimensional charge density w
systems developed by Sadovskii.29 We have extended hi
theory to the case of two spatial dimensions and isotro
spin fluctuations and, in so doing, found that we could av
several technical problems of the earlier approach. Techn
details of the rules we used for computing diagrams are
sented in Appendixes A and B. Readers not interested
these technical aspects can skip the theory section and sh
be able to follow the discussion of our results for the spec
density and vertex functions in the fifth and sixth sectio
respectively. In particular, results for the single particle pro
erties are discussed at length and compared with ARP
experiments. Finally our theory for the weak pseudogap
gime is summarized in the last section, where we also c
sider the physics of the strong pseudogap state and sum
rize some predictions and consequences of our theory.
argue that a proper description of the higher tempera
weak pseudogap regime is essential for a further invest
tion of the low temperature strong pseudogap state and a
that the strong pseudogap state and precursors in the pa
channel are the quantum manifestation of strong antife
magnetic correlations whereas the spin density wave pre
sors are the classical manifestation of it.
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II. ARPES EXPERIMENTS

ARPES experiments offer a powerful probe of the qua
particle properties of cuprates. Since they provide unusu
strong experimental constraints for any theory of optima
doped and underdoped cuprate superconductors, we sum
rize in this section the main experimental results obtained
this experimental technique

In Fig. 2, we show ARPES spectra close to the mom
tum k5(p,0), for two different doping concentrations.30

While for the overdoped,Tc578 K, sample a rather shar
peak occurs, which crosses the Fermi energy, the spe
density of the underdoped,Tc588 K, sample exhibits in-
stead a very broad maximum at approximately 200 me
Thus, the entire line shape changes character as the dop
reduced. The other important difference between the
charge carrier concentrations is the appearance of the lea
edge gap~LEG!, i.e., a shift of the lowest binding energ
relative to the chemical potential, for the underdoped syst
This LEG varies between 20 and 30 meV and is theref
hardly visible in Fig. 2, but is discussed in detail in Refs.
and 23.

In addition to this strong doping dependence, the spec
function of underdoped systems is also very anisotropic
momentum space, as can be seen in Fig. 3. Here, the pos

FIG. 2. ARPES spectra from Ref. 30 for momentak at and close
to (p,0), for two different doping concentrations. TheTc578 K
sample is slightly overdoped whereas theTc588 K sample is un-
derdoped.

FIG. 3. The position of local maxima of the spectral functio
along the high symmetry lines of the Brillouin zone is shown for
overdoped and underdoped system~data from Ref. 31!.
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670 PRB 60JÖRG SCHMALIAN, DAVID PINES, AND BRANKO STOJKOVIĆ
of local maxima of the spectral function along certain hi
symmetry lines of the Brillouin zone is shown for an ove
doped and underdoped system. This is usually done bec
the maxima of the spectral density correspond to the posi
of the quasiparticle energy. However, as we discuss in de
below, this interpretation is not correct in underdoped s
tems for momentum states close to (p,0) where the line
shape changes qualitatively. Close to (p,0), one sees for
overdoped systems, in agreement with Fig. 2, a peak at
binding energy, which crosses the Fermi energy betw
(p,0) and (p,p), whereas the 200 meV high energy featu
is the only visible structure for the underdoped system. I
flat and seems even repelled from the Fermi energy betw
(p,0) and (p,p). The situation is different for momentum
states along the diagonal, where a rather sharp peak cro
the Fermi energy between (0,0) and (p/2,p/2); the velocity
of the latter states, seen in the slope of their dispersion
Fig. 3, is independent of the doping value, while no LEG h
been observed for those quasiparticle states.

In Ref. 31, the authors constructed the Fermi surface
the two doping regimes by determining thek points where a
maximum of the spectral function crosses the Fermi ene
Their results are replotted in Fig. 4. Consistent with Fig.
large Fermi surface occurs for the overdoped mater
whereas only a small Fermi surface sector close to the d
onal could be identified in the underdoped case. Even tho
this appears to be in agreement with the formation of a h
pocket closed around (p/2,p/2), with reduced intensity on
the other half of the pocket, ARPES data below the sup
conducting transition temperature, shown in Fig. 5, show t
for momenta close to (p,0), a sharp peak appears at low
binding energy. This behavior, for the underdoped cas
completely consistent with a large Fermi surface which
only gapped due to the superconducting state. The obv
question arises: how could a transformation from a small
large Fermi surface occur on entering the superconduc
state?

We should also mention that in Ref. 30, the auth
showed that the two energy scales~the LEG and the high
energy feature! behave as a function of doping in a fashio
which is quite reminiscent of the two temperature scales,T*

FIG. 4. Fermi surface for an overdoped and underdoped sys
obtained fromk points where local maxima of the spectral functio
cross the Fermi energy~data from Ref. 31!.
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and Tcr, shown in Fig. 1. This leads us immediately to tw
conjectures:~1! There is a relationship of the physics of th
upper crossover temperatureTcr and the high energy feature
as well as between the strong pseudogap temperatureT* and
the LEG.~2! As a strong pseudogap state is impossible wi
out a weak pseudogap state at higher temperatures, the
can only appear after the system has established the
energy features.

As noted above, these fascinating experimental res
represent a set of very strong constraints for the microsco
description of underdoped cuprates we develop below.

III. THE SPIN FLUCTUATION MODEL

The nearly antiferromagnetic Fermi liquid~NAFL!
model32,33 of the cuprates offers a possible explanation
the observed weak and strong pseudogap behavior.
based on the spin fluctuation model, in which the magne
interaction between the quasiparticles of the CuO2 planes is
responsible for the anomalous normal state properties
the superconducting state with highTc and dx22y2 pairing
state.32,34 In a recent letter, we have shown how the we
pseudogap regime can be understood within this NA
scenario.21

In common with many other approaches, within the sp
fluctuation model the planar quasiparticles are assumed t
characterized by a starting spectrum which reflects th
barely itinerant character, and which takes into account b
nearest neighbor and next nearest neighbor hopping, acc
ing to

«k522t~coskx1 cosky!24t8 coskx cosky2m, ~1!

wheret, the nearest neighbor hopping term,;0.25 eV, while
the next nearest neighbor hopping term,t8, may vary be-
tween t8'20.45t for YBa2Cu3O61d and t8'20.25t for
La22xSrxCuO4.

In distinction to many other models, the spin fluctuati
model starts from the ansatz that the highly anisotropic
fective planar quasiparticle interaction mirrors the dynami
spin susceptibility,35

m,
FIG. 5. Spectral function of a hot quasiparticle above and be

the superconducting transition temperature~data from Ref. 22!.
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xq~v!5
aj2

11j2~q2Q!22 i
v

vsf

, ~2!

peaked nearQ5(p.p), via

Veff
NAFL~q,v!5g2xq~v!, ~3!

an ansatz which enables us to construct directly a the
which focuses solely on the relevant low energy degree
freedom. In Eq.~3!, g is the coupling constant characterizin
the interaction strength of the planar quasiparticles with th
own collective spin excitations. In this model, changes
quasiparticle behavior both reflect and bring about the m
sured changes in spin dynamics. The dynamic susceptib
Eq. ~2!, was introduced by Millis, Monien, and Pines35 to
explain NMR experiments, which can be used to determ
the correlation length,j, the constant scale factor,a, and the
energy scalevsf , which characterizes the overdamped nat
of the spin excitations. It follows from the experimental da
that the static staggered spin susceptibilityxQ5aj2 is large
compared to the uniform spin susceptibility,x0, and the re-
laxational mode energy correspondingly small compared
the planar quasiparticle band width.16,36For optimally doped
and underdoped systems one finds that over a conside
regime of temperatures,

vsf!pT ~4!

and it is only asT falls belowT* that vsf becomes compa
rable to and eventually larger thanpT. In detail, betweenT*
and Tcr one finds vsf /(pT)'0.17 for YBa2Cu4O8 and
vsf /(pT)'0.14 for YBa2Cu3O6.63 rather independent o
T.16 As a result of this comparatively low characteristic e
ergy found in the weak pseudogap region, the spin syst
for q;Q, is thermally excited and behaves quasistatically21

the quasiparticles see a spin system which acts like a s
deformation potential, a behavior which is no longer fou
below T* wherevsf increases rapidly16 and the lowest en-
ergy scale is the temperature itself.

Since the dynamical spin susceptibilityxq(v) peaks at
wave vectors close to (p,p), two different kinds of quasi-
particles emerge:37,38hot quasiparticleswith

u«k2«k1Qu,v/j, ~5!

located close to those momentum points on the Fermi sur
which can be connected byQ, feel the full effects of the
interaction of Eq.~2!; cold quasiparticleswith u«k2«k1Qu
.v/j, located not far from the diagonals,ukxu5ukyu, feel a
‘‘normal’’ interaction. In Fig. 6, we show the Fermi surfac
in the first quarter of the BZ and indicate the evolution w
j of its hot regions, which satisfy Eq.~5!, by a thick line.
Note that even for a correlation lengthj51 a different be-
havior along the diagonal and away from it is expected.
larger values ofj, the hot regions become smaller while the
effective interaction increases. Close toTc , typical values
for j of underdoped but superconducting cuprates are 2,j
,8, depending on doping concentration;16 v is the magni-
tude of a typical Fermi velocity in the corresponding m
mentum regions.
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The distinct lifetimes of hot and cold quasiparticles can
obtained from transport experiments: a detailed analy
shows that, due to the almost singular interaction, the beh
ior of the hot quasiparticles is highly anomalous, while co
quasiparticles may be characterized as a strongly cou
Landau Fermi liquid.38 The presence of incommensura
peaks in the spin fluctuation spectrum,20,39 and hence in the
NAFL interaction, although difficult to calculate, may be e
pected to amplify the role played by hot quasiparticles in
determination of system behavior.

In the spin fluctuation model the anomalous behavior
the cuprates is assumed to originate in a strong interac
between fermionic spinssq5 1

2 (kss8ck1qs
† sss8cks8 which

brings about intermediate range (j.1) antiferromagnetic
spin correlations and overdamped spin modes. Here, the
eratorcks

† creates a quasiparticle which consists of hybr
ized copper 3dx22y2 and oxygen 2px(y) states.40 The quantity
of central physical interest is the dynamical spin suscepti
ity

xq~t2t8!5^Ttsq
a~t!s2q

a ~t8!&, ~6!

which after Fourier transformation in frequency space a
analytical continuation to the real axis is assumed to take
form, Eq. ~2!. The intermediate and low energy degrees
freedom are characterized by an effective action32

S52E
0

b

dtE
0

b

dt8S (
k,s

cks
† ~t!Gok

21~t2t8!cks~t8!

1g2
2

3 (
q

xq~t2t8!sq~t!•s2q~t8! D , ~7!

where Gok
21(t2t8)52(]t1«k)d(t2t8) is the inverse of

the unperturbed single particle Green’s function with t
bare dispersion, Eq.~1!. In using Eq.~7!, we implicitly as-
sume that the effect of all other high energy degrees of fr
dom, which are integrated out to obtain the actionS, do not
affect the Fermi liquid character of the quasiparticles. In E
~7!, the effective spin-spin interaction is assumed to be fu

FIG. 6. A typical bare Fermi surface in the first quarter of t
BZ, closed around the momentum point (p,p), for different AF
correlation lengths. The thick sections characterize thehot parts of
the Fermi surface.
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672 PRB 60JÖRG SCHMALIAN, DAVID PINES, AND BRANKO STOJKOVIĆ
renormalized; thus it reflects the changes in quasiparticle
havior it brings about, and can be taken from fits to NM
and INS experiments. We will also assume that the spin
grees of freedom are completely isotropic and that all th
components of the spin vector are equally active. In the c
of intermediate correlation lengths 1<j<8, this is the ap-
propriate description of the spin degrees of freedom. O
for much largerj} exp(const/T), does one enter the regim
in which even without long range order only two transve
spin degrees of freedom are active.41 The physics of the
crossover, driven by a collective-mode interaction, betw
these two regimes, is beyond the scope of this paper.

The quantities of primary interest to us are the single p
ticle Green’s functionGk,s(t2t8)52^Tcks(t)cks

† (t8)&
which provides information about the quasiparticle spec
density determined in angular resolved photoemission
periments, the dynamical spin susceptibility itself, and
corresponding charge response functions. As noted abov
calculating these quantities for intermediate correlat
lengths the interaction between the collective spin mode
irrelevant. In Appendix A we show that under these circu
stances the Green’s function

Gks~t2t8!5^Ĝk,kss~t,t8uS!&o ~8!

can be expressed as a Gaussian average^•••&o of electron
propagators with a time dependent magnetic poten
(g/A3)Sq(t), with respect to collective bosonic spin 1 var
ablesSq(t). The corresponding model is often referred to
the spin fermion model. We give in Appendix A the di
grammatic rules of this problem, which will be essential f
the solution of the spin fermion model in the quasista
limit. In the next two sections, we derive new expressions
the single particle Green’s function, and the spin-ferm
and charge-fermion vertex functions of the quasistatic tw
dimensional spin fermion model, valid for intermediate v
ues of the spin fermion coupling, by extending an ear
study by Sadovskii29 for one-dimensional charge densi
wave systems.

IV. THEORY OF THE QUASISTATIC LIMIT

We begin this section by first motivating the quasista
limit and discussing its physical consequences by investi
ing the second order diagram with respect to the coup
constantg. We then present a solution of the spin fermi
model which is not restricted to the weak coupling regim
and provides insight into the intermediate coupling behav
relevant for underdoped cuprates.

A. The second order diagram and the static limit

In second order perturbation theory, the quasiparticle s
energy is given by

Sk~ ivn!5g2
1

b (
q,m

xq~ inm!
1

ivn1 inm2«k1q
. ~9!

If, for a given temperatureT, the characteristic frequency o
the spin excitationsvsf is small compared to the intrinsi
thermal broadening of the electronic states, the energy tr
fer inm of this state due to an inelastic scattering proces
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negligible. Furthermore, in the limitpT@vsf , xq( inm) is
dominated by the Matsubara frequencynm50, so Eq.~9!
takes the form

Sk~ ivn!5g̃2(
q

S~q!
1

ivn2«k1Q1q
, ~10!

with g̃25g2aT and

S~q!5
1

j221q2
. ~11!

Physically, this use of a static approximation for the sp
degrees of freedom reflects the fact that since the freque
variation of xq(v) takes place on the scalevsf , oncepT
@vsf , all relevant collective spin degrees of freedom a
thermally excited and the phase space restrictions for sca
ing phenomena due to the quantum mechanical nature o
spins are irrelevant. It follows that we can then neglect thev
variation ofxq(v).

For the system we study, experiment shows that the do
nant momentum transferq of the spin fluctuations is close t
the antiferromagnetic wave vectorQ5(p,p), so that we can
expand the energy dispersion as

«k1Q1q'«k1Q1vk1Q•q ~12!

with velocity vk1Q
a 5]«k1Q /]ka . Note that in distinction to

a one-dimensional problem, the linearization of the elect
spectrum in two dimensions is not straightforward. In E
~12!, we have linearized with respect to thetransferredmo-
mentumq'Q5(p,p), an approximation which is justified
providedq deviates only slightly from the antiferromagnet
wave vectorQ, i.e., for systems with a sufficiently larg
antiferromagnetic correlation lengthj. Therefore, technically
j21 is considered to be a small quantity and all related m
mentum integrals are evaluated accordingly. On compa
this approximate treatment with a complete numerical eva
ation, we find that it can be applied oncej.1. At k
5(p,0), the velocityvk

a vanishes and one must take high
order terms inq2Q into account. We assume that the phy
ics of this van Hove singularity is irrelevant~due to three-
dimensional effects and the presence of possible additio
scattering mechanisms! and introduce a lower velocity cu
off vc'^vk&FS. The remaining momentum integration ca
then easily be carried out. It follows, after analytical contin
ation ivn→v1 i01, that

Sk~v!5
2D2

A~vk1Q /j!21~v2«k1Q!2

3F i
p

2
2arctanhS v2«k1Q

A~vk1Q /j!21~v2«k1Q!2D G ,

~13!

whereD25g2aT log(11(jL)2) andL'p is the upper cut-
off of the momentum summation. Since we are technically
high temperatures, our results depend on this cut off, wh
is undesirable. We avoid this problem by expressing a
cutoff dependence of the theory in terms of measura
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quantities. Thus on using the local moment sum rule^Si
2&

53T(m,qxq( inm), we find thatD can also be expressed a

D25g2^Si
2&/3. ~14!

We therefore can use this expression forD and determine
^Si

2& from the experimentally determined susceptibil
xq( inm) of Eq. ~2!. This guarantees a reasonable estimate
the total spectral weight of the spin excitation spectrum
the spin fluctuation induced scattering processes.

Consider a givenk point on the Fermi surface («k50). If
the Fermi surface is such that the momentum transfer bQ
takes you to another Fermi surface point, i.e.,«k1Q50, it
follows from Eq. ~13! that for this momentum state, a so
calledhot spot, «k5«k1Q50, the real part of the self-energ
decreases like log(v)/v if v.v/j, close to the 1/v behav-
ior which is a signature of precursor effects of a spin den
wave.2 More generally, anomalous scattering processes
continue to modify the single particle spectrum dramatica
for those momentum states for which

u«k2«k1Qu,v/j. ~15!

This entire region of the BZ behaves in qualitatively diffe
ent fashion from the rest of the system; it corresponds
the definition of hot quasiparticles discussed recently
Stojković and Pines.38

We call attention to the fact that only for the hot qua
particles can we justify neglecting the higher Matsubara
quencies. For cold quasiparticles withu«k2«k1Qu.v/j the
characteristic energy scale of the spin fluctuations is
longervsf but turns out to be;vsfj

2,38 a quantity which is
not, in general, small compared topT. As a result, our ap-
proach, while properly accounting for the anomalously la
scattering rate and related new physics of the hot quasip
cles, will tend to overestimate the scattering rate for c
quasiparticles. Put another way, differences in behavior
tween hot and cold quasiparticles will be underestimated
our theory.

In order to make explicit the role played by the presen
of SDW precursors in the quasistatic regime, we evalu
for illustration, the above momentum integrals within t
approximation

S~q!'
j21

j221qi
2

j21

j221q'
2

, ~16!

whereqi(') is the projection ofq parallel~perpendicular! to
the velocity vk1Q . Note, this approximation will only be
used to derive several intermediate results for illustrat
purposes. The final numerical results are based onS(q) as
given in Eq.~11!. Using Eq.~16!, we then obtain

Sk~v!5
D2

v2«k1Q1 ivk1Q /j
, ~17!

an expression which, apart from a logarithm, has the sa
anomalous behavior as Eq.~13!. In the limit j→` D is the
spin density wave gap and the poles of the resulting Gre
function are the two branches of the mean field SDW s
discussed by Kampf and Schrieffer.2 For the investigation of
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higher order diagrams in the next paragraph, it will be he
ful to introduce the following representation of the seco
order self-energy:

Sk~v!52 i g̃2E
0

`

dtei (v2«k1Q)tck1Q~ t !, ~18!

where

ck1Q~ t !5(
q

1

j221q2
e2 ivk1Q•qt. ~19!

Evaluation of the momentum summation yields forL→`:

ck1Q~ t !52pK0~ tvk1Q /j!, ~20!

whereK0 is the modified Bessel function. Using the approx
mation of Eq.~16!, this simplifies to

ck1Q~ t !'e2tvk1Q /j. ~21!

The tendency towards SDW behavior in the quasista
regime so far relies on the applicability of the second or
perturbation theory: visible effects can only occur once
correlation length exceeds the electronic length scalejo
5v/D'2v/g. In a weak coupling treatment, the above d
cussion is applicable only for large correlation length: o
therefore has to go beyond second order perturbation th
to be certain whether or not SDW precursors are relevant
cuprates with intermediate correlation length. This is p
sible only if jo is only a few lattice constants; it implies tha
we have to investigate an intermediate coupling regim
Therefore, we present in the next paragraph a proced
which enables us to sum the entire perturbation series.

B. Diagram summation in the quasistatic limit

To evaluate all higher order self-energy diagrams with
the quasistatic limit, we first derive a compact expression
an arbitrary diagram and then, as a second step, sumall
diagrams of the perturbation series to obtain the self-ene
and single particle Green’s function. This summation
made possible by the fact that many diagrams with rat
different topology are, apart from a factor which describ
multiplicity and sign, identical.

As first shown by Elyutin in the context of optical re
sponse in a random radiation field,42 diagrams can be char
acterized by the sequence of integer numbers$nj%, wherenj
is the number of interaction lines above thej th Green’s func-
tion; for an example, see Fig. 7. In the following we pro
that in the quasistatic regime, diagrams with the same

FIG. 7. Illustration of the sequence$nj% for a self-energy dia-
gram of orderg8. nj is the number of spin fluctuation lines abov
the j th fermionic Green’s function.
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quence$nj% are proportional to each other. The proportio
ality factor will be determined below.

An arbitrary diagram of order 2N can, up to a constant, b
expressed as

S (2N)~k,v!5g̃2N (
q1•••qN

S~ q̃1!•••S~ q̃N!

3 )
j 51

2N21

Go,k1(
a51

N

Rj ,aqa
~v!, ~22!

whereq̃a5qa2Q and the@(2N21)3N# matrix Rj ,a deter-
mines whetherqa (a51 . . .N) occurs as a momentum
transfer in thej th Greens function (j 51 . . . 2N21) of the
diagram, i.e.,Rj ,a51 or 0. In general, each diagram is ful
characterized byRj ,a . It is important to notice thatnj is
given by the expression

nj5 (
a51

N

Rj ,a . ~23!

Since each of the momentaqa of Eq. ~22! is separately
constrained to lie in a region close toqa'Q, we can expand

«k1(
a51

N

Rj ,aqa
'«k1 j Q1vk1 j Q(

a51

N

Rj ,a~qa2Q!, ~24!

where we have used the fact thatnj is even~odd! if j is even
~odd! since at each vertexnj changes by61 and n151.
Shifting all momentaqa2Q→qa and introducing, as we
have done for the second order diagram, 2N21 auxiliary
time variablest j , it follows that

S (2N)~k,v!5~2 i !2N21g̃2N (
q1•••qN

S~q1!•••S~qN!

3 )
j 51

2N21 E
0

`

dtje
it j ~v2«k1 j Q2vk, j (a51

N Rj ,aqa!,

~25!

with vk, j5vk1 j Q . In this proper time representation of th
self-energy, the different momentum integrals decouple;
using Eq.~19! it follows that

S (2N)~k,v!5~2 i !2N21g̃2N )
j 51

2N21 E
0

`

dtje
i (v2«k1 j Q)t j

3 )
a51

N

ck1 j Q~Rj ,at j !. ~26!

In the last step we used the fact that the momentum tran
is sufficiently close toQ that we can neglect contributions o
order (q2Q)4 in S(q), i.e., we have assumed thatck(x
1y)}ck(x)ck(y) as would be exact if one usesS(q) in Eq.
~16!. Note, it is not the asymptotic behavior of the suscep
bility, far away from the antiferromagnetic wave vect
(p,p), which is most essential, but rather that close to t
momentum point wherex is peaked. This is consistent wit
the restriction to momentum transfers close toq;Q which
motivated the linearization of the electron spectrum in E
-

n

er

-

s

.

~24!. Equation ~26! is only valid for hot spots where the
velocities vk and vk1Q are almost perpendicular to eac
other. For cold quasiparticles this condition is not satisfi
so that our theory can only give a qualitative account
their scattering processes. It has been recently pointed ou
Tchernyshyov43 that Eq. ~26! is in fact not satisfied in the
original one-dimensional solution of Ref. 29. Therefore, t
ideas developed in Ref. 29 seem to be much more appro
ate for our two-dimensional case.

SinceRj ,a is either 0 or 1, it follows immediately from
Eq. ~26!

)
a51

N

ck~Rj ,at j !5ck~0!N2njck~ t j !
nj , ~27!

with nj given by Eq.~23!. Inserting this result and collecting
all the prefactors, if follows44

S (2N)~k,v!5~2 i !2N21D2N

3 )
j 51

2N21 E
0

`

dtje
i (v2«k1 j Q)t jck1 j Q~ t j !

nj ,

~28!

which proves that a given diagram of order 2N is fully de-
termined by the sequence$nj% as well as provides an explici
expression for these diagrams.

On making use of the simplified evaluation of the m
mentum integrals, Eq.~16!, it follows with the help of Eq.
~20!, that

S (2N)~k,v!5D2N )
j 51

2N21
1

v2«k1 j Q1 in jvk, j /j
, ~29!

a result which is useful in determining the multiplicity of
given diagram.

For the actual evaluation of all diagrams, it is essen
that for each sequence$nj%, there is a unique mapping to
diagram without crossing interaction lines, since for ea
$nj% there exists one and only one diagram without cross
interaction lines. Note, unique is meant in the sense of
topology of a diagram, not whether it contains longitudin
or transverse spin fluctuations; for details see Appendix
This is illustrated for two cases in Fig. 8, where we show t
self-energy diagrams of orderg4 and g8, which are, within
the quasistatic approximation identical apart from a prop
tionality factor. From these considerations, it follows that
suffices to sum up only the noncrossing diagrams taking

FIG. 8. Self-energy diagrams of orderg4 and g8, which are,
within the quasistatic approximation, identical apart from multipl
ity and sign, because the number of spin fluctuation lines~shown by
wiggly lines for transverse and dashed lines for longitudinal s
excitations! on top of a given electron propagator~solid line! are the
same.
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account the identical crossing diagrams by their proper m
tiplicity factors. The remaining problem is to determine, fo
given order in the coupling constant, how many identi
diagrams exist. In the case of charged and uncharged bo
this problem has been solved by Sadovskii.29 The generali-
zation ~see Appendix A! to the case of spin fluctuations
not straightforward, because of the additional (21)C factor
of crossed spin conserving and spin flip lines.

In Appendix B we derive the multiplicity of a given clas
of diagrams, i.e., the number of identical diagrams of a giv
order of the perturbation series, by solving the problem in
special casej→` and using the fact that the combinatori
of the diagrams does not depend on this limit. Having de
mined these multiplicities, it is possible to sum the ent
perturbation series analytically. We find the following recu
sion relation for the Green’s functionGk(v)[Gk

( j 50)(v):

Gk
( j )~v!215gk

( j )~v!212k j 11D2Gk
( j 11)~v! ~30!

with k j5( j 12)/3 if j is odd andk j5 j /3 if j is even and

gk
( j )~v!52 i E

0

`

dtei (v2«k1 j Q)ck1 j Q~ t ! j . ~31!

Equation~30! is one of the central results of our theory. Th
recursion relation, closed byGk

(L)(v)5gk
(L)(v) for some

large value ofL, enables us to calculate the single partic
spectral functionA(k,v) to arbitrary order 2L in the cou-
pling constantg @we useL;1022103; Eq. ~30! converges
for L;102; about the convergence in the most danger
casej→`, see Appendix B#.

C. Spin susceptibility and vertex function

Within the quasistatic limit of the effective low energ
quasiparticle interaction, we can obtain an exact expres
for the irreducible part of the dynamical spin susceptibil
and the electron spin fluctuation vertex. Note that we are
able to calculate the total susceptibility. Since we are ass
ing that the interaction line is given by the fully renormaliz
spin susceptibility, a direct approach would lead to an ov
counting of diagrams. Therefore, we only calculate the ir
ducible partx̃q

ab( ivn) of the total susceptibilityxq
ab( ivn).

The latter can be expressed as

xq
ab~ ivn!5

x̃q
ab~ ivn!

12 f qx̃q
ab~ ivn!

, ~32!

where the restoring force,f q , is determined by the renorma
ization of the spin exchange fermion-fermion interacti
through high energy excitations in all other channels.f q is
then related in a nontrivial fashion to the underlying micr
scopic Hamiltonian of the system and has to be considere
an additional input quantity.

By following a procedure analogous to that in determ
ing the Green’s function in Eq.~8!, one can show that the
irreducible part of the dynamical spin susceptibility is giv
by

x̃q
ab~ ivn!5^Pq

ab~ ivnuS!&o , ~33!
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wherePq
ab( ivnuS) is the irreducible particle hole propagato

for a given spin field configuration

Pq
ab~ ivnuS!52

1

4 (
kk8mm8

Tr $saĜk1q,k8~ iVm,n ,ivm8uS!

3sbĜk82q,k~ iVm8,n ,ivmuS!%. ~34!

Here Tr . . . refers only to the trace in spin space a
Vm,n5vm1vn. This result is obtained by neglecting all re
ducible contributions in taking the functional derivative wi
respect to an external time dependent magnetic field cou
to the electron spinssi(t).

The diagrammatic rules described in Appendix A for t
single particle Green’s functionGk(v) can be extended in
straightforward fashion to the spin susceptibility, which c
be expressed in terms ofGk(v) and the electron spin fluc
tuation vertex function:

x̃q~ inm!5
1

b (
k,n

Gk~ ivn!Gk1q~ ivn1 inm!

3Gk,k1q
s ~ ivn ,ivn1 inm!. ~35!

Thus, a knowledge of the vertex function gives immedia
information about the irreducible part of the dynamical sp
susceptibility. A similar relation exists for the correspondi
charge susceptibility. In this paragraph we outline the ex
determination ofGk,k1q

s (c) (v1 i01,v1n1 i01) obtained after
analytical continuation to the real axis. For the determinat
of the susceptibility on the real axis we will also need t
analytical continuationGk,k1q

s (c) (v2 i01,v1n1 i01) which
has to be determined independently but can be obtained
similar way.

As was the case for the electronic Green’s function,
vertex function is obtained in two steps: first, based
purely diagrammatic arguments we obtain a general exp
sion for the vertex function in terms of the previously dete
mined Green’s function and some combinatorial prefact
which take the proper multiplicity of the diagrams into a
count; second, these prefactors are determined in the l
j→`. This is possible because the combinatorics of the d
grams does not depend on the actual value ofj. Finally, we
obtain a closed expression valid for all values ofj.

In the case of the Green’s function each diagram w
proportional to a rainbow diagram. The corresponding c
clusion for the vertex function is that each vertex diagram
identical to a diagram of the ladder approximation and
entire perturbation series can be obtained by summing
ladder series with appropriate weighting factors. The pr
of this statement is almost identical to the correspond
proof for the Green’s function. Because an arbitrary diagr
can be related to a ladder diagram, it follows that the v
tex Gk,k1q

s (c) (v1 i01,v1n1 i01)[Gk,k1q
(0),s (c)(v1 i01,v1n

1 i01) can be generated by two renormalized Green’s fu
tions and an effective vertexGk,k1q

(1),s (c)(v1 i01,v1n1 i01)
which includes all those processes not taken into accoun
one spin fluctuation propagator crossing the external bos
line. For the spin vertex, we find the recursion relation
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Gk,k1q
(0),s ~v1 i01,v1n1 i01!

512r 1D2Gk
(1)~v!Gk1q

(1) ~v1n!Gk,k1q
(1)s

3~v1 i01,v1n1 i01!. ~36!

Here, the Green’s functionGk
(1)(v), Eq. ~30!, takes into ac-

count that for the diagram under consideration one ha
least one interaction line above each fermionic propagato29

A comparison with perturbation theory shows that the m
tiplicity factor which enters Eq.~36! is given byr 15 1

3 . The
minus sign in Eq.~36! results from the diagrammatic rules o
Appendix A. Since the higher order vertex function can
determined in exactly the same way as Eq.~36!, one obtains
the recursion relation

Gk,k1q
( l ),s ~v1 i01,v1n1 i01!

512r l 11D2Gk
( l 11)~v!Gk1q

( l 11)~v1n!

3Gk,k1q
( l 11),s~v1 i01,v1n1 i01!, ~37!

which can be evaluated using the Green’s functions from
~30! and a starting valueG (L)51. In Fig. 9 the diagrammatic
motivation for this recursion relation is given: there one s
that the problem is similar to the summation of the ladd
series for the vertex, with the difference that all nonladd
diagrams are taken into account by the correspond
weighting factorsr l 11. Once these prefactors are known, t
vertex function can be determined up to arbitrary order of
coupling constant. Ther l are defined diagrammatically b
the fact that 3L) l 51

L r l is the number of skeleton diagrams
orderg2L which contribute to the vertex function.~Note, that
nonskeleton diagrams are diagrams with interaction li
which only renormalize the Green’s functions.!

The combinatorial determination of ther l is somewhat
cumbersome. We proceed by using the general expres
Eq. ~37!, to calculate the irreducible susceptibility given
Eq. ~35!, while determining the irreducible susceptibility in
dependently in the limitj→` analytically by evaluating the
path integral of Eq.~33!. On comparing these two results fo
j→` order by order in the coupling constant we are able
determine the prefactorsr l . On carrying out this calculation
for arbitrary momentumq, we find r l5 l if l is even andr l
5( l 12)/9 if l is odd.

This completes the specification of the vertex functio
Eq. ~37!, of the spin fermion model and enables us to cal
late both the irreducible spin susceptibility,x̃q(v), and the
effective spin fluctuation induced pairing interaction. No
since we preserve this symmetry in our theory and beca
we sum all diagrams of the perturbation theory, we kn
that all Ward identities are satisfied.

FIG. 9. Diagrammatic illustration of the recursion relation of t
vertex function, which is similar to the ladder approximation of t
irreducible vertex. All nonladder diagrams are taken into accoun
the corresponding weighting factorsr l 11.
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An identical procedure can be performed for the cha
vertexGk,k1q

c (v1 i01,v1n1 i01). One obtains in place o
Eq. ~37! the result

Gk,k1q
( l ),c ~v1 i01,v1n1 i01!

511k l 11D2Gk
( l 11)~v!Gk1q

( l 11)~v1n!

3Gk,k1q
( l 11),c~v1 i01,v1n1 i01!, ~38!

since for the charge vertexr l is replaced by2k l , with k l as
given in the line below Eq.~30!.

V. QUASIPARTICLE PROPERTIES: THEORY COMPARED
WITH EXPERIMENT

We consider first the frequency and momentum dep
dence of the spectral density,Ak(v)52(1/p)Im Gk(v), for
a typical underdoped system. In Fig. 10 we show, in
inset, the Fermi surface, defined by thosek points which
satisfy

v5«k1Re Sk~v! ~39!

for v50, for interacting quasiparticles whose bare spectr
is specified byt520.25 eV, t8520.35t, at a hole doping
concentration,nh50.16. In this and all subsequent plots w
assume g50.8 eV, in agreement with transpo
measurements.38 This corresponds to an intermediate regim
for the coupling constant since it is similar to the total ban
width. The calculation is carried out at a temperature su
that j53, which, as we shall show, lies in the wea
pseudogap regime well belowTcr. In the main part of Fig.
10, we show our results forAk(v) f (v), where f (v) is the
Fermi function for several points on the Fermi surfac
Ak(v) f (v), the quantity measured in ARPES experimen
is strongly anisotropic. For a representative cold quasipa
cle ~a!, located close to the diagonal, withu«k2«k1Qu
.v/j, the peak in the spectral density crosses the Fe
surface. For these quasiparticles, the quasistatic magn

y

FIG. 10. The spectral density multiplied with Fermi function o
the Fermi surface forj53. The distinct behavior of hot and col
quasiparticles is visible.
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correlations simply produce a thermal broadening of
spectrum, as is characteristic of a Landau Fermi liquid
small but finiteT.

The situation is completely different for the hot quasip
ticles at ~d! which are located close to (p,0). Here,
u«k2«k1Qu,v/j. A large amount of the spectral weight
shifted to higher energies, a shift which gives rise to we
pseudogap behavior. As will be discussed below, the p
tion of the maximum of this broad feature, which represe
the incoherent part of the single particle spectrum@i.e., does
not correspond to a solution of Eq.~39!#, is similar to the
quasiparticle bands of a mean field spin density wave st
Thus, even though incoherent in nature and considera
broadened, this high energy feature is the precursor effec
a spin density wave state. A second interesting aspect o
calculated hot quasiparticle spectral density is that altho
there exists a solution of Eq.~39! at v50 those quasiparti-
cles @and quite generally those near (p,0)] do not possess a
peak. This part of the FS is thereforenot observable in an
ARPES experiment. Experimentally, a FS crossing can o
be determined if a local maximum of the spectral dens
crosses the Fermi energy. The calculatedvisible part of the
FS, where our calculated spectral function exhibits a ma
mum at v50, is shown in Fig. 11~thick lines!. It is in
agreement with experiment. While this behavior appears
be similar to that expected for a hole pocket, below we d
cuss the important differences between our results and a
pocket scenario.

The reason for the ‘‘disappearance’’ of pieces of t
Fermi surface in the weak pseudogap regime is the follo
ing. The finite imaginary part of the self energy atv50
invalidates, as always forTÞ0, a rigorous quasiparticle pic
ture and can even affect the occurrence of a maximum of
spectral density in the solution of Eq.~39!. This is what
happens for hot quasiparticles in the weak pseudogap
gime. Due to their strong magnetic interaction the rela
large scattering rate causes the hot quasiparticle peak t
invisible in the weak pseudogap regime and care mus
taken to properly interpret the calculated Fermi surface.

Consider now the evolution of the Fermi surface w
temperature, or what is equivalent, withj. As can be seen in

FIG. 11. Fermi surface~solid line!, in comparison with the bare
Fermi surface~dotted line! and the visible part of the Fermi surfac
~thick solid line!, i.e., only for momenta where a maximum of th
spectral density crosses the Fermi energy ifk crosses the Ferm
surface.
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Fig. 11, forj51, the FS is basically unaffected by the co
relations, a situation very similar to the one obtained withi
self-consistent one loop calculation. This confirms the res
obtained by Monthoux48 that vertex corrections, neglected
the one loop framework, are indeed of minor importance
small correlation lengths.~Note that while our calculations
are based on the fact that the dominant momentum tran
occurs near the antiferromagnetic wave vector, which
plies at least an intermediate correlation lengthj, it is useful
to consider the limiting case,j'1, even though in this re-
gime different theoretical approaches may be turn out to
more appropriate.! On increasingj to values which are real
istic for underdoped cuprates (j52•••8), we find slight
changes of the FS shape for momenta close to (p,0) and
(0,p); however, the general shape@large FS closed around
(p,p) and equivalent points# remains the same. If one fur
ther increasesj to values larger than 10 lattice constan
serious modifications of the FS, caused by a short range
der induced flattening of the dispersion of the quasipart
solution, begin to occur. This follows from the solution
Eq. ~39! for finite v. It is only for such large correlation
lengths that a hole pocket starts to form along the diago
Eventually, at some large, but finite value ofj, our solution
gives a closed hole pocket. We conclude that for underdo
but still superconducting cuprates~with j<8), the shape of
the FS remains basically unchanged, while our theory
potentially describe the transition from a large Fermi surfa
to a situation with a hole pocket around (p/2,p/2), which
may be the case very close to the half filling.

The above results provide a natural explanation for w
is seen at temperatures below the superconducting trans
in ARPES experiments on the underdoped cuprates: the
den appearance of a peak in the spectrum of quasipart
located near (p,0). According to our results, this is to b
expected, since asT falls belowTc , the scattering rate of the
hot quasiparticles drops dramatically; the superconduc
gap has suppressed the strong low frequency scattering
cesses which rendered invisible the peak in the normal s
and a quasiparticle peak emerges. Since this sudden ap
ance of the quasiparticle peak belowTc is inexplicable in a
hole pocket scenario, the ARPES experimental results s
port the large Fermi surface scenario we have set fo
above.

Another interesting aspect of the calculated results sho
in Fig. 10 is the sudden transition between hot and c
quasiparticles, justifying the usefulness of this terminologa
posteriori. To demonstrate explicitly the anisotropy of th
spectral function for low frequencies, we show, in Fig. 1
Ak(v50) along the Fermi surface as a function of the an
fF5arctan(ky /kx) betweenk and thekx axis. Even though
no gap occurs in the hot quasiparticle spectral density in
weak pseudogap regime, the low frequency spectral den
is considerably reduced. It is therefore not possible to c
sider the behavior above the strong pseudogap cross
temperature,T* , where our theory should apply, as bein
conventional.

We compare, in Fig. 13, the calculated variation of t
maximum of Ak(v) in momentum space with the ARPE
results of Marshallet al.31 for two different doping concen-
trations. For an overdoped system, we assumed a correla
lengthj51 and a charge carrier concentrationnh50.22. The
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resulting dispersion corresponds to that of the original ti
binding band with slightly reduced bandwidth. The plott
maxima forj51 all correspond to broadened coherent q
siparticle states. We choset8520.35t leading to a Fermi
surface crossing along the diagonal as well as between (p,0)
and (p,p) in agreement with experiments. The situation
different for an underdoped system, which we assumed
have a charge carrier concentrationnh50.16 and a correla-
tion lengthj53, similar to other underdoped but superco
ducting cuprates. We use the same valuet8520.35t for the
next nearest neighbor hopping integral. Along the diago
we still find a Fermi surface crossing and, in agreement w
experiment, no doping dependence of the Fermi velocity
cold quasiparticles. However, for hot quasiparticles close
(p,0), only the incoherent high energy feature arou
200 meV is visible. The momentum dependence of this h
energy feature, even though incoherent in its nature, is s
lar to the dispersion of a mean field SDW state:

Ek
65

1

2
~«k1«k1Q!6AS «k2«k1Q

2 D 2

1DSDW
2 , ~40!

FIG. 12. The spectral densityAk(v50) along the Fermi surface
as a function offF5arctan(ky /kx).

FIG. 13. The momentum dependence of local maxima of
spectral density as a function ofj and hole doping concentrationnh

is compared with the experiments of Ref. 25 f
Bi2Sr2Ca12xDyxCu2O81d with x50.1 ~triangles! and x50.175
~diamonds!. Only maxima with relative spectral weight.10% are
shown.
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whereDSDW
2 5 2

3 D2, as can be obtained from the saddle po
approximation of the Borel summedj→` perturbation se-
ries ~see Appendix B!. This provides an explicit demonstra
tion that the high energy feature is indeed an incoherent
cursor of an SDW state. The agreement between theory
experiment regarding the detailed momentum dependenc
the high energy feature, is an important confirmation of
general concept of our approach.

While the overall position of the high energy feature
('200 meV in the present case! depends on the value oft8,
the general momentum dependence of these states rem
robust against any reasonable variation oft8 or the coupling
constantg. We note that the experiment of Marshallet al.31

was performed in the strong pseudogap state. It is howe
natural to expect that the high energy feature remains u
fected by the opening of the low frequency leading edge g
it will thus be the same in the weak and strong pseudo
state, and will be little affected by the superconducting tra
sition.

In ARPES experiments at half filling, it is found that th
location of momentum states with half of the intensity of
completely occupied state, i.e., withnk5 1

2 , is nearly un-
changed compared to the case at large doping. We sho
Fig. 14 our calculated results for the momentum points w
nk5 1

2 ; our results are quite similar for the physically re
evant values 1<j<4 and change only slightly for large cor
relation lengths. Note, that in the latter casenk varies only
gradually. Even very close to (p,0) it would be hard to de-
termine experimentally whethernk5(p,0) is larger or smaller
than one half. Our results are therefore in agreement with
experimental situation; they demonstrate that there is
‘‘memory’’ in the correlated system which, as far as the to
charge of a givenk state is concerned, behaves quite sim
larly to the case without strong antiferromagnetic corre
tions.

Finally, we address the question of why, for modera
values of the correlation length, we obtain such pronoun
anomalies. In addition toj, the only length scale in the prob
lem is the electronic lengthj0'v/D'2v/g. It is natural to
argue that oncej.j0 some new behavior of the quasipar
cles due to short range order might appear. Within stand
weak coupling theories,j0 is by construction a large quan
tity, and the theory is trustworthy only for very largej. The

e

FIG. 14. k points withnk5
1
2 for different correlation lengths in

comparison with the results for an uncorrelated Fermi system.
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summation of the entire perturbation series in our calcula
however enables us to take account for the situation wherj0
can be of the order of a few lattice constants, i.e., for
intermediate coupling constant regime. That this qualitat
argument is also quantitatively correct, can be seen in
15, where we show thej dependence of the spectral dens
at a hot spot for which«k5«k1Q . For the above given set o
parameters,j0'2 and SDW precursors occur as soon aj
.j0. This is in striking agreement with, and provides a m
croscopic explanation for, the prediction by Barzykin a
Pines that one findsj(T5Tcr)'2 at the crossover tempera
ture Tcr, where the magnetic response changes characte

We conclude that the quasiparticle excitations in the w
pseudogap regime are intermediate between a convent
system with a large Fermi surface and a spin density w
system with a small Fermi surface. The fact that both asp
are relevant explains the failure of any approach which c
centrates on only one of these.

VI. SPIN AND CHARGE VERTEX FUNCTIONS

We turn now to the coupling of quasiparticles of the we
pseudogap state with the collective spin and charge deg
of freedom. This is of interest in its own right, and is
importance for an understanding of the charge and spin
sponse functions discussed in Sec. II. The quantities wh
characterize the interaction of quasiparticles with the s
and charge degrees of freedom are the vertex funct
Gk,k1q

s (v1 i01,v1n1 i01) and Gk,k1q
c (v1 i01,v1n

1 i01). In order to have an idea of the behavior of the
vertex functions we first consider their behavior analytica
in the lowest nontrivial order of the perturbation series. O
subsequent numerical results are obtained from the full s
tion of the problem. For the spin vertex, we find on using E
~37! and Eq.~16! for S(q) that, up to second order ing}D,

Gk,k1q
s ~v1 i01,v1n1 i01!

512
D2

3

1

v2«k1 iv/j

1

v1n2«k1Q1 iv/j
. ~41!

FIG. 15. j dependence of the spectral density at the hot s
The appearance of SDW precursors forj.2 can be seen. Fo
smaller values ofj the system behaves conventionally.
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We are mostly interested in the vertex function for freque
ciesv which correspond to the quasiparticle energies at
Fermi surface. For the case of an unchanged Fermi surf
the bare dispersion«k determines the quasiparticle energi
at this Fermi surface. Once hole pockets are formed, th
are given by the SDW energiesEk

6 of Eq. ~40!. On evaluat-
ing Eq.~41! at the SDW energiesv5Ek

6 of Eq. ~40! and for
n50 in the limit j→`, we find, Gs5 2

3 ; the spin vertex is
reduced. For the case of long range antiferromagnetic or
with only two spin degrees of freedom left,Gs50 vanishes,
as was shown by Schrieffer.45 On the other hand, if one take
into account that in the weak pseudogap regime the Fe
surface is basically unchanged and evaluates Eq.~41! at
small frequenciesv5n50 for a hot spot with«k5«k1Q
50, it follows that

Gs511
D2

3v2
j2, ~42!

i.e., the vertex is considerablyenhanced. In the case of the
charge vertex the prefactor1

3 in Eq. ~41! has to be replaced
by 21 and one findsGc54 if one considersj→` and Gc

512(D2/v2)j2 in the case of an unchanged Fermi surfa
These considerations demonstrate that which energies
considers and how the Fermi surface evolves is crucial fo
understanding of the role of vertex corrections, i.e., enhan
ment vs suppression. It also shows that only a careful
self-consistent analysis can reveal in which way the ren
malized charge and spin interactions vary. This we now

In Fig. 16 we show the spin vertexGk,k1Q
s (v1 i01,v

1 i01) for hot and cold quasiparticles with momentu
transferQ and zero frequency transfer as a function of e
ergy and, for comparison, the corresponding spectral fu
tion, Ak(v). As in the case for the spectral function, th
vertex function is strongly anisotropic; for cold quasipar
cles vertex corrections are negligible, whereas the strong
frequency enhancement ofGk,k1Q

s (v1 i01,v1 i01) for hot
quasiparticles demonstrates that despite their reduced
frequency spectral weight, hot quasiparticles inter

t. FIG. 16. The spectral densityAk(v) and spin vertex function
Gk,k1Q

s (v1 i01,v1 i01) for a hot quasiparticle with momentum
transferQ and zero frequency transfer as a function of energy
shown for two correlation lengths.
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strongly with the spin fluctuations. Thus, for physically re
sonablej values, the low frequency vertex is not reduced b
enhanced. This is important and must be taken into acco
in constructing an effective theory for the low energy d
grees of freedom of the strong pseudogap state. Even wit
detailed calculations, it is evident that in the spin fluctuat
model the strong coupling nature of the low frequency
grees of freedom is crucial since it demonstrates that qu
particles and spin fluctuations do not decouple. This is es
tial to obtain a spin fluctuation induced superconduct
state. Thus, the conclusion of Ref. 45 that the pairing in
action of the spin fluctuation mechanism vanishes if one
cludes vertex corrections does not apply for doped cupr
with short ranged antiferromagnetic spin correlations. F
thermore, our results suggest that new strong coupling p
nomena are likely to occur once the temperature decre
and the system changes character due to the suppressi
the quasiparticle scattering rate.

We further note that these results are frequency dep
dent. Thus when we consider the vertex at frequenciev
close to the high energy features, we find a moderate re
tion, which has the same origin as the vanishing vertex of
long range ordered state.45

The anisotropy of the spin vertex function can be seen
Fig. 17, where we plot the spin vertexGk,k1Q

s (v1 i01,v
1 i01) for v50 along the Fermi surface as a function
fF5arctan(ky /kx) ~solid line!. The rather sharp transitio
between hot and cold quasiparticle behavior is similar to t
seen for the spectral density, in Fig. 12.

The corresponding behavior for the charge vertex fu
tion is shown in Fig. 18, which shows thatGk,k1q

c (v
1 i01,v1 i01) behaves in opposite fashion to the spin v
tex. At low frequencies, the quasiparticles are almost co
pletely decoupled from potential collective charge degree
freedom. This effect is strongest for hot quasiparticles, a
occurs for momenta transfersq, around (0,0) as well as thos
close toQ. The formation of incoherent spin density wav
precursors obviously leads to a decoupling of the low ene
quasiparticles from the charge degrees of freedom. In
theory, its origin is the dominant interaction of the quasip
ticles with collective spin degrees of freedom. It is thus i
possible that any kind of static or low frequency dynami
charge excitation can substantially affect the charge ca
dynamics of hot quasiparticle states in cuprates. Furth
more, this result explains another important puzzle of

FIG. 17. Spin vertexGk,k1Q
s (v1 i01,v1 i01) for v50 along

the Fermi surface as a function offF5arctan(ky /kx).
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cuprates: the irrelevance to transport phenomena in the
mal state of the total electron phonon coupling,

gk,q
el.-ph.'gk,q

el.-ph.(0)Gk,k1q
c ~01 i01,01 i01!, ~43!

despite their pronounced ionic structure, which in fact su
gests a strong bare interactiongk,q

el.-ph.(0) of charge carriers
with the poorly screened lattice vibrations.

These considerations show that an effective low ene
theory of the weak pseudogap state must take the strong
anisotropic spin fermion interaction into account; it c
safely neglect the coupling to phonons of hot quasipartic
as well as any other interaction they might have with cha
excitations. This is an important theoretical constraint for
strong pseudogap state.

VII. CONCLUSIONS

We have used our solution of the quasistatic spin ferm
model of antiferromagnetically correlated spin fluctuations
develop a description of the intermediate weak pseudo
state of underdoped cuprate superconductors. Based on
experimental observation that the characteristic energy s
of overdamped spin excitations is small compared to
temperature, onceT lies between the two crossover scalesT*
andTcr, we conclude that the spin degrees of freedom beh
quasistatically, i.e., the spin system is thermally excited a
the scattering of quasiparticles with their own collective sp
modes can be regarded as resulting from a static spin de
mation potential, characterized only by the strength and s
tial extent of these spin fluctuations. On neglecting the qu
tum dynamics of the spin modes, we were able to solve
spin fermion model by summing all diagrams of the pert
bation series for the single particle Green’s function and
spin and charge vertex functions. This enabled us to dire
investigate the spectral function, measured in angular
solved photoemission experiments, the effective interacti
of quasiparticles with spin as well as charge collective mo
and the spin and charge response behavior.

Our results demonstrate that for intermediate values of
antiferromagnetic correlation length and intermediate c
pling constantg, one is dealing with the rich physics of
crossover between nonmagnetic and spin density wave
behavior. While the Fermi surface of the quasiparticles
mains unchanged their highly anisotropic effective inter
tion leads to two different classes of quasiparticles,hot and

FIG. 18. Charge vertexGk,k1Q
c (v1 i01,v1 i01) for v50 as a

function of fF5arctan(ky /kx).
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cold, with only the hot quasiparticles feeling the full streng
of the antiferromagnetic interaction. For the latter, a trans
of spectral weight to high energy features occurs. These h
energy features are the incoherent precursors of a spin
sity wave state; their momentum dependence is in exce
agreement with corresponding high energy structures
around 200 meV seen in recent ARPES experiments.
low energies, hot quasiparticles have a reduced spe
weight, a weak pseudogap characteristic, and the cohe
quasiparticle poles are completely overdamped due to
strong scattering rate. The drop in scattering rate found in
strong pseudogap state is not sufficient to make this qu
particle pole visible. It is only belowTc that the rate drops
sufficiently that the pole becomes visible. This scenario
plains the appearance of a sharp peak, invisible aboveTc , at
low frequencies in the superconducting state of underdo
cuprates. The high energy features on the other hand
expected to be unchanged as temperature is lowered.

Finally, we used our calculation of the irreducible vert
functions to investigate the effective interaction of the qu
siparticles with spin and charge modes. We find that t
effective interaction is likewise highly anisotropic; the lo
energy electron-spin fluctuation interaction is strongly e
hanced whereas the coupling to charge degrees of freedo
reduced. The enhancement of the spin vertex is essentia
the development of a spin fluctuation induced supercond
ing state and is an indicator as well of anomalous behavio
lower temperatures. The reduction of the charge ver
causes a reduced electron-phonon coupling constant for
quasiparticles as well as a decoupling of hot quasiparti
from potential charge collective modes.

This scenario applies, as discussed, for temperatures
tweenT* andTcr. BelowT* , the characteristic frequency o
the spin system increases for decreasing temperature, ma
it impossible to consider the system as exhibiting quasist
behavior. Thus, here we expect that the quantum natur
the spin degrees of freedom becomes essential; it br
about a strongly reduced phase space for the inelastic
tering of quasiparticles and spin fluctuations, and cause
sudden drop in the corresponding scattering rate of the
tem. Nevertheless, since we expect the high energy feat
to remain unchanged, the spectral weight of hot quasipa
cles is strongly reduced while their interaction is enhanc
This strong coupling behavior can bring about precurso
superconducting state behavior.46,47,8–10Above T* the sys-
tem starts to behave quasistatically and the supercondu
precursors are suppressed. Thus the classical behavio
spin fluctuations favors magnetic precursors and cause
increase of the low energy interaction, which might lead
lower temperatures to superconducting precursors due to
quantum behavior of the spin fluctuations.46,47 This provides
a consistent picture of the microscopic origin of the tw
pseudogap regimes and their crossover temperatures:
strong pseudogap state and the leading edge gap are
quantum manifestation of strong antiferromagnetic corre
tions whereas the spin density wave precursors are its c
sical manifestation.

What are the consequences of this microscopic scen
for the crossover behavior of underdoped cuprates?
theory predicts that upon measuring the uniform suscept
ity xo(T) and the spectral function for a slightly underdop
r
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or optimally doped system~for which Tcr is not too high!, it
will turn out that aboveTcr, wherexo(T) is maximal, the
high energy features will disappear. We also expect imp
tant insights into the role of impurities and high magne
fields. Nonmagnetic impurities should affect the we
pseudogap state only slightly. Their strongest effect will o
cur slightly belowTcr where impurities causej to decrease
to j imp . Providedj imp,jo'2,j, an impurity driven tran-
sition out of the weak pseudogap state occurs.T* will be
considerably more sensitive to impurities because
particle-particle excitations with a tendency tod-wave pair-
ing, nonmagnetic impurities act destructively and the stro
pseudogap state may even completely disappear.

High magnetic fields provide another indicator of the d
ferences between strong and weak pseudogap behavio
the weak pseudogap regime no sensible effects for
achievable field strengths will occur, because the relev
coupling of the magnetic field is the Zeeman interaction w
the spins,}H•s, which has to compete with the much stro
ger short range correlations of these spins. In the str
pseudogap state, we expect that the dephasing due to
minimal couplingp→p2(e/c)A will strongly affect the be-
havior in the pairing channel, causing a suppression of str
pseudogap behavior. From this perspective, it immedia
follows that the transport experiments by Andoet al.49 in a
pulsed high magnetic field demonstrate that weak pseudo
behavior is prolonged to lower temperatures. It is tempting
speculate that for very strong magnetic fields the we
pseudogap regime crosses directly over into an insula
one.

In general, for decreasing temperature the we
pseudogap regime can therefore cross over to a str
pseudogap state or to an insulator and, under certain circ
stances, directly into the superconducting state. The la
may occur for systems with very large incommensurati
which tend to reduce the scattering rate of a quasistatic
system;50 it is likely of relevance for La22xSrxCuO4.

Our results for the low frequency spin dynamics and o
tical response as well as the Raman intensity in theB1g
channel will be compared with experiment in a subsequ
paper. There we also demonstrate that we can explain
generic changes of the low frequency magnetic respons
the upper crossover temperatureTcr.21
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APPENDIX A: SINGLE PARTICLE GREEN’S FUNCTION
AND DIAGRAMMATIC RULES

In this appendix we derive the diagrammatic rules of t
spin fermion model under circumstances that the interac
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between collective spin modes is neglected. Note, these
grammatic rules do not rely on the quasistatic approximat
but are completely general for the spin fermion model.

Using the generating functional

W@h,h†#5
1

ZE Dc†Dc exp$2~S1c†h1h†c!% ~A1!

with partition functionZ5*Dc†Dce2S, effective action of
Eq. ~7! and shorthand notationc†h5*0

bdt(kscks
† hk,s , the

single particle Green’s function can be obtained via a fu
tional derivative:

Gk,s~t2t8!5
d2W@h,h†#

dhks
† ~t!dhks~t8!

U
h5h†50

. ~A2!

As usualc, h†, etc. are Grassman variables. In order to p
form this functional derivative it is convenient to introduce
collective bosonic spin 1 fieldSq by adding an irrelevan
Gaussian term to the actionS→S1So , where

So~S!5
1

2E0

b

dtE
0

b

dt8(
q

xq
21~t2t8!Sq~t!•S2q~t8!,

~A3!

to integrate with respect to this spin field and to divide by
corresponding partition functionZB of this ideal Bose gas
Finally, we shift ~after Fourier transformation from time t
frequency! the variable of integration as

Sq~ ivn!→Sq~ ivn!2
2g

A3
xq~ ivn!sq~ ivn!, ~A4!

leading to the effective action of thespin fermion model:

S52E
0

b

dt(
k,s

cks
† Gok

21cks1So

1
2g

A3
E

0

b

dt(
q

sq~t!•S2q~t!. ~A5!

After this Hubbard Stratonovich transformation, we can
tegrate out the fermions, yielding

W@h,h†#5
1

ZZB
E DSexp$2„Sc~S!2h†Ĝ~S!h…%,

~A6!

with the action of the collective spin degrees of freedom

Sc~S!52tr ln„2Ĝ~S!21
…1So~S!. ~A7!

Here, we have introduced the matrix Green’s function

Ĝk,k8
21

~t,t8uS!5Gok
21~t2t8!dk,k8so

2
g

A3
Sk2k8~t!d~t2t8!•s, ~A8!

which describes the propagation of an electron for a gi
configurationS of the spin field. Performing the above fun
tional derivative with respect toh andh† gives finally
ia-
n,

-

-

e

-

n

Gks~t2t8!5
1

Z
^Ĝk,kss~t,t8uS!exp$tr ln„2Ĝ~S!21

…%&o ,

~A9!

where the average

^•••&o5
1

ZB
E DS••• exp$2So% ~A10!

is performed with respect to the free collective action of E
~A3!. This is a standard exact reformulation of Eq.~7! of
collective spin fields which has the appeal that explicit f
mion degrees no longer occur and that Wick’s theorem of
Bose field S can be used to evaluate the single parti
Green’s function.

Since we do not expect the interaction of the spin mo
to be relevant, we neglect nonlinear~higher order inS than
quadratic! terms of the spin field, assuming that no modi
cations due to spin fluctuation-spin fluctuation interactio
occur beyond those already included inxq(v). Using renor-
malization group arguments, it has been shown by Milli51

that indeed the system is characterized by a Gaussian fi
point as far as the low frequency spin dynamics is concern
The mathematical consequence of these two assumptio
that we can use the approximation

exp$tr ln„2Ĝ~S!21
…%'Z. ~A11!

Contributions of second order inS can be ignored, since the
would renormalizexq(v), which is assumed to be the ex
perimentally determined, i.e., fully renormalized susceptib
ity. Equation ~A11! leads to a considerably simplified ex
pression for the Green’s function:

Gks~t2t8!5^Ĝk,kss~t,t8uS!&o . ~A12!

Consequently, the diagrammatic series for the determ
tion of the single particle Green’s function reduces to that
a single particle problem with time dependent spin ‘‘impu
ties.’’ Inversion of the Green’s function matrix of Eq.~A8! in
spin space yields for thes-spin matrix element

Gs~S!5XGo
212

sg

A3
Sz

g2

3
S2sS Go

211
sg

A3
SzD 21

SsC21

,

~A13!

with Ss5S6 if s561. Here, we still have to take the ma
trix nature ofGo andS ~in momentum and frequency spac!
into account since they are diagonal in different represe
tions (Go in momentum and frequency space,S in coordi-
nate and time space!. Considering the limiting case of only
one longitudinal spin mode generated bySz gives after aver-
aging

^Gl~S!&o5Go (
N50

` S g2

3 D N

^~SzGoSzGo!N&o , ~A14!

where we used the fact that odd orders inSz vanish without
global symmetry breaking. Using this representation of
Green’s function, the diagrammatic rules which correspo
to the averaging with respect toSz follow straightforwardly.
The averages can be evaluated via contractions base
Wick’s theorem using^Sq

z(t)S2q
z (t8)&o5xq(t2t8). This
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leads to the diagrams of a theory of fermions interacting w
a scalar time dependent field. Here, the topology of e
diagram is identical to the topology of the contraction sy
bols which occur by applying Wick’s theorem. Alternativel
one can also consider the case of two transverse modes
ing to

^Gt~S!&o5Go (
N50

` S g2

3 D N

^~S2GoS1Go!N&o ~A15!

which is identical to a theory of fermions interacting with
‘‘charged’’ time dependent field. Again Wick’s decompos
tions using ^Sq

1(t)S2q
2 (t8)&o52xq(t2t8) can be per-

formed.
The situation becomes more complicated if one consid

simultaneously longitudinal and transverse modes. Here
follows from Eq.~A13!

Gs~S!5Go,s~Sz! (
N50

` S g2

3 D N

„S2Go,2s~Sz!S1Go,s~Sz!…N,

~A16!

where

Go,s~Sz!5Go (
N50

`

~s!NS g

A3
SzGoD N

. ~A17!

Equations~A16! and ~A17! mean that for any transvers
~spin flip! scattering event all possible longitudinal~spin
conserving! processes occur. The complication of this i
serted partial summation is the occurrence of the sign fa
(s)N of down spins. The (21)N factor occurs, if there are
contractions out of longitudinal processes for an odd num
of Sz fields of as5↓521 Green’s functionGo,↓(S

z). If a
Sz is paired with anotherSz of the sameGo,↓(S

z), they occur
in an even number without modifying the sign. The (21)N

enters only if a longitudinal fieldSz is contracted with one
which refers to a Green’s functionGo,↑(S

z). In order to
reachGo,↑(S

z), the corresponding line of theSz contraction
has to cross an odd number of transverse contractions. F
these considerations, the following diagrammatic rules for
arbitrary diagram of order 2N result.

Draw 2N11 solid lines with 2N vertices which can be
2L spin conserving,N2L spin lowering andN2L spin rais-
ing vertices, referring to vertices of longitudinal process
(Sz), leaving transverse processes (S2) and entering trans
verse processes (S1), respectively. For the transverse ver
ces one has to ensure that two subsequent spin raising~low-
ering! vertices are separated by one spin lowering~raising!
and an arbitrary number of spin conserving vertices.

Connect the spin lowering vertices pairwise with sp
raising ones by a wiggly line.

Connect the spin conserving vertices pairwise w
dashed lines.

Insert for any solid line a Green’s functionGok( ivn), for
any vertex,g/A3, for any wiggly or dashed linexq( ivn) and
take momentum and energy conservation at the vertices
account.

Multiply with a prefactor 2N2L which accounts for the
two transverse spin degrees of freedom (N2L is the number
of wiggly lines!.
h
h
-

ad-

rs
it

or

er

m
n

s

to

Multiply with a prefactor (21)C in front of the diagram,
whereC is the number of crossings of dashed and wigg
lines.

Finally one has to sum over all possible diagrams gen
ated by this procedure. In Fig. 19 we plot all diagrams for
self-energy up to orderg4, including signs and multiplicities
The occurrence of the additional crossing sign which res
from the interference of longitudinal and transverse mo
certainly complicates the situation. If there were only one
two components of the SU~2! spin vector, the diagrammati
rules reduce to the special case of only longitudinal or tra
verse interaction lines. Here, the problem is identical to t
of uncharged or charged bosons, respectively. Only the
multaneous consideration of both phenomena, which is n
essary to preserve spin rotation invariance, leads to the p
actor (21)C and reflects the fact that the collective mode
the system is aspin fluctuation.

Identical diagrammatic rules can be derived for the s
fluctuation vertex function. In Fig. 20 we show, as an e
ample, the spin flip vertexG t as well as the spin conservin
vertexG l . Even though our approach is not constructed to
manifestly spin rotation invariant, this symmetry must
course be satisfied once the transverse and longitudinal
susceptibilities, represented by the wiggly and dashed li
of the above diagrammatic rules, are the same. As can
seen from the lowest order vertex corrections, the above

FIG. 19. Self-energy diagrams of the spin fermion model up
order g4, including signs and multiplicities. The wiggly~dashed!
lines correspond to spin flip~spin conserving! processes. Each
crossing of a wiggly and dashed line causes a prefactor21 and
each wiggly line an additional factor of 2. The solid line corr
sponds to the bare fermion propagator and each vertex to the
pling constantg/31/2.

FIG. 20. Longitudinal~spin conserving! and transverse~spin
flip! vertices up tog2. Note that the derived diagrammatic rule
guarantee, as expected, spin rotation invariance:G l5G t .
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rived diagrammatic rules guarantee indeed thatG l5G t[Gs,
as expected. It can be shown order by order in the coup
constantg that our procedure guarantees spin rotation inv
ance, as is essential for a system with isotropic spin fluc
tions.

APPENDIX B: DETERMINATION OF THE MULTIPLICITY
OF DIAGRAMS

In this appendix we calculate the multiplicity of identic
diagrams for a given order of the perturbation series. T
will be done in two steps. First, we solve the problem in t
limit j→`; second, we use the general expression of
~29!, valid for an arbitrary diagram and finitej and deter-
mine the missingj-independent multiplicity factors from th
j→` solution. For the special cases of only longitudinal
transverse modes, our solution is the same as Sadovski29

It is important to notice that without the result of Eq.~29! it
would not be possible to determine uniquely the diagr
multiplicity from the infinitej limit.

a. Solution for j˜`

The limit j→` is not free of complications: First, we
expect that in this limit the longitudinal and transverse s
degrees behave differently. We can ignore this problem h
because we are only interested in the spin rotation invar
situation for finitej and use the limit only for the mathemat
cal purpose of determining diagram multiplicities. Thus w
assume spin rotation invariance also forj→`. Second, the
local moment of the susceptibility in Eq.~2! diverges in the
static limit logarithmically forj→`. This problem can also
be avoided, because the use of Eq.~16! avoids this diver-
gence, but does not change the multiplicity of the diagra
Third, the rather straightforward result that for a given ord
in g each diagram forj→` is besides sign and multiplicity
identical, leads to the following perturbation expansion
the Green’s function:

Gk~v!5Gok(
n50

`

~2n11!!! S D2

3 D n

Hk
n , ~B1!

whereHk5GokGok1Q , which is in fact a divergent series
One can then obtain a convergent result using Borel sum
tion of this series. This is however not the most transpar
way to solve this problem; we choose an alternative
proach, using the path integral representation of the Gre
function derived in Appendix A, which of course gives th
same result.

In the limit of infinite antiferromagnetic correlatio
length, the only relevant spin configuration is

Sk2k85Sdk,k81Q ~B2!

and the path integral of Eq.~A10! simplifies considerably to

^•••&o5
1

ZB
E dNS•••e2g2S2/2D2

. ~B3!

Here, the spin rotation invariant case of present physical
terest isN53. If N51 or 2 the system consists only o
longitudinal or transverse modes, respectively. In the follo
ing we solve the problem for all three situations. In doing
g
i-
a-

is

.

r
.

n
re
nt

s.
r

f

a-
nt
-
’s

-

-
,

we have to replace in all expressionsg2/3 by g2/N. For
example one has to generalize the expression

D25
1

Ng2^S2& ~B4!

for the gap energy, etc. Here, the partition sum of the bos
is given by ZB5 1

2 rNG(N/2)(2D2/g2)N/2 with r 152, r 2
52p, and r 354p, respectively. ForN51 and 2, the ana-
lytical inversion of the Dyson equation is evident, forN
53 it follows

Gs~S!k,k85
Gok

12
~gS!2

3
Hk

dk,k81s

gSz

A3
Hk

12
~gS!2

3
Hk

dk,k81Q .

The second, nonspin rotation invariant, term vanishes a
averaging, Eq.~B3!, and we can finally write

Gk~v!5K 1

v2«k2
~gS!2/3

v2«k1Q

L
o

. ~B5!

It follows that the full Green’s function, obtained in the lim
j→`, is an averaged second order Green’s function w
fluctuating SDW gapD̃5A(gS)2/3. For arbitraryN, the
same result occurs if one replaces the gap byD̃
5A(gS)2/N. Performing the angular integration of the ve
tor S, the integral of Eq.~B3! can be written as

Gk~v!5
rN

2ZB
SANg DNE

2`

`

dD̃uD̃uN21e2(N/2)(D̃/D)2

3
1

v2«k2D̃2/v2«k1Q

. ~B6!

The remaining one-dimensional integral demonstrates
different behavior for differentN. ForN51, the distribution
function of the SDW gap is centered around zero whereas
N52 and 3 it has a maximum for finiteD̃. Performing the
saddle point approximation forN52 or 3 yields SDW-like

solutions with reduced gapDo5A1
2 D'0.7071D for N52

and Do5A 2
3 D'0.8165D for N53. However, even forN

51, the contribution of the tails of the distribution functio
changes the behavior qualitatively compared to the sad
point approximation and solutions similar to an SDW sta
occur. It is interesting to note Eq.~B6! is the Borel integral
representation of the formally divergent perturbation ser
in the limit j→`. With the path integral approach, we d
not encounter this divergence, thus demonstrating that it w
in fact, a spurious one.

The integral with respect to the fluctuating SDW gap c
be evaluated using the integral representation of the inc
plete Gamma function

G~c,z!5
e2zzc

G~12c!
E

0

`e2tt2c

z1t
dt, ~B7!
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with t5ND̃2/(2D2) and c512N/2 and z52 3
2 (v

2«k)(v2«k1Q)/D2. Using the continued fraction represe
tation of G(c,z),52 we obtain the following result for the
single particle Green’s function:

Gk~v!5
1

v2«k2
k1D2

v2«k1Q2
k2D2

v2«k2
k3D2

v2«k1Q2•••

~B8!

with k j5 j /N if j even andk j5( j 1N21)/N if j odd. For
the special cases ofN51 and 2, this is identical to Sa
dovskii’s result.29 Furthermore, we can obtain an analytic
expression for the single particle Green’s function for t
caseN53 which corresponds to the spin fermion model.

b. Generalization to the case of finitej

Using, for the moment, the approximation of Eq.~16!, the
solution for finite antiferromagnetic correlation length can
inferred from Eq.~B8! and Eq.~29!, valid for an arbitrary
diagram and finitej. From Eq.~29! we know that, compared
to the limit j→`, the only way the correlation length ente
the problem is via

v2«k1 j Q→v2«k1 j Q1 in jvk1Q, j /j, ~B9!

where j refers to the order of the continued fraction wi
nominatork jD

2. On the other hand, in Eq.~29!, the integer
numbernj has a specific diagrammatic meaning. Since
can generate an arbitrary diagram by expanding the con
ued fraction of Eq.~B8! with respect toD2, we can perform
the replacement of Eq.~B9! within the continued fraction
representation Eq.~B8!. In order to fix the not yet deter
d

r

.

.

v.

y

l

e
n-

mined integer numbernj of the j th insertion of the continued
fraction, which is independent of the correlation length,
use the fact that for a given orderD2N of the perturbation
theory, only one sequence$nj% occurs withnj5N. This re-
fers to diagrams which are identical to the rainbow diagr
of order 2N. The only way that this can be satisfied isnj
5 j . Thus we obtain the solution of the spin fermion mod
for finite correlation length based on the approximation
Eq. ~16!:

Gk
( j )~v!215gk

( j )~v!212k j 11D2Gk
( j 11)~v! ~B10!

with

gk
( j )~v!5

1

v2«k1 j Q1 i
j vk, j

j

~B11!

which generates the continued fraction representation of
single particle Green’s function, similar to the on
dimensional case.

The general solution, independent of Eq.~16!, follows
from the fact that the only difference from the strict tw
dimensional case is the functionck1Q(t) of Eq. ~19!, which
was approximated by Eq.~21!. The decoupling of the mo-
mentum integrals in the proper time representation and
diagram multiplicities, i.e., thek j , do not depend on the
actual choice ofck1Q(t), and the only difference compare
to Eq. ~B10! is the function gk

( j )(v), which in terms of
ck1Q(t) can be expressed as

gk
( j )~v!52 i E

0

`

dtei (v2«k1 j Q)ck1 j Q~ t ! j . ~B12!

On using the result of Eq.~20! for ck1Q(t), together with
Eq. ~B10!, the solution of the Green’s function of the sp
fermion model is that given in Eq.~30!.
,
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