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Membrane stability under electrical stress: A nonlocal electroelastic
treatment

Michael B. Partenskii, Vladimir L. Dorman, and Peter C. Jordan
Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254

~Received 22 June 1998; accepted 14 September 1998!

Existing models of membrane instability and breakdown under an applied voltage are critically
examined. An alternative, speculative treatment of the electroelastic model is suggested, based on
the assumption that spatial dispersion of the elastic moduli leads to their effective softening at short
wave lengths. The model parameters that account for these effects are chosen to ensure that short
wave length thickness fluctuations become unstable at moderate applied voltages,;1–1.5 V. With
these parameters we treat the membrane stretching diagram and membrane thickness fluctuations.
The stretching diagram agrees with experimental findings and earlier calculations. Computed
thickness fluctuations are consistent with previous investigations. ©1998 American Institute of
Physics.@S0021-9606~98!50847-1#
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I. INTRODUCTION

The way that membranes interact with electric fields~ap-
plied voltages! and the consequences for membrane stab
and electroporation are both very important for the electr
manipulation of membrane behavior.1–3 By adjusting these
fields it is possible to influence transmembrane permeab
and thus gain some control over processes such as targ
drug delivery, DNA transport into cells, etc.4,5 Membrane–
field interaction and membrane stability are also crucial
the development of ‘‘bioelectrochemical’’ sensors whe
membranes are in contact with electrodes and an app
voltage is used for monitoring changes caused by their in
action with the environment.6–10 Study of the influence of
solid supports~electrodes! on membrane stability is impor
tant both for the development of this field and in order
provide improved insight into the mechanisms of membra
breakdown.

Understanding the mechanisms of membrane breakd
under an applied voltage can also lead to improved un
standing of related phenomena, such as transport of ne
molecules and ions across the membrane, formation of
drophobic pores and proton wires, membrane fusion, sta
ity of patch clamps, etc. It may also have consequences
protein insertion, the stability of peptide assembles in me
branes, the translocation of segments during channel for
tion, etc.

Notwithstanding the intensive experimental and theo
ical study of membrane electrical breakdown that has
curred during the last 20 years~see Refs. 2, 11!, the mecha-
nism of rupture and in particular, any precursor membra
instability is still not satisfactorily understood. The first ele
troelastic model of these phenomena, suggested
Crowley12 predicts significant membrane thinning at t
critical point and a critical voltageVcr far exceeding experi-
mental values. More recent work has focused on pore for
tion as the mechanism for the development and propaga
of the instabilities that lead to rupture~see Weaver and
Chizmadzhev13 for a topical overview of the field!. This
10360021-9606/98/109(23)/10361/11/$15.00
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mechanism postulates that initiation of instability occurs
large fluctuations leading to the formation of hydrophob
pores.14 While this model’s analysis of the growth and d
velopment of pores, once formed, seems w
established,2,15–17 there is less certainty in its description o
the initial step in pore formation. Our analysis focuses o
possible mechanism for introducing the instability requir
for pore nucleation.

An alternative description of membrane stability h
been based on a hydrodynamic model, originally develo
for liquid films in contact with various media.18–20 Subse-
quently this approach was extended to viscoelastic films
signed to imitate membranes~see Refs. 11,21,22, and refe
ences therein!. The formation of the pores and film ruptur
arose due to instability of the symmetric ‘‘squeezing mode
~SQM! related to the thickness fluctuations@distinct from the
antisymmetric ‘‘bending modes’’~BM!, which may some-
times be associated with ‘‘buckling’’ instability11#. A num-
ber of studies11,23–26concluded that the SQM could be un
stable at small voltages with low associated thinnin
consistent with those experimental results.

However, as has been shown21,22,27–29these analyses did
not account for the elastic force normal to the membra
plane which opposes thickness fluctuations; conseque
these studies also implied that the threshold voltage
breakdown is zero23 if surface tension vanishes. Thus, th
approach is more appropriate for liquid systems, wh
thickness fluctuations arise from redistribution of molecu
between surface and inner regions of the film. In addition
simple liquids, this model is also descriptive of ‘‘colore
lipid films.’’ 30,31 But it is less appropriate for lipid bilayers
where thickness variation measures the change in dista
between lipid head groups on opposite sides of the m
brane, and where steric interaction between the hydrocar
tails in the midplane of the bilayer provides a quasielas
force opposing those fluctuations, a force which stabiliz
the bilayer. If the viscoelastic model is modified to accou
1 © 1998 American Institute of Physics
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for this force, the original Crowley model problems recu
breakdown requires extensive thinning.32

We base our analysis on the smectic bilayer model of
membrane. In this model small deformations of the me
brane surface lead to the appearance of quasielastic~restor-
ing! forces described by two basic moduli~‘‘stretching’’ and
‘‘bending’’ !, and by surface tension. Models of this typ
have been successfully used to describe the stretching
grams and adhesion33 of membranes, peptide insertion in
membranes,34,35 the spectrum of surface undulations,36 etc.
In this paper we focus on criteria for instability. In this sen
our treatment does not differ from that of a properly form
lated viscoelastic model. This is because the transition fr
a stable to an unstable regime is effected through a mot
less state of neutral stability.22 In this regime, viscous con
tributions are negligible. For subsequent work, where
relaxation from stable to unstable states is to be stud
inclusion of viscoelastic effects is necessary.

In its original form the smectic bilayer approach yiel
results very similar to Crowley’s original predictions. Ther
fore we modify the model and introduce an additional
sumption, that membrane elastic properties become sub
tially nonlocal at short wavelengthsl, in analogy to the
nonlocality observed for elastic moduli and for dielect
properties of many substances. We show that this hypoth
naturally enhances the electroelastic model of membrane
stability; it can rationalize the crucial observations of co
paratively low values forVcr associated with only mino
membrane thinning. At the same time it predicts signific
softening of the symmetric mode of membrane oscillati
Since the local approximation accounts for many equilibri
membrane properties, we then apply the nonlocal formu
tion to show that it can be similarly successful. We show t
the membrane stretching diagram is in accord with exp
mental findings and the results of earlier calculations and
membrane thickness fluctuations are consistent with res
of previous investigations. Some preliminary results have
peared previously.37,38

II. SMECTIC BILAYER MODEL IN AN ELECTRIC
FIELD

A. Peristaltic and bending fluctuation modes

To analyze membrane stability we generalize the sm
tic model of a membrane bilayer. Diverse aspects of a sm
tic description of membrane properties have been studied
different investigators.34,35,39,40 The total energy contain
both an elastic and an electric component. To discuss t
we introduce the displacements of the upper~1! and lower
~2! membrane surfaces. The correspondingz-components of
displacements normal to the membrane midplaneXY are
U1(r) andU2(r), with r a two-dimensional radius vecto
in the XY plane. We express these as

U65u01u6, ~1!

whereu0 is the displacement caused by external forces~such
as electric or mechanical stress! while u6 describes a non
uniform fluctuation of the membrane surface. As long
Downloaded 13 Mar 2009 to 129.8.242.67. Redistribution subject to AIP
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fluctuations are small the modes can be treated separa
Thus, for further analysis we decompose theu6 into Fourier
series,

u6~r!5(
q

u6~q!exp~ iq–r!. ~2!

We now treat separately the peristaltic~symmetric,s-! and
bending ~antisymmetric, a-! modes of membrane
fluctuations,20

us
152us

25u, ~3a!

ua
15ua

25u. ~3b!

The elastic energy~per unit area! in the smectic model con
sists of three contributions:34,35,40

~1! Compression (stretching) energy, w1 , expressed in a
form implicit in the electroelastic model of membran
breakdown~omitting an insignificant constant!,12

w15Bh0z@ ln~z!21#5Ez@ ln~z!21#, ~4!

wherez5h/h0 ; h5h(r) is the local thickness of the mem
brane, h0 its unperturbed value,B and E5Bh0 are the
Young’s and ‘‘stretching’’ moduli, respectively.

~2! Splay (bending or curvature) energy, w2 , defined by a
splay constantK1 or by the corresponding elastic modu
lus Kc5K1h2,34

w25
Kc

2
~“'

2 u!2, ~5!

where¹'[]/]r is the gradient operator in the plane of th
membrane.

~3! Surface tension contributiondefined by a stresss ap-
plied to the membrane and typically expressed as41

w35s~¹'u!2/2. ~6!

Later we will specify separate forms for the last two cont
butions for boths- anda-modes.

The electrostatic contribution can be found from t
Poisson equation. Neglecting contributions due to the diff
ionic distribution surrounding the membrane, the membra
surface may be considered an equipotential; the applicab
of this approximation is discussed in detail in Appendix
Then the electrostatic contributions can be found as20,40,42

wel522quuqu2pEH tanh~qh/2! ~a-mode!

coth~qh/2! ~s-mode!
, ~7!

pE~V,h!5
eV2

8ph2 , ~8!

wherepE(V,h) is the electric pressure as a function of a
plied voltage,V, and membrane thickness,h, and e is the
membrane dielectric constant. The equilibrium membra
thickness,h̄,

h̄5h022u0 , ~9!

which accounts for electrostriction, is determined from t
equilibrium condition
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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]W0

]h̄
50, ~10!

where W0 is the energy of the uniform membrane und
electric stress,

W05Ea@ ln~a!21#2e
V2

8ph̄
~11!

and the thinning coefficienta5h̄/h0 . Then it follows that at
equilibrium

E ln~a!52pEh0 , ~12!

which yields the following relation between the applied vo
age~in volts! anda;43

V5300aA8pEh0

e
lnS 1

a
D . ~13!

Using Eqs.~1! and ~9! we have

h~r!5h̄1u12u2. ~14!

The fluctuating (;u2) part of the compression energy is

w1
~2!5

1

2

]2w1~z!

]z2 U
z5a

~z2a!25
E

2h0
2a

~u12u2!2. ~15!

Summing up the contributions of Eqs.~5!–~7! and ~15! we
can express the energies of thes- anda-modes (ws andwa)
as

ws,a52
Euuqu2

h0
2 f s,a~x,a!, ~16!

f s~x,a!5
1

a
1b1gx21b2jx41x ln~a!cothS xa

2 D , ~17!

f a~x,a!5gx21jx41x ln~a!tanhS xa

2 D , ~18!

where

j5
Kc

4Eh0
2 , g5

s

4E
, x5qh0 . ~19!

The dimensionless constantsb1 and b2 were introduced by
Leikin;40 they account for the fact that contributions fro
each monolayer to the bending modulus and the surface
sion can differ for the two modes considered. Such effe
are probably small so thatb1;b2;1.40 Finally, it should be
noted that the electric potential enters Eqs.~11! and~16! only
through the parametera describing the uniform compressio
of the membrane by the applied voltage.

B. Instability of the BM under an applied voltage

Without an applied stress bending modes are unstab
most applied voltages in the longl limit ~small x!. To illus-
trate this, note thatx tanh(ax/2);ax2/22a3x4/24 as x
→0; in this limit Eq. ~18! yields

f a~x,a!;x2~g1a ln~a!/2!1x4~j2a3 ln~a!/24!.
~20!
Downloaded 13 Mar 2009 to 129.8.242.67. Redistribution subject to AIP
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The lower bound tox, xmin , corresponds tol5lmax5L and
xmin52ph0 /L. As long asL is substantially larger thanh0 ,
xmin!1 and the second term in Eq.~20! can be neglected
long l stability is determined byg andV. The bending mode
is stable if

g1 1
2a ln~a!.0. ~21!

For the physically interesting region,a;1 this reduces to
a~12a!,2g or a.122g. Sinceg5(s/4E)!1 for reason-
able values ofs, we find from Eq.~13! that

V,300A4psh0

e
. ~22!

It follows from Eqs.~21! and ~22! that the only stabilizing
force at longl is the membrane tension, andVcr vanishes as
s→0. This instability has been discussed extensively in
number of studies~see Refs. 13,20,27, and referenc
therein!.

Assuming that the mechanical tensions arising from
contact of the lipid film with the bulk phase~lenses! is typi-
cally s<2 dyn/cm, choosinge52 and using experimenta
data for representative soft@stearoyloleoylphosphatidyl
choline ~SOPC!# and rigid ~SOPC-cholesterol, SOPC
CHOL! membranes presented in Table I we find in bo
cases a stability range ofV<0.6 V.

Experimentally, the characteristic critical voltageVexper

depends on the durationt of the applied electric pulse. Fo
brief pulses,~t;0.0120.1 ms! Vexper;1 V, and for longer
ones~t;1 ms! Vexper,0.5 V.47 Further increase oft leads to
even smallerVexper@see Ref. 48 for lipid bilayers and Ref. 4
for bilayers with inclusions~fluid mosaic cell membranes!,
and references therein#. Thus the onset of BM instability is
likely related to the longt pulse observations. The increas
of electroporation threshhold48 with addition of surfactants is
also in qualitative agreement with Eq.~22! if the reduction of
s by surfactant is taken into consideration.

C. Instability of the SQM under an applied voltage

Unlike the BM which is unstable ifs→0, the SQM is
strongly stabilized by the quasielastic forces due to ste
interaction of the hydrocarbon tails of lipid molecule
Therefore a SQM instability generally requires higher vo
ages than those leading to BM instability.

We now relate the smectic approach to Crowley’s mo
in the limit x→0. Consider the stability of SQM~s-modes!.
They become absolutely unstable whenf s(x,a)50. In prac-
tice, as a consequence of membrane fluctuations, a trans
to a new state occurs before this point is reached,~see the
corresponding discussion for elastic capacitor models50!.

TABLE I. Elastic parameters for representative soft and rigid membra
~see text!.

Membrane E ~dyn/cm! h0 ~Å! Kc ~erg! j @Eq. ~19!#

SOPCa 200 28 0.93 10212 0.014
SOPC:CHOLb 600 34 2.43 10212 0.0087

aReferences 44–46.
bReference 45.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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First we consider the smallx ~long wavelength,l52p/q)
limit where xcoth(x);1 and all contributions to Eqs.~16!
and~17! of higher order inx are neglected. The correspon
ing condition, 2 ln~a!521, is exactly Crowley’s original
result,12

aCrow51/Ae50.60653. ~23!

This corresponds to the loss of stability for a membrane u
formly compressed by an applied voltage; the result follo
from the general conditions for critical behavior, thatW0

simultaneously satisfy Eq.~10! and the curvature condition

]2W0

]h̄ 2
50. ~24!

Equation~23! illustrates a major shortcoming of the origin
electroelastic model; it predicts membrane thinning of alm
40%, a result vastly different from the experimental findi
that a*0.97.51 The corresponding critical voltageVCrow can
be determined from Eq.~13!. Thus, for SOPC, with data
from Table I, we findVCrow;3.4 V ~Ref. 52! ~see also Ref.
13! so that both the extent of membrane contraction and
breakdown voltage predicted by Crowley’s model greatly
ceed the experimental values.

We now consider how finite wavelength fluctuations
fluence s-mode stability in the smectic model. The on
negative contribution to the energy in Eq.~16! arises from
the electrostatic term,xln(a)coth(xa/2) in Eq.~17!. Its abso-
lute value is essentially a linearly increasing function forx
*0.5. One can thus expect that the instability criteria at fin
x will be softer than for a uniform contraction correspondi
to x50. And this is the case. But, because of rapid (;x4)
growth of the positive bending energy term, the instabil
still occurs at a fairly small value ofx ~roughlyl;6h0 , i.e.,
x;1); the corresponding values ofac and Vc remain very
close to the Crowley result. Analysis of experimental da
like those of Table I, indicates that typical values of t
dimensionless bending constantj, Eq ~19!, fall in the range
between 0.008 and 0.02. In Fig. 1 we present the dimens
less energy of thes-mode, f s(a,x), for SOPC andac

;0.615, the conditions under which this mode becomes
stable. As is apparent, this occurs at finitex ~;1.25!, before
the Crowley condition is reached (a.aCrowley) so that
f s(ac ,x50).0. Unfortunately, this softening of the insta
bility criteria is too small~the change inVc does not exceed
2 to 5 mV! to have any practical implications. Consequent

FIG. 1. Local~dimensionless! energy ofs-mode fluctuations.
Downloaded 13 Mar 2009 to 129.8.242.67. Redistribution subject to AIP
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simple electroelastic theory, even when extended to t
short wavelength excitations, cannot account for the ob
vation that the instabilities occur at low transmembrane v
age and with little associated electrostriction.

III. NONLOCAL MODEL OF MEMBRANE INSTABILITY

It follows from the previous discussion that the electr
static contribution grows in absolute value withx ~with de-
creasing fluctuation wavelengthl!. But the influence of a
nonuniform electric force in creating an instability is ove
whelmed by the stabilizing bending contribution. As a resu
the instability is shifted to finitex ~;1.25! but the corre-
sponding critical voltage remains large~not differing notice-
ably from the Crowley result! and so does the associate
membrane electrostriction. At small voltages~corresponding
to a>0.9! the influence of the electric field ons-type fluc-
tuations in the smectic bilayer model is negligible. Therefo
this model can not explain how small transmembrane v
ages can lead to membrane breakdown. This difficulty
stimulated an alternative approach to modeling breakdo
Instead of studying the stability of small~linear! membrane
thickness fluctuations, this approach focuses on large fl
tuations leading to formation of transmembrane pores~see
Ref. 13, and references therein!. The initial stage of the
breakdown in this model is associated with the formation
hydrophobic pores~HP!, single files of water molecules in
terposed between the hydrocarbon tails of lipid molecule14

Nucleation of a HP requires cooperative motion of;8 lipid
molecules and 8–10 water molecules. Given that the li
molecules are not rigid, the associated kinetic problem
hard to quantify with precision.15,16 Estimates of the fre-
quency factor,n, for this process are very approximate a
vary over 9–10 orders of magnitude; correspondingly, e
mates of the associated energy barrier vary from 30 to 50
and pore concentration estimates are not reliably based.53

We propose that the initial stage of pore formation aris
due to thickness fluctuations destabilized by the electric fie
To make this mechanism effective, we assume that at s
wavelengths membrane elastic properties differ significan
from their longl behavior. In the previous analysis we us
elastic moduli derived, e.g., from the experiments on sh
fluctuations of vesicles,36 with characteristic wavelength
typically >1 mm.

We assume that at much shorter wavelengths, com
rable to the membrane width, elastic moduli become subs
tially nonlocal ands-modes with correspondingq become
‘‘softer.’’ This increases the corresponding fluctuations a
makes them more responsive to the action of an applied v
age. This assumption is based on the analogies to diele
and elastic behavior. It is known that spatial dispersion of
dielectric constante(q) leads to substantially lower~and
even negative! values ofe at short wavelengths,54,55 and that
there is significant spatial dispersion in elastic moduli of
dered materials.56 Aspects of short wavelength behavior
smectic liquid crystal phases have been modeled by ass
ing that either~or both! the compression and splay modu
exhibit notable wave vector dependence.57–59

There are numerous ways to model this effect. We co
reformulate the underlying constitutive equations describ
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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elastic behavior in coordinate space to incorporate nonlo
ity. Instead, we build on the formulation of Eq.~17! and
carry out our analysis in Fourier space. While the approac
are equivalent, extension of the electroelastic model le
itself more easily toq-space treatment. We discuss this po
in Appendix B.

We introduce a ‘‘switching function’’ t(x), which
changes the ‘‘macroscopic’’ expressions, Eqs.~16!–~18!, for
the elastic energy to a different functional form in the sm
l region,l;~1 to 1.5! h0 ,

t~x!5
exp~2ba!11

exp@2b~a2x!#11
. ~25!

Hereb characterizes the steepness~sharpness! of the transi-
tion anda is the characteristic value ofx for the transition.
We now have to choose a general form for the short-l be-
havior of thes-mode energy. It is important to notice that fo
small l the separation of energy into pure stretching a
bending contributions may not make sense; individ
moduli lose their initial meaning, and only the overall beha
ior of the elastic energy is important. We further assume t
the membrane tension contribution (w3) does not change
with this transition thus focusing only on the elastic ‘‘se
energy’’ of the membrane. We consider two different a
proximations to the energy in the shortl limit. The corre-
sponding energy dispersion equations are

f s1~x,a!5@12t~x!#4~k11jr 1x4!1t~x!4@1/a1jx41gx2

1 ln~a!xcoth~ax/2!#, ~26!

f s2~x,a!5@12t~x!#4~k21r 2x!1t~x!4@1/a1jx41gx2

1 ln~a!xcoth~ax/2!#. ~27!

At small x,t(x)→1 and both expressions reduce to Eq.~17!.
As x increases,f s1(x,a) derives its short-l structure from
that of the long-l form; it has the samex-dependence, only
the moduli are different. The expression forf s2(x,a) ac-
counts for the possibility that thex-dependence in the short-l
limit can be different; we test a linear approximation. T
exponent 4 in the expressions involving the switching fu
tion t(x) was chosen for mathematical convenience in
merical calculations of the stretching diagram~see below!.

For each of the models we have assigned the param
ki and r i characterizing the low-l limit to yield a voltage-
induced instability of the symmetric mode at the expec
values of applied voltageV5Vcr . In fact,V enters the mode
energy through the parametera describing the transvers
contraction of the membrane. Given that membrane thinn
does not exceed 3%, we chose model parameters so tha
s-mode energy approaches 0 asa→0.97. Using Eq.~13! the
critical voltage is

Vcr;254AEh0

e
.

For SOPC, with data from Table I ande;2, this is;1.3 V.
Figure 2 illustrates how we determine the nonlocal para
eters. The thick curves correspond toV50. The values ofki

and r i are chosen to satisfy the condition that thes-mode
becomes unstable forV5Vcr at lcr;h0 ~or x;2p). In other
Downloaded 13 Mar 2009 to 129.8.242.67. Redistribution subject to AIP
l-

es
s

t

l

d
l
-
at

-

-
-

ers

d

g
the

-

words, we require thatf s50 whenV5Vcr andl5lcr . The
instances where an applied voltage leads to instability
illustrated by thinner curves for both nonlocality models.
this way, using the data from Table I, for SOPC we find th
k1;k2;0.1, r 1;0.06, andr 2;0.02.

IV. ELASTIC NONLOCALITY AND THE MEMBRANE
STRETCHING DIAGRAM

It is well known that surface undulations strongly influ
ence the stretching diagram of membranes. They give ris
nonelastic behavior of the area,A(s), at small tensionss. In
the analysis of these effects symmetric mode contribution
the projected area variation have not traditionally been
cluded, all effects being assigned completely to the bend
modes.39 This has been justified by relative softness of t
bending modes, especially in the limit of longl ~small x!.
However, our assumption of softening of the symmet
modes may enhance their contribution to the projected a
at shortl and the dependence ofA(s) on stretching. In this
section we estimate the significance of this effect. We s
with following expression for the variation of the projecte
area due to undulations41 ~see also discussion below!,

DA'52 1
2 A~qu~q!!2. ~28!

The mean square value of the amplitudes,u(q)2, can be
determined using the principle of energy equipartition,

A^ws,a&5kT/2. ~29!

Then, using Eqs.~16!–~18! we find

FIG. 2. Nonlocal~dimensionless! energy of thes-mode in two approxima-
tions for the transitional and shortl regions atV50 ~a51, upper curve! and
at V51.3 V ~a50.97, lower curve! ~a! f s1(x,a) and ~b! f s2(x,a).
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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^uus,au2&5
kTh0

2

4AE fs,a~x,a!
, ~30!

from which we determine

DA's,a~q!52
kTx2

8E fs,a~x,a!
. ~31!

We now define

n[
DA'

A
, ~32!

the fractional variation of the projected area due to me
brane undulations. To findn we sum up contributions o
modes with differentq using

(
q

~¯ !→
A

2p E qdq~¯ !.

As a result we obtain

n1,25
2kT

16pEh0
2 E

xmin

xmax
x3S 1

f s1,2~x,a!
1

1

f a~x,a! Ddx, ~33!

where the indices 1 and 2 correspond to the expressions
~26! and~27! describing the nonlocal dispersion of the sym
metric mode. In the local approximation (t(x)51), and ne-
glecting thes-mode contributions these equations reduce
actly to Helfrich’s result41

nHelf52
kT

32Epjh0
2 logS xmax

2 1g/j

xmin
2 1g/j

D . ~34!

We now contrast stretching diagrams calculated in
local ~L! and nonlocal~NL! approximations~Fig. 3! using
the data from Table I for soft~SOPC! and rigid ~SOPC:

FIG. 3. Stretching diagram for soft~S! and rigid ~R! membranes for~a!
lmin515 Å and ~b! lmin512 Å. ‘‘L’’ corresponds to the local@Eq. ~34!#
model, while ‘‘NL’’ describes the nonlocal calculations withk150.1 and
r 150.06 (S) andk150.1 andr 150.04 (R).
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CHOL! membranes. The nonlocal calculations are based
the first form for the modified dispersion relation, Eq.~26!.
The results obtained using the alternate form, Eq.~27!, to
describe the shortl limit are practically the same; the calcu
lated stretching diagrams are basically independent of
way in which mode softening is treated. At small tensio
~t<0.2 dyn! the slope of the stretching diagrams is ve
steep. This domain corresponds to the so-called ‘‘none
tic’’ ~entropic! region of membrane stretching. Fort>3–4
dyn the slope is practically constant. In the intermediate
gion there is a sharp transition between these two regim

Unlike the local calculations, the nonlocal results depe
somewhat on the choice oflmin ~or xmax). With lmin515 Å
local and nonlocal diagrams are practically the same@Fig.
3~a!# while for lmin512 Å @Fig. 3~b!# there is a noticeable
difference for the soft membrane which becomes more p
nounced at smallerlmin . Since local theory reproduces ex
perimental stretching diagrams satisfactorily, discussion
the appropriate choice oflmin in nonlocal calculations is
required. Consider Eq.~28!. Its derivation assumes that th
total membrane area is fixed. Undulations only change
projected area. This requires that the lipid head groups t
to be oriented similarly with respect to the local interface,
assumption certainly valid for longl where the interface is
locally flat; then local conditions are the same as for
plane membrane. However, this relation changes at sho
wavelengths. Forl;15–20 Å the relative displacements o
the neighboring head groups are;u in which case the up-
and down-types of displacement are the natural ones,
tions that conserve the projected area. In other words,
~28! should be modified to account for the shortl dispersion
of the projected area. We account for this by simply apply
a cutoff onl. The valuel;15–20 Å, as outlined above, is
reasonable limit for validity of the macroscopic expressio
Eq. ~28!.

V. MEMBRANE THICKNESS FLUCTUATIONS

Membrane thickness fluctuations have been studied
Hladky and Gruen~HG!.60 Their original goal was to deter
mine if thermal fluctuations might account for literature r
ports of differences between the mean ‘‘electrical’’~as de-
termined by capacitance measurements! and ‘‘optical’’ ~as
determined by optical reflectance studies! membrane thick-
ness. Later studies showed these differences to
chimerical61 but it is still of interest to determine whethe
two very different models of membrane behavior lead
similar conclusions. HG treat a reduced version18,62 of the
smectic model of section 2 which ignores splay@j50 in Eqs.
~17! and ~18!# and assumes that the membrane can be
scribed by an inherent surface tensions in Eq. ~6! @or
equivalentlyg in Eqs. ~17! and ~18!#.63 This stress can be
created either by mechanical means~e.g., osmotic stress!, or
by contact between the bilayer and a bulk lipid phase, du
a difference between the chemical potential of lipid in bu
and in the bilayer. We wish to show that, just as for t
stretching diagram, the non-local model yields similar p
dictions. As thickness fluctuations have not been direc
measured, we only seek qualitative agreement between
analysis and that of HG.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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The thickness fluctuations can be analyzed in a man
similar to that used in determining the membrane stretch
diagrams. It follows from Eq.~14! that at small electric fields
~whereu0;0) h(r)5h012us(r). Then, using the Fourie
decomposition Eq.~2!, we find

^~h2h0!2&54(
q

uus~q!u2, ~35!

with which, proceeding as in Eqs.~29!–~33!, we obtain

^~h2h0!2&5
kT

2pE E
xmin

xmax x

f s~x,a!
dx. ~36!

Following HG we contrast results for two waveleng
~l! cutoffs, lmin510 Å andlmin5100 Å; lmin corresponds
to the upper limit of the integral in Eq.~36! since xmax

52ph0 /lmin . The lower limit,xmin depends on the characte
istic size of the membrane; in practice it can be set equa
0. Defining rms thickness fluctuations,Dh̃[^(h2h0)2&1/2,
our results for SOPC~soft! and SOPC:CHOL~rigid! mem-
branes are presented in Table II and compared with va
computed using the HG approach for two differentl cutoffs.

Thickness fluctuations in our theory are comparable
magnitude, but slightly smaller, than those found by H
Regardless of membrane stiffness, the variation ofDh̃ with
cutoff l is the same for the nonlocal and the HG approach
however, our analysis predicts that the fluctuations are
times smaller. The local approximation predicts thatDh̃ is
far less sensitive to the choice of cutoffl. The qualitative
agreement between two physically very different desc
tions of membranes behavior is surprisingly good. From
~36! thickness fluctuations are inversely proportional
mode energy. In our theory the largex contribution arises
mainly from nonlocality~in the local limit thex dependence
is much smaller!, while in HG this difference is mainly due
to a much more gradual (x2) increase of the mode energy~as
compared with anx4 dependence in our local smectic bilay
model!.

The general picture is that, when compared with the H
study, nonlocality, and mode softening do not lead to d
matic changes in mean membrane thickness fluctuati
However, for a nonlocal membrane, the fluctuation spectr
should peak at wavelengths;30–50 Å. Thus a valuable tes
of our model would come from investigating this range
thickness fluctuations, either by means of molecular dyna
ics simulations or directly, by soft x-ray scattering from re
membranes.

TABLE II. Thickness fluctuations (Dh̃, in Å! for ~S!oft and ~R!igid mem-
branes for different membrane models~see text!.

lmin(Å) S, L S, NL S, HGa R, L R, NL R, HGa

10 1.60 3.28 6.6 0.90 1.77 5.1
100 0.4 0.4 0.8 0.2 0.2 0.6

aFluctuations computed using the HG approach~Ref. 60!.
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VI. SUMMARY AND DISCUSSION

We have reconsidered the electroelastic model for me
brane breakdown. In order to circumvent its well-know
limitations ~membranes are incorrectly predicted to under
rupture at high voltages,;4 V, with significant electrostric-
tion, ;40%! we have considered whether the origin
breakdown~and the subsequent electroporation! may be due
to nonlocality of a membrane’s elastic moduli and their so
ening at short wavelength. With this assumption we find t
instability of membrane thickness fluctuations is possible
fairly low voltages~;1 V! with negligible electrostriction.
To demonstrate the feasibility of this idea we have~1! com-
puted the membrane stretching diagram and shown that
nonlocal model reproduces results of traditional theories;~2!
investigated thickness fluctuations and shown that our an
sis is consistent with the results of previous theoretical tre
ments.

Although partially hidden in averaged thermodynam
properties like the stretching diagram, nonlocality may pla
very important role when the influence of short-scale pert
bations of the membrane surface is significant. One exam
is membrane breakdown under an applied voltage, where
electric field interacts strongly with short-l fluctuations.
Nonlocality can also have a direct relation to the anomal
roughness of a membrane surface33 suggested to explain th
discrepancy between calculations of adhesion energy b
on the Young equation and on the conventional~local!
theory of the entropic forces between the membranes. M
softening could be a reason for this roughness and for
corresponding hidden projected area,33 a suggestion compli-
mentary to the hypothesis of special types of structural
fects ~hats and saddles!.64 It may also be related to the find
ing of ‘‘remarkable out-of-plane vibrational motion’’ of lipid
molecules65 which can contribute strongly to short-range r
pulsive forces between membranes.66 We plan to pursue
these issues in forthcoming studies.

Further development of the nonlocal model should
count for factors not considered here. For instance, it is n
ral to assume that at sufficiently high tensions, comparabl
critical values, the softening of short-l moduli would be no-
ticeably tension dependent. This provides a further ave
for analyzing the combined effect of mechanical and elec
stresses on membrane breakdown. The effects of surfac
and the influence of solid supports are other areas for fu
studies.

Possible ways to directly observe and analyze nonlo
effects must be considered. One important way to study n
local influences on membrane fluctuations could be mole
lar dynamics modeling. A possible difficulty with suc
analysis should be mentioned. In its natural environment
membrane assumes a stressless state. However, MD m
ing requires imposition of specific boundary conditions, on
which correspond to a stressed state of membrane~see Refs.
67–69 for discussion!. This stress can interfere with the fluc
tuations of membrane shape and thickness, an effect
must to be accounted for in analyzing data extracted fr
computer experiments.

Two different types of instability can possibly contribu
to membrane breakdown. The first is the bending mode
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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stability, known to occur at long wavelengths and small vo
ages. As discussed in Sec. II B this BM instability can
related to long pulse perturbations. The SQM instability o
curs at shortl and can be related to short pulse experimen
Our current analysis only touches the issue of instability
set, not the kinetics of its growth leading either to formati
of pores or to the creation of intermediate nonunifo
phases.50 To describe kinetics, the dynamic equations
some reasonable viscoelastic membrane model mus
solved. As discussed in Sec. I, there is still disagreemen
to the proper way to account for elastic effects in such
model. Accounting for nonlocality will provide a furthe
challenge in solving this problem.
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APPENDIX A

In the metallic approximation used in the bulk of th
paper, the potential differenceV between the membrane su
faces is assumed to be fixed. In fact only the potential d
between the bulk electrolytes separated by the membrane
be controlled, the actual potential drop across the memb
being dependent on the screening properties of the solve
Consequently, the influence of the electrostatics on m
brane oscillations differs from its metallic limit. To dete
mine the importance of electrolyte screening we apply
Poisson–Boltzmann theory.70 Limiting analysis to a single
one-dimensional symmetrical surface deformation of wa
numberq, the interface,z0 , between the electrolyte and
membrane of equilibrium thicknessh can be expressed as

z0~y!5h/21uq cosqy, ~A1!

where uq is the amplitude of the surface fluctuation. Th
system is governed by Poisson’s equation in the memb
and the Poisson–Boltzmann equation in the electrolyte,

¹2c50, membrane, ~A2!

¹2c5k2 sinh~c2W0!, electrolyte, ~A3!

wherec is the dimensionless electrical potential,e0f/kBT, k
is the reciprocal of the Debye length, andW0 is half the
dimensionless applied voltage,e0V/2kBT. The total electro-
static energy of the open~whenV is fixed! system is

UField52
1

8p E dVD–E, ~A4!

where E and D[eE are the electric field and electric dis
placement, respectively, ande is the dielectric constant.

We linearize Eq.~A3! ~most of the potential drop take
place across the membrane!, c2W0!1, and consider smal
amplitude surface fluctuations,uq!h. As the electrical en-
ergy, Eq.~A4!, is a quadratic function of the field streng
~and thus ofuq), we must consider overtones inq,

c5W0S x0~z!1(
n

xn~z!cos~nqy! D ; ~A5!
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linearizing Eq.~A3!, we find

x05Az, xn5uqBn sinh~nqz! ~membrane!;
~A6!

x0512Ce2k~z2h/2!, xn5uqDne2gn~z2h/2!,

gn
25k21n2q2 ~electrolyte!. ~A7!

Standard boundary conditions apply;c and the normal dis-
placementDnorm are continuous across the dividing surfac
Eq. ~A1!. From continuity ofc we obtain

Az01uq(
n

Bn sinh~nqz0!cos~nv!

512Ce2kuq cosv1uq(
n

Dne2gnuq cosv cos~nv!

~A8!

and from continuity inDnorm we obtain

emembS A1quq(
n

Bn cosh~nqz0!cos~nv!

3@12quq tanh~nqz0!tan~nv!sin v# D
5ebulkS Cke2kuq cosv sin~nv!

2uq(
n

Dne2gnuq cosv cos~nv!

3@gn1q2uq tan~nv!sin v# D , ~A9!

wherev[qy and z0(y) is given by Eq.~A1!. Substituting
Eqs. ~A5!, ~A6!, and ~A7! into Eq. ~A4!, expressingW0 in
terms ofV, and keeping only terms up toO(uq

2), yields

UField* 52
V2ememb

16p S hA2/21quq
2AB1 cosh~qh/2!

1
quq

2

4 (
n

nBn
2 sinh~nqh! D

2
V2ebulk

16p S kC2

2
~11k2uq

2!1kuq
2g1CD1

1
uq

2

4 (
n

Dn
2

gn
~gn

21n2q2! D . ~A10!

whereUField* is the electrostatic energy per unit projected a
of the membrane; the quadratic dependence ofUField* on V,
true to all orders ofuq , arises from linearizing the Poisson
Boltzmann equation. Surface deformations influence the u
form solution terms,A andC; using Eq.~A1! and writing Eq.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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~A8! as a Fourier expansion in cos(nqy)5cosnv we find
from then50 term,

Ah/21~uq/2!(
n

Bn~enqh/2I n~nquq!2e2nqh/2I n~2nquq!!

512CI0~2kuq!1uq(
n

DnI n~2gnuq!, ~A11!

whereI n is the imaginary Bessel function of ordern. Similar,
but more complex relations can be found forn.0 and when
satisfying Eq.~A9!. For a displacement at wave numberq,
both B1 andD1 are;1, while for n>2 bothBn andDn are
;uq ; the latter terms thus contribute to quartic and high
terms inUField* and can be neglected.A andC are quadratic in
uq ; the leading terms are

A5a01uq
2a2 , C5c01uq

2c2 . ~A12!

With these and the continuity conditions Eqs.~A8! and~A9!
we finally obtain

a05
2

h~11j!
, c05

j

11j
, ~A13!

B1* 5
g1~12r !2k

D
a0 ,

~A14!

D15
2k tanh~qh/2!/q1~121/r !

D
a0 ,

a25
~k2g1!D12B1*

h~11j!
,

~A15!

c252
c0k2

4
2

jB1* 1D1~jg11k!

2~11j!
,

where

r 5ebulk /ememb, j52/~khr !, ~A16!

D511g1r tanh~qh/2!/q, ~A17!

B1* [qB1 cosh~qh/2!, ~A18!

and Eq.~A10! becomes

UField* 52
V2

16p
~ememba0

2h/21ebulkkc0
2/2!

2uq
2 V2ememb

16p
~a0a2h1a0B1*

1~B1* !2 tanh~qh/2!/~2q!!

2uq
2 V2ebulk

16p
~k~k2c0

212c0c2!/2

1kg1c0D11D1
2~g1

21q2!/~4g1!!. ~A19!

A nontrivial limiting case, which confirms our analysi
is the ‘‘metallic’’ limit, ebulk→`. UField* simplifies enor-
mously@from Eq.~A9! bothC and theDn are[0# and theC
and D1 terms in Eqs.~A13! to ~A15! vanish; A and B1*
become
Downloaded 13 Mar 2009 to 129.8.242.67. Redistribution subject to AIP
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a05
2

h
, B1* 5

2a0q

tanh~qh/2!
, a25

a0q

h tanh~qh/2!
~A20!

and the expression forUField* reduces to

UField,0* 52
emembV

2

8ph S 11
quq

2 coth~qh/2!

h D . ~A21!

The undulatory term in this expression differs from Eqs.~7!
and ~8! by a factor of 2 because our definition of surface
deformation, Eq. ~A1!, is proportional to cos(qy) not
exp(iqr) as in Eq.~2!.

FIG. 4. RatioR of linear Poisson–Boltzmann calculations of the undulatory
part of Eq.~A19! to that in the ‘‘metallic’’ limit @Eq. ~A21!#. The dielectric
ratio r is 40. ThreelDebyevalues are considered;n, 30 Å; ., 10 Å; j, 3 Å.
Three membrane thicknesses are contrasted;~a! h0540 Å, ~b! h0530 Å, ~c!
h0520 Å.
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Substituting Eq.~A19!, in the limit uq→0, for the sec-
ond term in Eq.~11!, the total electroelastic energy for th
uniform system, including the influence of the diffuse lay
is

W05Ea@ ln~a!21#2
emembrkV2~11rkh0a!2

8p~21rkh0a!
~A22!

and the modified form of Eq.~13!, relating applied voltage to
the thinning coefficient, is

V5300aS 21rkh0a

rkh0a D 1.5A8pEh0

ememb
lnS 1

a D
5~11j!1.5V~metallic!; ~A23!

for a typical membrane, withh0;30 Å, r 540 and k21

[lDebyebetween 3 and 30 Å~1 M to 0.01 M ionic strength!,
the correction factor (11j)1.5 is qualitatively insignificant,
varying between 1.008 and 1.08. In Fig. 4 we present
ratio of the undulatory term in the electric energy for a me
brane sandwiched between realistic electrolytes (ebulk580,
r 540) to that in the metallic approximation (ebulk5`, r
5`). Again, ionic strengths~I! ranging from 1 M to 0.01 M
(lDebye from 3 to 30 Å! are contrasted. At all membran
thicknesses considered the highI ~low lDebye) results differ
insignificantly over the physically important range ofx. De-
viations become more important aslDebyeincreases, but even
at the highest value considered the metallic approxima
accounts for more than 90% of the exact result over
whole x-range. This remains true even when an unreali
cally thin membrane@h0520 Å, Fig. 4~c!# is modeled. Con-
sequently no serious errors are introduced by using the
tallic limit throughout.

APPENDIX B

Nonlocality of constitutive equations means that forc
acting at a pointr and conjugate to a fluctuating variables,
depend not only on the value ofs(r ) at r but also on its
behavior in more distant regions. This leads directly to
two-point integral for the energyW so that~in an harmonic
approximation!

W5E K~r ,r 8!s~r !s~r 8!drdr 8, ~B1!

where, depending on the problem of interest, the ker
K(r ,r 8) depends on a nonlocal susceptibility or nonloc
modulus.

For example, in nonlocal electrostatics, the role ofK is
played by e~r ,r 8!, the nonlocal dielectric constant, whil
electric field strength,E(r ), corresponds tos(r ).54,71,72 In
elastic theoryK is a dynamical modulusD(r ,r 8) and s de-
scribes displacementsu(r ).56,71 The local limit in a uniform
system corresponds toK(r ,r 8)5K•d(r2r 8) whered(r ) is a
delta-function in which caseW5K* s2(r )(dr ).

As long asK is a function ofr2r 8, the Fourier transform
of Eq. ~B1! is

W5(
q

K~q!usqu2, ~B2!
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whereK(q)5* exp(2iq•r )K(r ). Thus, nonlocality can be
either described through the spatial dependence of the
eralized susceptibility,K(r ,r 8), or through the dependenc
of its Fourier transform on the wave vectorq.

Fourier representations are often simpler and more
derstandable. For instance, the kernelK(r) corresponding to
the stretching and bending contributions to Eq.~17! is com-
plex,

1

a
d~r!12jqmax

3
•ph0

4 ~qmax•r!228

r3 J3~qmax•r!

~here J3 is a third order Bessel function! and it is clearly
easier to treat the simpler terms in Eq.~17!, its Fourier trans-
form. We chose this approach when proposing short-l non-
locality. It could equally well be described in terms of sp
tially dependent elastic moduli resulting in a differe
dispersion law for the mode energy at largex. Instead of
formulating new spatial dependence, we treat the disper
law directly, postulating a transition from long- to short-l
behavior@see Eqs.~25!–~27!#.

1T. Tsong, Biophys. J.41, 135 ~1991!.
2S. Freeman, M. Wang, and J. Weaver, Biophys. J.67, 42 ~1994!.
3Electromanipulation of Cells, edited by U. Zimmerman and G. Neil~CRC
Press, Boca Raton, 1996!.

4E. Neumann, A. Sowers, and C. E. Jordan,Electroporation and Electro-
fusion in Cell Biology~Plenum, New York, 1989!.

5E. Neumann, Bioelectrochem. Bioenerg.28, 247 ~1992!.
6H. Tien, Adv. Mater.2, 316 ~1990!.
7M. Stelze and E. Sackmann, J. Phys. Chem.97, 2974~1993!.
8A. Ottova-Leitmannova, T. Martynski, A. Wardak, and H. Tien, Se
assembling bilayer lipid membranes on solid support. Building blocks
future biosensors and molecular devices, inMolecular Electronics, edited
by R. Birge, Vol. 240 inAdvances in Chemistry~American Chemical
Society, Washington, D.C., 1994!, Chap. 17, pp. 438–454.

9E. Sackmann, Science271, 43 ~1996!.
10B. Cornell, V. Braach-Maksvytis, L. King, P. Osman, B. Raguse, L. Wie

zorek, and R. Pace, Nature~London! 387, 580 ~1997!.
11D. Dimitrov and K. Jain, Biochim. Biophys. Acta779, 438 ~1984!.
12J. Crowley, Biophys. J.13, 711 ~1973!.
13J. Weaver and Y. Chizmadzhev, Bioelectrochem. Bioenerg.41, 135

~1996!.
14J. Litster, Phys. Lett.53, 193 ~1975!.
15I. Abidor, V. Arakelyan, L. Chernomordik, Y. A. Chizmadzhev, V. Pa

tushenko, and M. Tarasevich, Bioelectrochem. Bioenerg.6, 37 ~1979!.
16J. C. Weaver and R. Mintzer, Phys. Lett.86A, 57 ~1981!.
17I. Sugar, J. Physiol.~Paris! 77, 1035~1981!.
18A. Vrij, Discuss. Faraday Soc.42, 23 ~1966!.
19A. Sheludko, Adv. Colloid Interface Sci.1, 391 ~1967!.
20D. Michael and M. O’Neill, J. Fluid Mech.41, 571 ~1970!.
21P. Bisch and H. Wendel, J. Chem. Phys.83, 5953~1985!.
22P. Bisch and H. Wendel, J. Chem. Phys.83, 5962~1985!.
23D. Dimitrov, J. Membr. Biol.78, 53 ~1984!.
24C. Maldarelli, R. Jain, I. Ivanov, and E. Ruckenstein, J. Colloid Interfa

Sci. 78, 118 ~1980!.
25C. Maldarelli and R. Jain, J. Colloid Interface Sci.90, 233 ~1982!.
26C. Maldarelli and R. Jain, J. Colloid Interface Sci.90, 263 ~1982!.
27A. Steinchen, D. Gallez, and A. Sanfeld, J. Colloid Interface Sci.85, 5

~1982!.
28D. Gallez, Biophys. Chem.18, 165 ~1983!.
29D. Gallez and A. Steinchen, J. Colloid Interface Sci.94, 296 ~1983!.
30P. Bisch, H. Wendel, and D. Gallez, J. Colloid Interface Sci.92, 105

~1983!.
31D. Gallez, P. Bisch, and H. Wendel, J. Colloid Interface Sci.92, 121

~1983!.
32The issue of thinning was not specifically addressed in these studies~Refs.

22,28!. Attention was focused on a proper choice of the potential desc
ing the steric interaction between the hydrocarbon tails, and the co
sponding stabilization of the SQM. However, it can be shown that
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



low

e,

pe

.,

on

ed
k-

.

ap

ito
to

tu
–

d

lue
tio
ce
on
pic

ru

ers

n the

em-

.,

E.

and

,

io-

-

ons

10371J. Chem. Phys., Vol. 109, No. 23, 15 December 1998 Partenskii, Dorman, and Jordan
almost any choice of the quasielastic interaction stabilizing the film at
V, the critical thinning almost universally reaches 30%–40%~Ref. 50!. In
other words, if the potential appears softer, thenVcr becomes lower; how-
ever, the contraction at small voltages also becomes more extensiv
that its critical value stays approximately the same.

33W. Helfrich, Tension-Induced Mutual Adhesion and a Conjectured Su
structure of Lipid Membranes, inHandbook of Biological Physics, edited
by R. Lipowsky and E. Sackmann~Elsevier Science, Washington, D.C
1995!, Vol. 1, Chap. 14, pp. 691–721.

34H. Huang, Biophys. J.50, 1061~1986!.
35P. Helfrich and E. Jakobsson, Biophys. J.57, 1075~1990!.
36H. Engelhart, H. Duwe, and E. Sackmann, J. Phys.~France! Lett. 46, 395

~1985!.
37M. B. Partenskii, V. L. Dorman, and P. C. Jordan, Biophys. J.74, A314

~1998!.
38M. B. Partenskii, V. L. Dorman, and P. C. Jordan, Proc. SPIE3253, 266

~1998!.
39W. Helfrich, Z. Naturforsch. C28, 693 ~1973!.
40S. Leikin, Biol. Membr.~Russian! 2, 820 ~1985!.
41W. Helfrich, Z. Naturforsch. C30, 841 ~1975!.
42D. Andelman, Electrostatic properties of membranes: The Poiss

Boltzmann theory, inHandbook of Biological Physics, edited by R. Lip-
owsky and E. Sackmann~Elsevier Science, Washington, D.C., 1995!, Vol.
1, Chap. 12, pp. 603–642.

43Here and in what follows we identifyh0 with the thickness of the hydro-
carbon core of the lipid bilayer since the electric field is mainly confin
to the low e region. Alternatively we could introduce an effective thic
ness such thath0 /e is replaced byh0 /e1Dh0 /e* , where Dh0 is the
thickness of the head group regions ande* their mean dielectric constant
Such a modification alters estimated voltages negligibly, by;2%.

44D. Needham and R. Nunn, Biophys. J.58, 997 ~1990!.
45D. Needham and R. M. Hochmuth, Biophys. J.55, 1001~1989!.
46E. Evans and W. Rawicz, Phys. Rev. Lett.64, 2094~1990!.
47R. Benz and U. Zimmermann, Biochim. Biophys. Acta597, 637 ~1980!.
48G. Troiano, L. Tung, V. Sharma, and K. Stebe, Biophys. J.75, 880~1998!.
49J. Akinlaja and F. Sachs, Biophys. J.75, 247 ~1998!.
50M. B. Partenskii, V. Dorman, and P. C. Jordan, Int. Rev. Phys. Chem.11,

153 ~1996!.
51These estimates are based on direct measurements of membrane c

tance under applied voltage~Refs. 2,73–77!. The following argument is
also illuminating. Since the lipid is incompressible the elastic capac
model would require significant stretching of the membrane prior
breakdown~a fractional area increaseDA/A;2/3) in order to maintain
constant volume. However, experimental studies of mechanical rup
indicate that the stretching preceding breakdown does not exceed 2%
~Refs. 2, 44, 76–79! consistent with 1%–3% thinning.

52As has been shown~Ref. 80!, the stretching modulus that Crowley use
was significantly underestimated~by almost two orders of magnitude!. As
a result the critical voltages that he found were well below 1 V.

53In the HP model it is basically assumed that the uncertainty in the va
of n is balanced by the uncertainty in the estimates of the pore forma
barrier,Wpore, so that taken together they result in a reasonable con
tration of pores. Applied voltage in this picture simply changes the c
centration of pores by altering the barrier height. While an attractive
ture, it requires numerous assumptions with respect to bothWpore, andn0 ,
estimates which are difficult to verify.

54A. Kornyshev, Solvation of a Metal Surface, inChemical Physics of Sol-
vation, edited by R. Dogonadze, E. Kalman, A. Kornyshev, and J. Ulst
~Elsevier Science, Amsterdam, 1985!, Vol. C, Chap. 6.
Downloaded 13 Mar 2009 to 129.8.242.67. Redistribution subject to AIP
so

r-

–

aci-

r

re
5%

s
n
n-
-
-

p

55P. Bopp, A. Kornyshev, and G. Sutmann, J. Chem. Phys.109, 1939
~1998!.

56N. Ashcroft and N. Mermin,Solid State Physics~Holt, Rinehart, and
Winston, New York, 1977!.

57N. Lei, C. R. Safinay, and R. Bruinsma, J. Phys. II5, 1155~1993!.
58S. Ramaswamy, J. Prost, and T. Lubensky, Europhys. Lett.23, 271

~1993!.
59W. Cai, T. C. Lubensky, and T. Powers, J. Phys. II4, 931 ~1994!.
60S. Hladky and D. Gruen, Biophys. J.38, 251 ~1982!.
61J. Dilger, Biochim. Biophys. Acta645, 357 ~1982!.
62A. Vrij, J. Colloid Interface Sci.51, 1 ~1964!.
63It is more consistent to treats as an applied stress, because real bilay

typically attain a tensionless state~Refs. 67,68,81–85!. This stress can be
created either by mechanical means~e.g., osmotic stress!, or by contact
between the bilayer and a bulk lipid phase, due to a difference betwee
chemical potential of lipid in bulk and in the bilayer.

64W. Helfrich, Liq. Cryst.5, 1647~1989!.
65E. Sackmann, Physical basis of self-organization and function of m

branes: Physics of vesicles, inHandbook of Biological Physics, edited by
R. Lipowsky and E. Sackmann~Elsevier Science, Washington, D.C
1995!, Vol. 1, Chap. 5, pp. 213–304.

66J. N. Israelachvili and H. Wennerstroem, Langmuir6, 873 ~1990!.
67S. E. Feller and R. Pastor, Biophys. J.71, 1350~1996!.
68R. Goetz and R. Lipowsky, J. Chem. Phys.108, 7397~1998!.
69S.-W. Chiu, M. Clark, V. Balaji, S. Subramaniam, H. L. Scott, and

Jakobsson, Biophys. J.69, 1230~1995!.
70Similar problems have been considered for various approximations

geometries for both fixed and variable membrane surface charge~Refs. 81,
86–92!.

71W. Harrison,Solid State Theory~Sinauer Associates, Sunderland, MA
1984!.

72M. B. Partenskii and P. C. Jordan, Q. Rev. Biophys.25, 477 ~1992!.
73S. White and T. Thompson, Biochim. Biophys. Acta323, 7 ~1973!.
74O. Alvarez and R. Latorre, Biophys. J.21, 1 ~1978!.
75L. Chernomordik, S. Sukharev, I. Abidor, and Y. A. Chizmadzhev, B

electrochem. Bioenerg.9, 149 ~1982!.
76S. Toyama, A. Nakamura, and F. Toda, Biophys. J.59, 939 ~1991!.
77D. Ehrenstein and K. Iwasa, Biophys. J.71, 1087~1996!.
78E. Evans and R. Skalak,Mechanics and Thermodynamics of Biomem

branes~CRC Press, Florida, 1980!.
79E. Evans and D. Needham, J. Phys. Chem.91, 4219~1987!.
80J. Requena, D. A. Haydon, and S. Hladky, Biophys. J.15, 77 ~1975!.
81D. Bensimon, F. David, S. Leibler, and A. Pumir, J. Phys. France51, 689

~1990!.
82M. Bloom, E. Evans, and O. Mouritsen, Q. Rev. Biophys.24, 293~1991!.
83D. Sornette and N. Ostrowsky, Lamellar Phases: Effect of Fluctuati

~Theory!, in Micelles, Membranes, Microemulsions, and Monolayers, ed-
ited by W. Gelbart, A. Ben-Shaul, and D. Roux~Springer, New York,
1994!, Chap. 5, pp. 251–302.

84D. Marsh, Biochim. Biophys. Acta1286, 183 ~1996!.
85F. Jahning, Biophys. J.71, 1348~1996!.
86M. Winterhalter and W. Helfrich, J. Phys. Chem.92, 6865~1988!.
87D. Mitchell and B. Ninham, Langmuir5, 1121~1989!.
88A. Fogden, D. Mitchell, and B. Ninham, Langmuir6, 159 ~1990!.
89A. Fogden and B. Ninham, Langmuir7, 590 ~1991!.
90M. Winterhalter and W. Helfrich, J. Phys. Chem.96, 327 ~1992!.
91M. Winterhalter, Prog. Colloid Polym. Sci.98, 271 ~1995!.
92S. May, J. Chem. Phys.105, 8314~1996!.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


