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Membrane stability under electrical stress: A nonlocal electroelastic
treatment
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Existing models of membrane instability and breakdown under an applied voltage are critically
examined. An alternative, speculative treatment of the electroelastic model is suggested, based on
the assumption that spatial dispersion of the elastic moduli leads to their effective softening at short
wave lengths. The model parameters that account for these effects are chosen to ensure that short
wave length thickness fluctuations become unstable at moderate applied voltagds5 V. With

these parameters we treat the membrane stretching diagram and membrane thickness fluctuations.
The stretching diagram agrees with experimental findings and earlier calculations. Computed
thickness fluctuations are consistent with previous investigations19@8 American Institute of
Physics[S0021-960808)50847-1

I. INTRODUCTION mechanism postulates that initiation of instability occurs via
] ) o large fluctuations leading to the formation of hydrophobic

_ The way that membranes interact with electric figlals- a5 While this model’'s analysis of the growth and de-
plied voltage$an_d the consequences for membrane Stab_'“%elopment of pores, once formed, seems well
and electroporation are both very important for the electrical

S 0 - established;">~"there is less certainty in its description of
manipulation of membrane behavior By adjusting these - . . .
fields it is possible to influence transmembrane permeabilitthe |r_1|t|al step in pore for_matlon. _Our a”"’_"ys's fc_)cuses on a
and thus gain some control over processes such as target 855|ble mechaplsm for introducing the instability required
drug delivery, DNA transport into cells, eté. Membrane— '©" POT€ nucleation. o -
field interaction and membrane stability are also crucial for AN alternative description of membrane stability has
the development of “bioelectrochemical” sensors whereP€€en based on a hydrodynamic model, originally developed
membranes are in contact with electrodes and an applie@" liquid films in contact with various medid~*° Subse-
voltage is used for monitoring changes caused by their interduently this approach was extended to viscoelastic films de-
action with the environmerft:2° Study of the influence of signed to imitate membranésee Refs. 11,21,22, and refer-
solid supportselectrodel on membrane stability is impor- ences therein The formation of the pores and film rupture
tant both for the development of this field and in order toarose due to instability of the symmetric “squeezing modes”
provide improved insight into the mechanisms of membranéSQM) related to the thickness fluctuatiofgistinct from the
breakdown. antisymmetric “bending modes’(BM), which may some-

Understanding the mechanisms of membrane breakdowtimes be associated with “buckling” instability]. A num-
under an applied voltage can also lead to improved underer of studies***~?®concluded that the SQM could be un-
standing of related phenomena, such as transport of neutrglable at small voltages with low associated thinning,
molecules and ions across the membrane, formation of hysonsistent with those experimental resullts.
Qrophoblc pores and proton wires, membrane fusion, stabil- However, as has been shd??27-2%hese analyses did
ity of patch clamps, etc. It may also have consequences Qs account for the elastic force normal to the membrane
protein insertion, the s_tab|I|ty of peptide agsembles N MEMy1ane which opposes thickness fluctuations; consequently,
branes, the translocation of segments during channel form hese studies also implied that the threshold voltage for

tion, etc. . . . ;
Notwithstanding the intensive experimental and theoret-breakdown. is zerd if surfac.e tensmn. vqnlshes. Thus, the
proach is more appropriate for liquid systems, where

ical study of membrane electrical breakdown that has ocﬁ?_ K fluctuati o f distributi t molecul
curred during the last 20 yeafsee Refs. 2, 11 the mecha- ickness fluctuations arise from redistribution of molecules

nism of rupture and in particular, any precursor membran@€tWeen surface and inner regions of the film. In addition to
instability is still not satisfactorily understood. The first elec- SIMPle “qff'gosélth's model is also descriptive of “colored
troelastic model of these phenomena, suggested bg,p|d films.” *™>* But it is less appropriate for lipid bilayers,
Crowley*? predicts significant membrane thinning at the where thickness variation measures the change in distances
critical point and a critical voltag¥,, far exceeding experi- between lipid head groups on opposite sides of the mem-
mental values. More recent work has focused on pore formarane, and where steric interaction between the hydrocarbon
tion as the mechanism for the development and propagatictails in the midplane of the bilayer provides a quasielastic
of the instabilities that lead to rupturesee Weaver and force opposing those fluctuations, a force which stabilizes
Chizmadzhe¥? for a topical overview of the field This  the bilayer. If the viscoelastic model is modified to account
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for this force, the original Crowley model problems recur; fluctuations are small the modes can be treated separately.
breakdown requires extensive thinnitfg. Thus, for further analysis we decompose theinto Fourier

We base our analysis on the smectic bilayer model of theeries,
membrane. In this model small deformations of the mem-
brane surface lead to the appearance of quasielasstor- ui(p)ZZ u*(q)exp(iq-p). 2
ing) forces described by two basic moddlstretching” and q
“bending”), and by surface tension. Models of this type e now treat separately the peristalsymmetric,s-) and
have been successfully used to describe the stretching d'B‘ending (antisymmetric, a) modes of membrane
grams and adhesi&hof membranes, peptide insertion into ¢ ations?

membranes**® the spectrum of surface undulatiotisetc. ) B
In this paper we focus on criteria for instability. In this sense  Us = —Ug =U, (33
our treatment does not differ from that of a properly formu- .

lated viscoelastic model. This is because the transition from Ya =UYa =U: (3D
a stable to an unstable regime is effected through a motionrhe elastic energyper unit areiin the smectic model con-
less state of neutral stability.In this regime, viscous con- sists of three contribution:35:4°

tributions are negligible. For subsequent work, where the . hi di
relaxation from stable to unstable states is to be studieo(,l) Compress_,lt_)n_ (stretching) Eneigw,, expressed in a
inclusion of viscoelastic effects is necessary. form implicit in the electroelastic model of membrane

In its original form the smectic bilayer approach yields ~ Preakdown(omitting an insignificant constat’
results very s.imilar to Crowley’s _original prediction.s_. There- wy=BhyZ[In(z)—1]=EZIn(z)— 1], (4)
fore we modify the model and introduce an additional as-
sumption, that membrane elastic properties become substaherez=h/hg; h=h(p) is the local thickness of the mem-
tially nonlocal at short wavelengths, in analogy to the brane,hq its unperturbed valueB and E=Bh, are the
nonlocality observed for elastic moduli and for dielectric Young's and “stretching” moduli, respectively.
properties of many substances. We show that this hypothesig) Splay (bending or curvature) energw,, defined by a
naturally enhances the electroelastic model of membrane in-  splay constank ; or by the corresponding elastic modu-

stability; it can rationalize the crucial observations of com- lus K= K1h2,34

paratively low values forV associated with only minor

membrane thinning. At the same time it predicts significant :& V2u)2 5
: . o W (Viws, )

softening of the symmetric mode of membrane oscillation. 2

Since the local approximation accounts for many equilibriumwherevLE
membrane properties, we then apply the nonlocal formUIafnembrane.
tion to show that it can be similarly successful. We show that . o ]
the membrane stretching diagram is in accord with experi{3) Surface tension contributiodefined by a strese ap-
mental findings and the results of earlier calculations and that ~ Pliéd to the membrane and typically expressett as

dldp is the gradient operator in the plane of the

membrane thickness fluctuations are consistent with results \y,= (v, u)?/2. (6)
of previous investigations. Some preliminary results have ap- ) ) .
peared previousl§’ 3 Later we will specify separate forms for the last two contri-

butions for boths- and a-modes.
The electrostatic contribution can be found from the
Poisson equation. Neglecting contributions due to the diffuse

Il. SMECTIC BILAYER MODEL IN AN ELECTRIC ionic distribution surrounding the membrane, the membrane
FIELD surface may be considered an equipotential; the applicability
A. Peristaltic and bending fluctuation modes of this approximation is discussed in detail in Appendix A.

. . Then the electrostatic contributions can be fount#s*?
To analyze membrane stability we generalize the smec-

tic model of a membrane bilayer. Diverse aspects of a smec- 5 tanigh/2) (a-mode

tip description o_f mem?ggr;&groperties have been studied by We= —20|ug|“pe coth(qh/2) (s-mode’ (7
different investigator§*®3%4° The total energy contains

both an elastic and an electric component. To discuss them eV?

we introduce the displacements of the uppe) and lower pe(V,h)= Pyl (8)

(—) membrane surfaces. The correspondiapmponents of
displacements normal to the membrane midplaié are  wherepg(V,h) is the electric pressure as a function of ap-
U*(p) andU (p), with p a two-dimensional radius vector plied voltage,V, and membrane thicknesls, and € is the

in the XY plane. We express these as membrane dielectric constant. The equilibrium membrane
. . thicknessh,
U =ugtu-, (1) o h
h:ho_zuO, (9)

whereuy is the displacement caused by external forsegh
as electric or mechanical str¢sshile u™ describes a non- which accounts for electrostriction, is determined from the
uniform fluctuation of the membrane surface. As long asequilibrium condition
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MWy

=0, (10)

where W, is the energy of the uniform membrane under

electric stress,

2
Wo=Ea[In(a)—1]—€

8mh (1

and the thinning coefficierttzﬁ/ho. Then it follows that at
equilibrium

E In(a)=—pgho, (12

which yields the following relation between the applied volt-
age(in volts) and a;*3

87Ehy, (1
V=300« In| —|. (13
€ o
Using Egs.(1) and(9) we have
h(p)=h+u*—u". (14)

The fluctuating ¢ u?) part of the compression energy is

2
W(z)_i 9°W4(2)
(2)—
2

(z—a)’= (ut—u)2 (15

Z=«a

Zhga

Fr

Summing up the contributions of Eq&)—(7) and (15) we
can express the energies of theanda-modes (v, andw,)
as

Elug|®
Ws,a:2—2 fsalX @), (16)
hO
1 5 4 Xa
fs(x,a)=;+b1yx +byéx*+x In(a)cot > (17)
Xa
fa(X, @)= yx%+ Ex*+x In(a)tam'(T), (18
where
Ke o
= . y=-—, x=ghg. 19
£ 4ER 4E "o 19

The dimensionless constartts and b, were introduced by
Leikin;*® they account for the fact that contributions from
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TABLE |. Elastic parameters for representative soft and rigid membranes
(see text

Membrane E (dyn/cm)  hy (A) K. (erg £[Eq. (19)]
SOPCG 200 28 0.9x 10712 0.014
SOPC:CHOP 600 34 2.4x 10712 0.0087

“References 44-46.
bReference 45.

The lower bound to, X, corresponds ta =\ ,a=L and
Xmin=27hg/L. As long asL is substantially larger thahg,
Xmin<€1 and the second term in ERO) can be neglected,
long \ stability is determined by andV. The bending mode
is stable if

v+ 3a In(a)>0. (21

For the physically interesting regiom~1 this reduces to
a(l—a)<2y or a>1-2y. Sincey=(o/4E)<1 for reason-
able values ofr, we find from Eq.(13) that

4’7TO'hO
V<300 P

It follows from Egs.(21) and (22) that the only stabilizing
force at long\ is the membrane tension, akg, vanishes as
o—0. This instability has been discussed extensively in a
number of studies(see Refs. 13,20,27, and references
therein.

Assuming that the mechanical tensionarising from
contact of the lipid film with the bulk phasgense$ is typi-
cally o<2 dyn/cm, choosinge=2 and using experimental
data for representative soffstearoyloleoylphosphatidyl-
choline (SOPQ] and rigid (SOPC-cholesterol, SOPC:
CHOL) membranes presented in Table | we find in both
cases a stability range &<0.6 V.

Experimentally, the characteristic critical volta¥@,per
depends on the durationof the applied electric pulse. For
brief pulses,(7~0.01-0.1 us) Ve,per~1V, and for longer
ones(7~1 1) Veype<0.5 V.* Further increase of leads to
even smalleN,,.[See Ref. 48 for lipid bilayers and Ref. 49
for bilayers with inclusiondfluid mosaic cell membrangs
and references therdinThus the onset of BM instability is
likely related to the longr pulse observations. The increase
of electroporation threshhdféwith addition of surfactants is

(22

each monolayer to the bending modulus and the surface te@!so in qualitative agreement with E@?2) if the reduction of
sion can differ for the two modes considered. Such effects by surfactant is taken into consideration.

are probably small so thét,~b,~ 1.%° Finally, it should be
noted that the electric potential enters Ed4) and(16) only
through the parameter describing the uniform compression
of the membrane by the applied voltage.

B. Instability of the BM under an applied voltage

Without an applied stress bending modes are unstable a

most applied voltages in the longlimit (smallx). To illus-
trate this, note thatx tanh@x/2)~ ax?/2— a°x*/24 as x
—0; in this limit Eq. (18) yields

fa(X,a)~X2(y+ a In(a)/2) +x*(€— o In(a)/24).
(20

Downloaded 13 Mar 2009 to 129.8.242.67. Redistribution subject to AIP

C. Instability of the SQM under an applied voltage

Unlike the BM which is unstable itr—0, the SQM is
strongly stabilized by the quasielastic forces due to steric
interaction of the hydrocarbon tails of lipid molecules.
Therefore a SQM instability generally requires higher volt-
ages than those leading to BM instability.

We now relate the smectic approach to Crowley’s model
in the limit x— 0. Consider the stability of SQNs-modes.
They become absolutely unstable wheg(x,«)=0. In prac-
tice, as a consequence of membrane fluctuations, a transition
to a new state occurs before this point is react{sde the
corresponding discussion for elastic capacitor mofels
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FIG. 1. Local(dimensionlessenergy ofs-mode fluctuations.

First we consider the smakl (long wavelength\ =2#/q)
limit where xcothx)~1 and all contributions to Eq¥16)
and(17) of higher order inx are neglected. The correspond-
ing condition, 2 Ifa)=—1, is exactly Crowley's original
result?

acrow= 1\e=0.60653. (23)

This corresponds to the loss of stability for a membrane uni!

formly compressed by an applied voltage; the result follow
from the general conditions for critical behavior, thak
simultaneously satisfy Eq10) and the curvature condition
W,
=0.

oh2 @4

Equation(23) illustrates a major shortcoming of the original

S
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simple electroelastic theory, even when extended to treat
short wavelength excitations, cannot account for the obser-
vation that the instabilities occur at low transmembrane volt-
age and with little associated electrostriction.

IIl. NONLOCAL MODEL OF MEMBRANE INSTABILITY

It follows from the previous discussion that the electro-
static contribution grows in absolute value withwith de-
creasing fluctuation wavelength). But the influence of a
nonuniform electric force in creating an instability is over-
whelmed by the stabilizing bending contribution. As a result,
the instability is shifted to finitex (~1.25 but the corre-
sponding critical voltage remains lar@eot differing notice-
ably from the Crowley resultand so does the associated
membrane electrostriction. At small voltagesrresponding
to @=0.9 the influence of the electric field ogtype fluc-
tuations in the smectic bilayer model is negligible. Therefore
this model can not explain how small transmembrane volt-
ages can lead to membrane breakdown. This difficulty has
stimulated an alternative approach to modeling breakdown.
nstead of studying the stability of smdlinea) membrane
thickness fluctuations, this approach focuses on large fluc-
tuations leading to formation of transmembrane pdsese
Ref. 13, and references therginThe initial stage of the
breakdown in this model is associated with the formation of
hydrophobic poregHP), single files of water molecules in-
terposed between the hydrocarbon tails of lipid molectfles.
Nucleation of a HP requires cooperative motion~&8 lipid
molecules and 8—10 water molecules. Given that the lipid

electroelastic model; it predicts membrane thinning of almostnolecules are not rigid, the associated kinetic problem is
40%, a result vastly different from the experimental findinghard to quantify with precisiof!® Estimates of the fre-

that @=0.97> The corresponding critical voltagé.,,,, can
be determined from Eq(13). Thus, for SOPC, with data
from Table I, we findV¢,o~3.4 V (Ref. 52 (see also Ref.

guency factory, for this process are very approximate and
vary over 9-10 orders of magnitude; correspondingly, esti-
mates of the associated energy barrier vary from 30 to 50 kT

13) so that both the extent of membrane contraction and thand pore concentration estimates are not reliably based.

breakdown voltage predicted by Crowley’s model greatly ex-

ceed the experimental values.

We now consider how finite wavelength fluctuations in-

fluence smode stability in the smectic model. The only
negative contribution to the energy in E{.6) arises from
the electrostatic ternxIn(a)cothxa/2) in Eq.(17). Its abso-
lute value is essentially a linearly increasing function for

We propose that the initial stage of pore formation arises
due to thickness fluctuations destabilized by the electric field.
To make this mechanism effective, we assume that at short
wavelengths membrane elastic properties differ significantly
from their long\ behavior. In the previous analysis we used
elastic moduli derived, e.g., from the experiments on shape
fluctuations of vesicle¥ with characteristic wavelengths

=0.5. One can thus expect that the instability criteria at finitetypically =1 um.

x will be softer than for a uniform contraction corresponding

to x=0. And this is the case. But, because of rapiex()

We assume that at much shorter wavelengths, compa-
rable to the membrane width, elastic moduli become substan-

growth of the positive bending energy term, the instabilitytially nonlocal ands-modes with corresponding become

still occurs at a fairly small value of (roughlyA ~6hg, i.e.,
x~1); the corresponding values of, and V. remain very

“softer.” This increases the corresponding fluctuations and
makes them more responsive to the action of an applied volt-

close to the Crowley result. Analysis of experimental dataage. This assumption is based on the analogies to dielectric
like those of Table I, indicates that typical values of theand elastic behavior. It is known that spatial dispersion of the

dimensionless bending constafitEq (19), fall in the range

dielectric constante(q) leads to substantially lowefand

between 0.008 and 0.02. In Fig. 1 we present the dimensioreven negativevalues ofe at short wavelength¥;>>and that

less energy of thesmode, f4(a,x), for SOPC anda,

there is significant spatial dispersion in elastic moduli of or-

~0.615, the conditions under which this mode becomes undered materials® Aspects of short wavelength behavior in

stable. As is apparent, this occurs at finité~1.25), before
the Crowley condition is reacheda® acioue,) SO that
fs(ac,x=0)>0. Unfortunately, this softening of the insta-
bility criteria is too small(the change iV, does not exceed

2 to 5 mV) to have any practical implications. Consequently,

Downloaded 13 Mar 2009 to 129.8.242.67. Redistribution subject to AIP

smectic liquid crystal phases have been modeled by assum-
ing that either(or both the compression and splay moduli
exhibit notable wave vector dependeriée>®

There are numerous ways to model this effect. We could
reformulate the underlying constitutive equations describing

license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 109, No. 23, 15 December 1998 Partenskii, Dorman, and Jordan 10365

elastic behavior in coordinate space to incorporate nonlocalyords, we require that;=0 whenV=V, andA=\.. The

ity. Instead, we build on the formulation of E¢Ll7) and  jnstances where an applied voltage leads to instability are
carry out our analysis in Fourier space. While the approachegystrated by thinner curves for both nonlocality models. In

are equivalent, extension of the electroelastic model lendg,g way, using the data from Table I, for SOPC we find that
itself more easily ta-space treatment. We discuss this pointy, —k,~0.1,r,~0.06, andr,~0.02.

in Appendix B.
We introduce a “switching function”t(x), which
changes the “macroscopic” expressions, Ed€)—(18), for IV. ELASTIC NONLOCALITY AND THE MEMBRANE

the elastic energy to a different functional form in the smallSTRETCHING DIAGRAM

A region,A~(1 to 1.5 o, It is well known that surface undulations strongly influ-
exp(— Ba)+1 ence the stretching diagram of membranes. They give rise to
t(x)= exd - Bla—x)]+1’ (25  nonelastic behavior of the are&(c), at small tensions-. In
the analysis of these effects symmetric mode contributions to
Here B characterizes the steepnésharpnessof the transi-  the projected area variation have not traditionally been in-
tion anda is the characteristic value offor the transition. cluded, all effects being assigned completely to the bending
We now have to choose a general form for the shobe-  modes®® This has been justified by relative softness of the
havior of thes-mode energy. It is important to notice that for bending modes, especially in the limit of long(small x).
small N the separation of energy into pure stretching andHowever, our assumption of softening of the symmetric
bending contributions may not make sense; individuaimodes may enhance their contribution to the projected area
moduli lose their initial meaning, and only the overall behav-at short\ and the dependence &{ ) on stretching. In this
ior of the elastic energy is important. We further assume thagection we estimate the significance of this effect. We start
the membrane tension contributiowv{) does not change with following expression for the variation of the projected
with this transition thus focusing only on the elastic “self- area due to undulatioffs(see also discussion below
energy” of the membrane. We consider two different ap-

__1 2
proximations to the energy in the shaxtlimit. The corre- AAL ==z A(qu(a)". (28
sponding energy dispersion equations are The mean square value of the amplitudagg)?, can be
Foy (@) =[ 1= () T4(Ky + &6 X + 100 L+ x4+ yx2 determined using the principle of energy equipartition,
A(Wg o) =KT/2. (29

+In(a)xcoth ax/2)], (26)
Then, using Eqs(16)—(18) we find
fo(X, ) =[1—t(X)]*(Kp+rox) +t(X)}[ Va+ x*+ yx2

+In(a)xcoth ax/2)]. (27)

At small x,t(x)—1 and both expressions reduce to ELy). 2.5

As x increasesfs;(x,«) derives its shori structure from

that of the longx form; it has the sam&-dependence, only

the moduli are different. The expression foy,(x,«) ac- 1.5

counts for the possibility that thedependence in the shoxt- £ (%)

limit can be different; we test a linear approximation. The 1

exponent 4 in the expressions involving the switching func- 0.5

tion t(x) was chosen for mathematical convenience in nu-

merical calculations of the stretching diagrésee below. 6 &5 5 75 3
For each of the models we have assigned the parameters x

k; andr; characterizing the low limit to yield a voltage-

induced instability of the symmetric mode at the expected 2.5

values of applied voltag€=V,,. In fact,V enters the mode

energy through the parameter describing the transverse 2

contraction of the membrane. Given that membrane thinning

does not exceed 3%, we chose model parameters so that thef M

s-mode energy approaches 0@s-0.97. Using Eq(13) the = 1

critical voltage is

0.5
Ehg
Ve~ 254 —.
€ . 7 7.5

For SOPC, with data from Table | ard-2, this is~1.3 V. *

Figure 2 illustrates how we determine the nonlocal param- ()

eters. The thick curves cqrrespond\t@ 0 The values Oki FIG. 2. Nonlocal(dimensionlessenergy of thesmode in two approxima-
andr; are chosen to satisfy the condition that #enode  1ions for the transitional and shoxtregions atv=0 (a=1, upper curveand
becomes unstable f&f=V . atAy~hg (or x~27). In other  atV=1.3V («=0.97, lower curve (a) fs (x,a) and(b) fo(x,a).

«©
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®)
FIG. 3. Stretching diagram for sof§ and rigid (R) membranes fofa)
Amin=15 A and (b) \,;,=12 A. “L” corresponds to the locdlEq. (34)]

model, while “NL" describes the nonlocal calculations wikj=0.1 and
r,=0.06 (S) andk;=0.1 andr,;=0.04 R).

kTh3

(Jusal®)= AAEf 0" (30)
from which we determine
AA sa(q)=~ & (31
' 8Efg a(X, )
We now define
e (32

the fractional variation of the projected area due to mem-

Partenskii, Dorman, and Jordan

CHOL) membranes. The nonlocal calculations are based on
the first form for the modified dispersion relation, Eg6).
The results obtained using the alternate form, &7), to
describe the shoit limit are practically the same; the calcu-
lated stretching diagrams are basically independent of the
way in which mode softening is treated. At small tensions
(7<0.2 dyn the slope of the stretching diagrams is very
steep. This domain corresponds to the so-called “nonelas-
tic” (entropig region of membrane stretching. Fee3-4
dyn the slope is practically constant. In the intermediate re-
gion there is a sharp transition between these two regimes.
Unlike the local calculations, the nonlocal results depend
somewhat on the choice &f i, (OF Xya). With X in=15 A
local and nonlocal diagrams are practically the sdfFig.
3(a)] while for A ;=12 A [Fig. 3b)] there is a noticeable
difference for the soft membrane which becomes more pro-
nounced at smallex,,,. Since local theory reproduces ex-
perimental stretching diagrams satisfactorily, discussion of
the appropriate choice of,,, in nonlocal calculations is
required. Consider Eq28). Its derivation assumes that the
total membrane area is fixed. Undulations only change the
projected area. This requires that the lipid head groups tend
to be oriented similarly with respect to the local interface, an
assumption certainly valid for lony where the interface is
locally flat; then local conditions are the same as for the
plane membrane. However, this relation changes at shorter
wavelengths. Foh~15-20 A the relative displacements of
the neighboring head groups areu in which case the up-
and down-types of displacement are the natural ones, mo-
tions that conserve the projected area. In other words, Eq.
(28) should be madified to account for the shendispersion
of the projected area. We account for this by simply applying
a cutoff on\. The valueA~15-20 A, as outlined above, is a
reasonable limit for validity of the macroscopic expression,
Eq. (28).

V. MEMBRANE THICKNESS FLUCTUATIONS

Membrane thickness fluctuations have been studied by

brane undulations. To find we sum up contributions of Hladky and GruedHG).®° Their original goal was to deter-

modes with different] using

A
o) — da(---).
2 () ZWfq o)

As a result we obtain

_ —kT fxmax 3( 1 + 1 )d 33
"6 Jy X\ Tada) T a9 G9

Xmin

where the indices 1 and 2 correspond to the expressions E
(26) and(27) describing the nonlocal dispersion of the sym-
metric mode. In the local approximatiom(X)=1), and ne-

glecting thess-mode contributions these equations reduce ex

actly to Helfrich’s resuft!
kT

lo

32Ewéhd g

szax-i— vl &
Xﬁwin+ 7/5

. (39

VHelf= —

mine if thermal fluctuations might account for literature re-
ports of differences between the mean “electricd#is de-
termined by capacitance measuremgrisd “optical” (as
determined by optical reflectance studiesembrane thick-
ness. Later studies showed these differences to be
chimericaf® but it is still of interest to determine whether
two very different models of membrane behavior lead to
similar conclusions. HG treat a reduced vers# of the
mectic model of section 2 which ignores spldy0 in Egs.

7) and (18)] and assumes that the membrane can be de-
scribed by an inherent surface tensionin Eq. (6) [or
equivalently y in Egs. (17) and (18)].%% This stress can be
created either by mechanical medpsy., osmotic stregsor
by contact between the bilayer and a bulk lipid phase, due to
a difference between the chemical potential of lipid in bulk
and in the bilayer. We wish to show that, just as for the
stretching diagram, the non-local model yields similar pre-

We now contrast stretching diagrams calculated in thalictions. As thickness fluctuations have not been directly

local (L) and nonlocal(NL) approximations(Fig. 3) using
the data from Table | for soffSOPQ and rigid (SOPC:

measured, we only seek qualitative agreement between our
analysis and that of HG.
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TABLE Il. Thickness ﬂuctuationszﬁ, in A) for (S)oft and (R)igid mem-
branes for different membrane modéiee text

Aid)  SL  SNL  SHE RL RNL RHG
10 1.60  3.28 6.6 090 177 5.1
100 0.4 0.4 0.8 0.2 0.2 0.6

#Fluctuations computed using the HG appro&Rlef. 60.
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VI. SUMMARY AND DISCUSSION

We have reconsidered the electroelastic model for mem-
brane breakdown. In order to circumvent its well-known
limitations (membranes are incorrectly predicted to undergo
rupture at high voltages;y4 V, with significant electrostric-
tion, ~40% we have considered whether the origin of
breakdown(and the subsequent electroporajiomy be due
to nonlocality of a membrane’s elastic moduli and their soft-
ening at short wavelength. With this assumption we find that

The thickness fluctuations can be analyzed in a manndpstability of membrane thickness fluctuations is possible at

similar to that used in determining the membrane stretchin

diagrams. It follows from Eq(14) that at small electric fields

(whereup~0) h(p)=hy+2us(p). Then, using the Fourier

decomposition Eq(2), we find

<(h_h0)2>:42q lug(a)|?, (35)

with which, proceeding as in Eq&9)—(33), we obtain

kT Xmax
((h—h0)2>=ﬁj X 36

Xmin fS(X!a) .

é?irly low voltages(~1 V) with negligible electrostriction.

o demonstrate the feasibility of this idea we hd¥gecom-
puted the membrane stretching diagram and shown that the
nonlocal model reproduces results of traditional theofi@s;
investigated thickness fluctuations and shown that our analy-
sis is consistent with the results of previous theoretical treat-
ments.

Although partially hidden in averaged thermodynamic
properties like the stretching diagram, nonlocality may play a
very important role when the influence of short-scale pertur-
bations of the membrane surface is significant. One example
is membrane breakdown under an applied voltage, where the
electric field interacts strongly with shaxt-fluctuations.
Nonlocality can also have a direct relation to the anomalous
roughness of a membrane surféitsuggested to explain the

Following HG we contrast results for two wavelength giscrepancy between calculations of adhesion energy based

(\) cutoffs, A,i,=10 A and\,;,=100 A; X, corresponds
to the upper limit of the integral in Eg36) Since Xmax

on the Young equation and on the conventioflaical)
theory of the entropic forces between the membranes. Mode

=27hg/Amin - The lower limit, X, depends on the character- softening could be a reason for this roughness and for the
istic size of the membrane; in practice it can be set equal t@qrresponding hidden projected aféa, suggestion compli-

0. Defining rms thickness fluctuationah=((h—hg)2)*2
our results for SOP@soft) and SOPC:CHOL(rigid) mem-

mentary to the hypothesis of special types of structural de-
fects (hats and saddig§* It may also be related to the find-

branes are presented in Table Il and compared with valuggg of “remarkable out-of-plane vibrational motion” of lipid

computed using the HG approach for two differantutoffs.

molecule§® which can contribute strongly to short-range re-

Thickness fluctuations in our theory are comparable impyisive forces between membrarféswe plan to pursue
magnitude, but slightly smaller, than those found by HG.these issues in forthcoming studies.

Regardless of membrane stiffness, the variation bfwith

Further development of the nonlocal model should ac-

cutoff A is the same for the nonlocal and the HG approachescount for factors not considered here. For instance, it is natu-
however, our analysis predicts that the fluctuations are 2—gal to assume that at sufficiently high tensions, comparable to
times smaller. The local approximation predicts thdt is  critical values, the softening of shattmoduli would be no-
far less sensitive to the choice of cutoff The qualitative ticeably tension dependent. This provides a further avenue
agreement between two physically very different descripfor analyzing the combined effect of mechanical and electric
tions of membranes behavior is surprisingly good. From Eqgstresses on membrane breakdown. The effects of surfactants
(36) thickness fluctuations are inversely proportional toand the influence of solid supports are other areas for future
mode energy. In our theory the largecontribution arises studies.
mainly from nonlocality(in the local limit thex dependence Possible ways to directly observe and analyze nonlocal
is much smaller, while in HG this difference is mainly due effects must be considered. One important way to study non-
to a much more graduakf) increase of the mode ener@@s  local influences on membrane fluctuations could be molecu-
compared with ax* dependence in our local smectic bilayer lar dynamics modeling. A possible difficulty with such
mode). analysis should be mentioned. In its natural environment the
The general picture is that, when compared with the HGmembrane assumes a stressless state. However, MD model-
study, nonlocality, and mode softening do not lead to draing requires imposition of specific boundary conditions, ones
matic changes in mean membrane thickness fluctuationsvhich correspond to a stressed state of memb(see Refs.
However, for a nonlocal membrane, the fluctuation spectrun®7—69 for discussion This stress can interfere with the fluc-
should peak at wavelengths30—50 A. Thus a valuable test tuations of membrane shape and thickness, an effect that
of our model would come from investigating this range of must to be accounted for in analyzing data extracted from
thickness fluctuations, either by means of molecular dynameomputer experiments.
ics simulations or directly, by soft x-ray scattering from real Two different types of instability can possibly contribute
membranes. to membrane breakdown. The first is the bending mode in-
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stability, known to occur at long wavelengths and small volt-linearizing Eq.(A3), we find

ages. As discussed in Sec. Il B this BM instability can be

related to long pulse perturbations. The SQM instability oc-  y =Az, Xn=UqB, sinhnqz)  (membrang

curs at shorh and can be related to short pulse experiments. (AB)
Our current analysis only touches the issue of instability on- —1_Ce xz-h2) —U.D.e Yn(z—2)

set, not the kinetics of its growth leading either to formation Xo » Xn=Hqn '

of pores or to the creation of intermediate nonuniform s 9 oo

phases® To describe kinetics, the dynamic equations for ~ ¥a=K“1+Nn°qQ" (electrolyte. (A7)

some reasonable viscoelastic membrane model must be

solved. As discussed in Sec. I, there is still disagreement aStandard boundary conditions apply;and the normal dis-
to the proper way to account for elastic effects in such glacementD,,, are continuous across the dividing surface,
model. Accounting for nonlocality will provide a further Eq.(Al). From continuity ofys we obtain

challenge in solving this problem.

Azy+ qu B, sinh(ngz)cog nw)
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(A8)
APPENDIX A

In the metallic approximation used in the bulk of this and from continuity inDnorm We obtain

paper, the potential differendé between the membrane sur-
faces is assumed to be fixed. In fact only the potential drope
between the bulk electrolytes separated by the membrane caf®™
be controlled, the actual potential drop across the membrane
being dependent on the screening properties of the solvents.
Consequently, the influence of the electrostatics on mem-
brane oscillations differs from its metallic limit. To deter-
mine the importance of electrolyte screening we apply the
Poisson—Boltzmann theofy).Limiting analysis to a single
one-dimensional symmetrical surface deformation of wave
numberq, the interfacez,, between the electrolyte and a
membrane of equilibrium thicknes$scan be expressed as

(A1)

where uq is the amplitude of the surface fluctuation. The
system is governed by Poisson’s equation in the membrane o o
and the Poisson—Boltzmann equation in the electrolyte, ~Wherew=qy andz,(y) is given by Eq.(A1). Substituting
5 Egs. (A5), (A6), and (A7) into Eq. (A4), expressingV, in
Ve4=0, membrane, (A2)  terms ofV, and keeping only terms up ©(u), yields
V2= k? sinh(y—Wp), (A3)

wherey is the dimensionless electrical potentep/kgT, «

h(AJrqqun: B,, cosi{nqzy)cos nw)
X[1—-quq tani(ngz)tannw)sin o]
= ebulk( Cke 1 %5¢ sin(nw)
—uq; D,e” "% %3¢ cognw)

Zo(y)=h/2+u, cosqy,

X[ ¥n+q2Uq tan(nw)sin w]), (A9)

electrolyte,
2
V< €memb

* o TEH
Field— 167

is the reciprocal of the Debye length, aid, is half the
dimensionless applied voltage;V/2kgT. The total electro-
static energy of the opefwhenV is fixed) system is

1
UFieId: - E f dVDE, (A4)
where E and D=¢E are the electric field and electric dis-
placement, respectively, ardis the dielectric constant.
We linearize Eq(A3) (most of the potential drop takes

( hA2/2+quizAB; costigh/2)

quj
+ Tq > nB? sinl*(nqh))
n

V2€b Ik KC2
-~ 1677“ T(1+K2U§)+Kug’y1CDl

(A10)

2 2
+ 23 o (yﬁ+n2q2>).
place across the membrang—Wy<1, and consider small N 7n
amplitude surface fluctuationsq<h. As the electrical en- . ) ) )
ergy, Eq.(A4), is a quadratic function of the field strength WhereUgqis the electrostatic energy per unit projected area

(and thus ofuy), we must consider overtones p of the membrane; the quadratic dependence/ff; onV,
true to all orders oti,, arises from linearizing the Poisson—

Boltzmann equation. Surface deformations influence the uni-

A5
(A5) form solution termsA andC; using Eq.(A1) and writing Eq.

=W, xO<z)+§ xn(2)cognqy) |;
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(A8) as a Fourier expansion in cosf))=cosneo we find
from then=0 term,

AN2+ (ug2) X, Bn(e"M2 (nquy)—e "2 (—nquy))

=1—C|0(—Kuq)+uq; Dl n(— ¥nllg), (A11)
wherel , is the imaginary Bessel function of orderSimilar,
but more complex relations can be found for 0 and when
satisfying Eq.(A9). For a displacement at wave numtegr
bothB; andD; are~1, while forn=2 bothB, andD,, are

~Ug; the latter terms thus contribute to quartic and higher

terms inUF;,y and can be neglected.andC are quadratic in

Ug; the leading terms are
A=ay+ujay, C=co+ulc,. (A12)

With these and the continuity conditions E¢a8) and (A9)
we finally obtain

2

ao=m, 00:1T§' (A13)
1-r)—
BI:h( . ) KaO’
—k tanh(gh/2)/q+(1—1/r) (A1)
D;= ag,
A
_(k=y1)D;—B]
2= Thiire
Al15
o’ {BIHDi(Entn (AL
27 4 2(1+¢&) ’
where
I'= €puik/€mempr €= 2/(xhr), (A16)
A=1+yyr tanhgh/2)/q, (A17)
B} =qB; coskgh/2), (A18)
and Eq.(A10) becomes
* V2 2 2
Field™ ~ 1677 (€memPoh/2+ €pukk CH/2)
2 szmemb %
—ug 16 (agash+ayB7
+(B¥)? tani(gh/2)/(2q))
VZ
T 12::'k(K(K2c§+2coc2)/2
+ ky16oD 1+ DI(¥i+ 0%/ (4y1)). (A19)

A nontrivial limiting case, which confirms our analysis,
is the “metallic” limit, ey —*. UFqq Simplifies enor-
mously[from Eg.(A9) bothC and theD,, are=0] and theC
and D; terms in Egs.(A13) to (A15) vanish; A and B}
become
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"h’ “1Ttanhgh/2)’ “? htanh(gh/2)
and the expression fdyF,4 reduces to
. €memtV? qu; coth(qh/2)
Field,0— — 87h h : (A21)

The undulatory term in this expression differs from E(B.
and (8) by a factor of 2 because our definition of surface
deformation, Eg.(Al), is proportional to cosfy) not
exp(qp) as in Eq.(2).
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FIG. 4. RatioR of linear Poisson—Boltzmann calculations of the undulatory
part of Eq.(A19) to that in the “metallic” limit [Eq. (A21)]. The dielectric
ratior is 40. Three\ pepyevalues are considereds, 30 A; %, 10 A; l, 3 A,
Three membrane thicknesses are contraggdi,=40 A, (b) h,=30 A, (c)
ho=20A.
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Substituting Eq(A19), in the limit u,—0, for the sec-

Partenskii, Dorman, and Jordan

whereK(qg) =/ exp(-iqg-r)K(r). Thus, nonlocality can be

ond term in Eq.(11), the total electroelastic energy for the either described through the spatial dependence of the gen-
uniform system, including the influence of the diffuse layer,eralized susceptibilityK(r,r"), or through the dependence

is
€memt KV2(1+r1 khga)?
8m(2+rkhpa)

and the modified form of Eq13), relating applied voltage to
the thinning coefficient, is

Wo=Ea[In(a)—1]—- (A22)

2+rkhoa\® [8wEhy (1
V=300« In| —
r khga €memb @

=(1+ &)YV (metallio); (A23)

for a typical membrane, withg~30A, r=40 and x !
=\ penyebetween 3 and 30 AL M to 0.01 M ionic strength
the correction factor (% ¢)*° is qualitatively insignificant,

of its Fourier transform on the wave vectgr

Fourier representations are often simpler and more un-
derstandable. For instance, the keri¢p) corresponding to
the stretching and bending contributions to ELZ) is com-
plex,

1 -p)?—8
o 5(p)+2§qg1ax' Whé % J3(Umax P)

(here J; is a third order Bessel functiprand it is clearly
easier to treat the simpler terms in Ef7), its Fourier trans-
form. We chose this approach when proposing shambn-
locality. It could equally well be described in terms of spa-
tially dependent elastic moduli resulting in a different
dispersion law for the mode energy at largelnstead of

varying between 1.008 and 1.08. In Fig. 4 we present thgormulating new spatial dependence, we treat the dispersion
ratio of the undulatory term in the electric energy for a mem-jaw directly, postulating a transition from long- to shart-

brane sandwiched between realistic electrolyteg, (=80,
r=40) to that in the metallic approximatiore,=, r
=), Again, ionic strengths$l) ranging fran 1 M t0 0.01 M
(A pepye from 3 to 30 A are contrasted. At all membrane
thicknesses considered the higllow \pepyd results differ
insignificantly over the physically important rangeofDe-
viations become more important Bgep,cincreases, but even

behavior[see Eqs(25)—(27)].
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