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Coupled-wave analysis is applied to the determination of an oscillation threshold in thick periodic grating
with gain (distributed-feedback oscillator). Pure phase (refractive index modulation), amplitude (gain
modulation) and mixed-type gratings are considered. The origin of oscillation modes and their position
on the diffraction efficiency contour is analyzed. The threshold conditions are determined on a basis of
analytical expressions.
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1. Introduction

The interest to distributed feedback (DFB) oscillators started in
70s of the last century [1] is renewed now. Particularly, in recent
years there is great attention paid to the problem of new (organic)
materials as components for optoelectronic devices and suitable
for DFB lasers creation [2–6]. So called soft materials are promising
in a view of their easy manufacturing and ability of periodic struc-
tures recording. A simple example is a holographic grating re-
corded in a dye-doped polymer material, with periodic refractive
index modulation and gain due to the optical external pumping.
The grating spacing and the average refractive index determine
the conditions of Bragg resonances for the waves propagating in
the grating. Distributed Bragg reflection is responsible for the feed-
back, and lasing occurs when the gain reaches the threshold value.
However, the spatial and spectral structure of the laser emission is
not evident in advance. In this view, an analysis of the general
properties of volume gratings with uniform or distributed gain is
of importance.

The goal of the present paper is to apply well-known cou-
pled-wave theory analysis to bulk Bragg gratings with gain
and determine the conditions for self-starting oscillations. Kogel-
nik’s approach [7] with some modification is used for descrip-
tion of the field in the grating below the oscillation threshold.
Similar formulae as was derived by Kogelnik for absorption
modulation are obtained for gain gratings. On the basis of
analytical expression for diffraction efficiency contours (angular
ll rights reserved.
or spectral selectivity of a grating) formation of pre-oscillating
peaks is shown. Threshold gain dependence on the modulation
of the refractive index and gain spatial modulation is
determined.

2. Coupled-wave analysis

The method of the analysis is to calculate probe plane wave dif-
fraction whose wavelength and propagation angle are arbitrary,
but related each other with the resonance conditions as described
below. The geometry of waves interaction within a spatially mod-
ulated medium is shown in Fig. 1. The law of the dielectric permit-
tivity modulation in a slab has the form

eðzÞ ¼ e0 þ De cosðKzÞ; ð1Þ

where e0 is the unperturbed dielectric permittivity, De is the mag-
nitude of modulation and K is the grating vector modulus. The prop-
agation angle h is assumed to be close to the Bragg angle hB

satisfying the condition 2nKsinhB = k, where K is the grating spac-
ing, n is the average refractive index and k is the vacuum wave-
length. We also assume the presence of the gain a in the medium,
which may possess uniform component and spatial modulation
with the grating periodicity. The origin of the gain is the result of
external optical pumping.

The grating is supposed to be recorded in a thin film between
the substrates, thus producing a kind of waveguide. The thickness
of the film substantially exceeds K. Below the attention will be
concentrated mainly on the DFB properties and the analysis of
the waveguide effects is let for further consideration.
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Fig. 1. Schematic of the waves in the modulated medium: U is the incident wave, V
is the diffracted wave, h is the propagation angle, K is the grating spacing, d is the
thickness of the grating.

Fig. 2. Diffraction efficiency contours calculated for pure phase grating with
uniform gain. (a) Zero gain, Dn/n = 1.8 � 10�3. (b) The same contour calculated with
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For the field E(x,z) in the medium being a superposition of inci-
dent wave

Uðx; zÞ ¼ UðzÞ exp ikzzþ
akzz

k

� �
exp ikxxþ akxx

k

� �
; ð2Þ

and reflected wave

Vðx; zÞ ¼ VðzÞ exp �ikzz� akzz
k

� �
exp ikxxþ akxx

k

� �
; ð3Þ

we write an expression

Eðx; zÞ ¼ UðzÞ exp ikzzþ
akzz

k

� �
þ VðzÞ exp �ikzz� akzz

k

� �� �

� exp ikxxþ akxx
k

� �
; ð4Þ

where positive a is responsible for the gain, kx and kz are compo-
nents of the wave vectors in the medium, k2

x þ k2
z ¼ k2 ¼ k2

0n2 and
k0 is the wave number in free space, k0 = 2p/k. The first-order Bragg
condition corresponds to equality kz = K/2.

The insertion of Eq. (4) into scalar wave equation leads to the
expression

@2Eðx; zÞ
@x2 þ @

2Eðx; zÞ
@z2 ¼ �k2

0eðzÞEðx; zÞ; ð5Þ

where e(z) is the dielectric permittivity, which with the presence of
the spatial modulation and uniform gain in the medium has a com-
plex value. The right side of Eq. (5) in the case of a modulated med-
ium with uniform gain attains a form [8]

k2
0eðzÞEðx; zÞ ¼ k2 � a2 � 2ikaþ k2

0De cosðKzÞ
h i

Eðx; zÞ: ð6Þ

Neglecting the terms corresponding to higher orders of diffrac-
tion, we combine the terms obtained after the differentiation in Eq.
(5) into the system

@2UðzÞ
@z2 e

akz
k z þ 2ikz 1� ia

k

� �
@UðzÞ
@z e

akz
k z ¼ � k2

0De
2 VðzÞe�

akz
k z�idz;

@2VðzÞ
@z2 e�

akz
k z � 2ikz 1� ia

k

� �
@VðzÞ
@z e�

akz
k z ¼ � k2

0De
2 UðzÞe

akz
k zþidz;

8<
: ð7Þ

where d is the measure of detuning from exact Bragg resonance:
d ¼ 2kz � K: This general detuning factor includes angular deviation
from exact Bragg angle, wavelength deviation, or both.

With the assumption of slowly varying amplitudes U(z) and
V(z), we omit second derivative terms in Eq. (7) and will seek the
solution in a form

UðzÞ ¼ u exp rz� akz

k
z� i

dz
2

� �
; ð8Þ
VðzÞ ¼ v exp rzþ akz

k
zþ i

dz
2

� �
: ð9Þ

The system of Eq. (7) thus attains the form

2ikz 1� ia
k

� �
ðr� akz

k � i d
2Þu ¼ �

k2
0De
2 v;

2ikzð1� ia
k Þðrþ

akz
k þ i d

2Þv ¼
k2

0De
2 u:

8<
: ð10Þ

Multiplication of the equations of the system (10) gives

r1;2 ¼ �
akz

k
þ i

d
2

� �2

þ
k2

0De
4kz

� 	2

1� ia
k

� �2

2
64

3
75

1=2

: ð11Þ

The resulting solution is

UðzÞ ¼ u1 expðr1zÞ þ u2 expðr2zÞ½ � exp �akzz
k
� i

dz
2

� �
; ð12Þ

VðzÞ ¼ v1 expðr1zÞ þ v2 expðr2zÞ½ � exp
akzz

k
þ i

dz
2

� �
: ð13Þ

To find the field in the grating, we have to substitute Eqs. (12) and
(13) into Eq. (4). For the sake to determine the reflected wave
amplitude V(0) it is enough to use the simplified boundary condi-
tions U(0) = U0 and V(d) = 0:

u1 þ u2 ¼ U0;

v1 expðr1dÞ þ u2 expðr2dÞ ¼ 0:
ð14Þ

Combination of the Eqs. (10) and (11) with the boundary conditions
(14) gives the solution for the reflected wave amplitude (the gain
due to the x-dependence in Eq. (3) is also taken into account)

Vð0Þ ¼ iU0

k2
0De
4kz

1� i a
k

� � sinhðr1dÞ
r1 coshðr1dÞ � akz

k þ i d
2

� �
sinhðr1dÞ

� exp a
k2 � k2

z

kkz
d

 !
: ð15Þ

For a pure phase grating De � 2nDn, and the modulation term is
k2

0De
4kz
¼ kDn

2n sin h. An illustration of the diffraction efficiency contour
g ¼ Vð0ÞV�ð0Þ=U2

0 is shown in Fig. 2. In calculations we used nor-
the presence of the uniform gain a/k = 8 � 10 . (c) The same with a/k = 1.1 � 10 .



Fig. 4. Calculated pre-oscillations diffraction efficiency contour for a gain grating.
The grating parameters are a/k = 10�3, jn = 0, ja = 1.05 � 10�3, d = 1000/k. Note the
logarithmic scale.
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malized value k = 1 to generalize the results. Fig. 2a shows the cal-
culated contour as a function of the detuning d/k for the grating
parameters d = 103/k (for comparison with realistic k0 = 10 lm�1

and n = 1.6d will amount 62.5 lm), K/2k = sinhB = 0.9 and Dn/
n = 1.8 � 10�3. Then, the same contour is calculated with nonzero
gain a/k = 8 � 10�4 (Fig. 2b) and for a/k = 1.1 � 10�3 (Fig. 2c).

The influence of a gain results in the growth of the diffracted
wave intensity which overcomes unity (Fig. 2b). The transforma-
tion of the contour with the gain increase is accomplished with
the formation of narrow pre-oscillating peaks (Fig. 2c). The phase
shift p/2 inherent to the diffraction by pure phase grating prevents
the oscillation mode appearance at the exact Bragg resonance, and
‘‘edge modes” are located at the both sides of the angular (or spec-
tral) selectivity contour.

For mixed-type gratings the modulation of dielectric permittiv-
ity De combines the refractive index and the gain modulation:

De � 2nDn� i
2n2Da

k
: ð16Þ

Below we shall use the notifications

v ¼ k2
0De
4kz

¼ jn � ija;

where

jn ¼
k0Dn

2 sin h
;

ja ¼
Da

2 sin h
;

and the sign ± in Eq. (16) indicates the mutual orientation of the
gain grating and refractive index grating: (+) corresponds to in-
phase matching, and vice versa.

The presence of the amplitude (gain) modulation discriminates
one edge peak. Depending on the mutual overlapping of the peri-
odical gratings of refractive index and gain a peak will be sup-
pressed at one or another side of the selectivity contour. Fig. 3
gives an example of the diffraction efficiency contour for the grat-
ing parameters a/k = 10�3, jn = 10�3, ja = 10�4.
Fig. 3. Diffraction efficiency contour calculated for mixed-type grating with gain
ak = 10�3, jn = 10�3, ja = 10�4, d = 1000/k.
Pure gain modulation seems to be preferable for the first-order
Bragg DFB oscillator. Due to the absence of the p/2 phase shift for
Bragg diffraction at pure amplitude grating, pre-oscillations peak
appears at the center of the grating selectivity contour, as shown
in Fig. 4. (Actually, a small detuning is seen in Fig. 4 which is
caused by the phase shift due to the uniform gain).

3. Threshold conditions

Self-oscillations (lasing) occur in the grating when the gain (or
distributed gain) reaches a threshold value. Even in the absence
of an input wave, the diffracted wave will exist. An equation for
the threshold determination can be derived from Eq. (15), in the
condition of the equality

r1 coshðr1dÞ ¼ akz

k
þ i

d
2

� �
sinhðr1dÞ; ð17Þ

which turns the denominator of Eq. (15) to zero. Assuming a� k,
we write Eq. (11) as

r1 ¼
akz

k
þ i

d
2

� �2

þ v2

" #1=2

: ð18Þ

Further, close to the Bragg resonance angle, we can let
akz

k ¼ aK
2k ; jn ¼ k2Dn

nK and ja ¼ kDa
K .

While in general case Eqs. (17) and (18) hardly can be solved
analytically, some combinations of the parameters d, a and v per-
mit to find easy the threshold dependence between the modula-
tion and the gain.

For instance, pure gain grating starts to oscillate with zero uni-
form gain and zero detuning at jad = p/2 (this value turns r1d to
ip/2). This surprising feature, however, directly follows from Kogel-
nik’s coupled-wave theory (Eq. (67) in Ref. [7]), but was not recog-
nized before.

Implicit solution of Eqs. (17) and (18) (the computation method
is described in Ref. [8]) is presented in Fig. 5 in a form of the thresh-
old gain dependence on the modulation factor jad = kDad/
K = Dad/2sinhB for pure gain-modulated grating. It is seen that



Fig. 5. Calculated threshold gain a(K/2k)d) as a function of the modulation factor
Dad/2sinhB for a pure gain grating.

Fig. 6. Calculated threshold gain a(K/2k)d) as a function of the modulation factor
k2Dnd/nK=kDnd/2sinhB for a pure phase grating with uniform gain.
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even with dominating absorption (negative gain) distributed gain
is able to switch on the oscillations. This feature, first emphasized
by Kogelnik in Ref [9] appears due to the overlapping of a field
which forms a kind of standing wave within the grating with zones
of the maximum gain.

To calculate the threshold gain factor in general case, we com-
bine Eqs. (17) and (18) into the ‘‘threshold” one:

sinhðr1dÞ
r1d

� �2

¼ � 1

ðvdÞ2
: ð19Þ

Numerical solution of Eq. (19) for the threshold gain factor in the
case of pure phase grating (real v) with uniform gain is presented
in Fig. 6. As seen, the threshold gain exceeds the corresponding va-
lue for a pure gain grating (Fig. 5). In the case of a mixed grating, the
threshold gain value will appear between these limit dependences.

There is also possibility to reach the threshold for high-order
grating modes with the increase of gain [9], however, in the case
when DFB structure overcomes the threshold, another physics will
rule its behavior.
The role of the waveguide is to select from the whole angular
and wavelength spectrum of the gain grating narrow oscillating
modes which correspond to the waveguide resonances. An impor-
tant conclusion which follows from the dependences shown in
Figs. 5 and 6 is that for a grating with given parameters d, K, Da
or Dn the threshold gain will decrease with the growth of k. This
obviously corresponds to the smaller wavelengths and angles hB:
DFB oscillations will preferably occur as far as possible from z-axis
direction. The resulting spatial shape and wavelength are the result
of the balance between the master DFB gain, spectral contour of
the gain and quality factor of the waveguide modes.

4. Conclusions

The performed coupled-wave analysis of Bragg diffraction in a
grating with gain describes the main features of the DFB oscillat-
ing modes formation. Pure gain modulation results in the
appearance of the oscillation mode exactly at the Bragg reso-
nance center, in contrast to the slightly off-Bragg edge modes
in the case of phase grating. We note the results obtained are
in agreement with those reported for a one-dimension model
[9]. Mixed-type grating has single off-Bragg oscillation mode,
which position depends on the ratio of index and gain modula-
tion magnitudes.

The used approach explains the tendency of DFB oscillator to
choose higher-order waveguide modes [10] due to the lower
threshold gain providing by Bragg diffraction properties.

Another important merit of the used approach is that the Bragg
resonances influence only on the z-components of the wave vec-
tors of the coupled waves, remaining the x-component intact,
whereas the waveguide resonances are determined by the x-com-
ponent of the wave vector of the propagating field inside the cav-
ity. This peculiarity permits to describe these two resonance effects
separately. In other words, we can consider the waveguide modes
for unperturbed waveguide. We note also that the resonance con-
ditions for s and p polarized waveguide modes are slightly differ-
ent, and therefore we can expect splitting of the oscillation
wavelength [10].

The used model can be easy applied to for inspection of a tech-
nique for a fine tuning of the oscillation wavelength.
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