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The interaction of a light wave with a molecular crystal subjected at the same time to the influence of static
electric field is analyzed. The coupling of the crystal to the radiation field is described in terms of classical
electrodynamics, the molecular transition moments being represented by oscillating dipoles. The molecular
parameters that enter the classical equations of motionstransition energy and oscillator strengthd, modified by
the static electric field, are derived from the corresponding zero-field values using quantum-mechanical per-
turbation theory. Subsequently, the field-induced change of the absorption spectrumfelectro-absorptionsEAd
signalg is calculated as the difference between the absorption spectra at nonzero and at zero modulating field.
The approach is valid for any allowed transition, irrespective of its intensity. The results demonstrate that,
while the absorption spectra of very intense transitions exhibit substantial peculiaritiesssuch as orientational
dispersion and polariton effectsd, the relationship between the absorption and electro-absorption spectra is
always the same, regardless of the oscillator strength; specifically, the EA signal of a nondegenerate Frenkel
exciton follows the first derivative of the corresponding absorption band. These conclusions are discussed in
the context of recent literature on this subject.
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I. INTRODUCTION

Owing to the relative weakness of intermolecular interac-
tions, the properties of molecular crystals are largely deter-
mined by the properties of individual molecules. The elec-
tronic spectra of such crystals are usually dominated by
intramolecular excitationssFrenkel excitonsd, only slightly
modified by the crystalline environment. The influence of the
surrounding molecules is mediated primarily by the reso-
nance interaction between the excited molecule and its unex-
cited neighbors, giving rise to delocalization of the excita-
tion. The importance of the resonance effects depends on the
size of the transition dipole moment, being moderate for the
smost commond transitions of medium oscillator strength,
but having dramatic consequences for very strong transi-
tions.

The main peculiarities of strong transitions are due, on the
one hand, to the long range of the interaction between the
transition dipoles, resulting in the marked influence of crystal
boundaries on the bulk exciton energies, and, on the other
hand, to the strong coupling between the radiation field and
the exciton states of the crystal, giving rise to avoided cross-
ings, and in consequence to the occurrence of a new kind of
quasiparticles, referred to as polaritons. Experimentally, the
former effect is manifested in the dependence of exciton en-
ergies on crystal orientation, while the latter is responsible
for very strong reflection due to the so-called stopping bands,
which are the energy intervals where light cannot penetrate
into the crystal.

The interest in spectroscopy of very intense Frenkel exci-
ton transitions in molecular crystals started about the year
1970.1–3 At that time, some model systems, such as anthra-
cene, were intensively studied, both theoretically and
experimentally1,2 to yield a satisfactory level of understand-
ing of their absorption and reflection spectra.

To our knowledge, there have been no corresponding the-
oretical investigations dealing specifically with the electro-

absorptionsEAd spectra of very intense Frenkel states. At the
present moment, the existing interpretations in this area are
based on either of two mutually contradictory approaches,
both suffering from a certain degree of arbitrariness.

One of the approaches follows from the classic interpre-
tational paradigm, justified by a sound derivation4,5 where no
assumptions are made regarding the oscillator strength of the
transition in hand. Its direct application for very strong tran-
sitions is rooted in the tacit belief that there is no reason for
them to behave differently. In effect, although used in actual
calculations,6 this view has never been validated by a rigor-
ous argument.

The other approach7–9 invokes a new postulate, allegedly
valid only for very strong transitions, and conflicting with
the classic paradigm4,5 mentioned above. This new approach
has been based exclusively on intuitive arguments; no at-
tempt to derive it in a systematic way from fundamental
physical principles and equations has ever been made.

The existing interpretational ambiguity is detrimental to
the future progress in this field. Over the past several years
applications of EA spectroscopy are gaining considerable
impact;10–15they need a sound theoretical basis. This demand
is the motivation of the present paper.

For electronic transitions in typical inorganic crystals
bonded by the strong valence interactionsscovalent or ionicd,
theoretical foundations of electro-modulation spectroscopy
are well established and are to be found, e.g., in the classic
monograph by Cardona.16 In these systems, the electro-
absorption signal is composed of the contributions from the
valence-to-conduction-band transitions and from Wannier-
Mott excitons.

The former exhibits damped oscillatory behavior; the en-
suing shape is described by the Airy function.16,17Although
reported for some conjugated polymers,18–20this contribution
is not detectable in organic molecular crystals, where the
absorption spectrum is dominated by the Frenkelsintramo-
leculard excitons, and band-to-band absorption is practically
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forbidden on account of the small intermolecular overlap.
In electric field the absorption bands corresponding to

Wannier excitons may both shift and substantially broaden.
The resultant EA contributions are governed by several fac-
tors. The binding energy of typical Wannier excitons is often
comparable with the energy of the interaction with the modu-
lating electric field;16,21 in that case, the field strongly mixes
the excitonic bound states with the unbound electron-hole
continuum, leading to exciton autoionization.21 As the spac-
ing between the different exciton levels is even smaller than
the exciton binding energy, the field-mediated coupling be-
tween the different excitonic levels is still more important;
accordingly, experimentally accessible field strengths may be
large enough to invalidate perturbational description. More-
over, within the strictly hydrogenic model the exciton levels
characterized by differentl numbers are degenerate, giving
rise to linear Stark effect; this degeneracy may be lifted by
crystal-symmetry effects and spin-orbit coupling21 or by the
phonon-mediated deviations from the Coulombic form of the
electron-hole interaction potential.

The physics of molecular crystals is different. Most of the
above complications are absent for Frenkel excitons. It
should be noted that in these systems electro-absorption has
been observed only for the excitations of relatively low en-
ergy, since the absorption spectrum at higher energies is too
broad to produce a detectable differential signal. The energy
of the interaction with the modulating fieldson the order of
meVsd is much smaller than the exciton binding energy
stypically on the order of eVd, so that exciton autoionization
may be safely disregarded. Also the spacing between mo-
lecular excited statesstypically tenths of an eVd exceeds the
field-induced coupling by orderssd of magnitude; conse-
quently, the effects of electric field are adequately handled by
perturbation theory.

The input data needed for interpretation are different as
well. Wannier excitons are characterized by the effective
masses of individual charge carriers and by the dielectric
constant of the crystal. In contrast, for Frenkel excitons these
quantities are of no direct relevance; owing to the strong
electron-hole correlation, theoretical description is based on
the energies and oscillator strengths of molecular excited
states, obtainable for the specific system in hand by quantum
chemistry methods.

Even theoretical difficulties have a different nature for
Wannier and Frenkel excitons. Apart from the coupling with
the photon field which is in the focus of the present paper,
Frenkel excitons are coupled to charge transfersCTd exci-
tons. These latter states, although in some respect reminis-
cent of Wannier excitons, are better characterized by speci-
fying the relative positionsin terms of lattice sitesd of the
electron with respect to the hole. Their mixing with one an-
other and with Frenkel excitons is best viewed in terms of
configuration interaction. The corresponding model Hamil-
tonian may be derived from the total many-electron Hamil-
tonian of the crystal by expansion with respect to thessmalld
intermolecular overlap integrals;22 its actual form is specific
for the crystal structure in hand. There is no simple generic
description similar to that valid for Wannier excitons, but
most of the ingredients necessary to parametrize the model
are accessible to quantum chemistry and microelectrostatic
calculations.

Accordingly, although the physical principles underlying
electro-absorption spectroscopy are the same, irrespective of
the peculiarities of crystal bonding and zero-field spectrum,
the specific structure of the eigenstates largely determines the
theoretical machinery preferred for actual calculations,
which for molecular crystals is different from that previously
developed for other systems.16

Theoretical description of Frenkel excitons may be alter-
natively formulated either in the Hamiltonian form or in
terms of the dielectric response function.23 The former ap-
proach is preferable for treating the coupling with CT states
and was consistently used in previous microscopic calcula-
tions of the EA spectra.22,24–26 The alternative dielectric-
function formulation23,27,28 is equivalent in principle, but
clumsy in practical application in that particular context,
since the nonlocal polarizability terms23,27,28 are not easily
amenable to direct evaluation by quantum chemistrysor
otherd methods, unless one resorts again to the Hamiltonian
picture.29 In contrast, for the interaction with the electromag-
netic field the dielectric function approach is the description
of choice, and will be consistently used in the present paper.

In this treatment we will strictly follow the derivation of
Philpott,30 valid for absorption and reflection spectra. As the
paper addresses a controversial issue, in order to facilitate
detailed verification of the results the treatment is presented
in considerable detail, including some intermediate steps that
have not been explicitly shown in the classic monographs.3,30

As in Ref. 30, in the consideration of its interaction with
electromagnetic field each transition dipole moment is repre-
sented by a classical dipole. For this dipole, the equation of
motion is written down and solved, using supplementary in-
formation provided by Maxwell’s equations. This leads to
the secular equations for the Coulombic excitons of the sys-
tem, which may subsequently be applied to construct the
polariton excitations.

The underlying equations of motion of classical electro-
dynamics are parametrized by the frequencyv and the oscil-
lator strengthf of the transition under consideration. These
two quantities do not result from classical electrodynamics
and have to be provided either from experiment or from a
different theoretical paradigm, which in this case is molecu-
lar quantum mechanics.

The same general approach remains applicable when the
system is in an external electric fieldF of low frequency. In
the following we will assume that on the time scale of the
light wave oscillations the external field may be approxi-
mated as static; this is manifestly valid since in typical ex-
periments the frequencies differ at least by 12 orders of mag-
nitude. For the sake of simplicity, we will also assume that
the crystal under study consists of centrosymmetric mol-
eculesswhich is the case for most systems of current interestd
and contains one molecule per unit cell.

In the equation of motion for the classical dipole the slow
modulating field has to be added to the driving electric field
of the light wave, but upon the Fourier transformation to
frequency domain the equations corresponding to different
frequencies decouple from each other. In effect, the static
field szero frequencyd does not contribute at all at the fre-
quency of the optical field, so that it does not enter the final
secular equation.
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The static field affects the resonance position at a different
level. As has already been mentioned, the equations of mo-
tion of classical electrodynamics are parametrized by the mo-
lecular frequencies and oscillator strengths, and these depend
on the electric field. As all intramolecular effects, this depen-
dence has to be treated quantum mechanically.

This will be done in Sec. II. The resultant field-modified
values of molecular transition frequency and oscillator
strength will be used in Sec. III to write down and solve the
electromagnetic equations of motion. The obtained energies
of Coulombic excitons will be used in Sec. IV to construct
the polariton states. The results will be presented in Sec. V
and discussed in Sec. VI.

II. MOLECULAR EXCITATIONS IN ELECTRIC FIELD

In a static electric fieldF, the ground stateu0l and the
excited stateuul are coupled by the productF ·d0u, where
d0u=k0uduul is the transition dipole moment between the two
states. This coupling is described by the familiar 232
Hamiltonian. In addition, each of the two states undergoes
the shift of −1

2ai8F
2 swherei =0,ud, due to the dipolar cou-

pling to all other excited states of the system.ai8 is readily
obtained from the sum-over-states expression with the terms
corresponding to the states 0 andu omitted. For the sake of
simplicity, these other states are taken into account merely as
contributors to the molecular polarizability; only one excited
state per molecule will be explicitly taken into account. In
other words, the light frequency is assumed to be tuned in
such a way as to probe a single nondegenerate molecular
excited state.

In effect, the eigenenergies read

Eu,0sFd = 1
2SEu − 1

2au8F
2 + E0 − 1

2a08F
2D

± 1
2FSEu − 1

2au8F
2 − E0 +

1

2
a08F

2D2

+ 4sF ·d0ud2G1/2

, s1d

whereEu,0 are the respective energies in zero field. Accord-
ingly, the frequency of the transition from the ground state to
the excited stateu readssin atomic units where"=1d

v0u = fsEu − 1
2au8F

2 − E0 + 1
2a08F

2d2 + 4sF ·d0ud2g1/2

s2d

which for a weak electric field may be approximated to re-
constitute the familiar expression

v0u > Eu − 1
2au8F

2 − E0 + 1
2a08F

2 + 2sF ·d0ud2/sEu − E0d

= E0u − 1
2DaF2, s3d

whereE0u=Eu−E0 is the frequency of the molecular transi-
tion at zero electric field,au,0=au,08+2sF ·d0ud2/ sEu−E0d is
the total molecular polarizability in the appropriate electronic
state, also including the contribution from the coupling be-
tween the states 0 andu, and Da=au−a0 is the difference

between the static polarizabilities of the two states, i.e., the
polarizability change upon excitation.

The other quantity needed to parametrize the relevant
equations of classical electrodynamics is the oscillator
strength of the transition of interest

fus0d =
2m

"2e2E0uuk0uduulu2. s4d

In the following, we assume that the transition is allowed
at zero field, so thatfus0dÞ0. The oscillator strength in a
weak electric field is readily obtainable from perturbation
theory. Then, by virtue of Eqs.s3d and s4d

fusFd =
2m

"2e2SE0u −
1

2
DaF2D

3USk0u + o
tÞ0

ktu
k0u − d ·Futl

E0 − Et
D

3dSuul + o
sÞu

usl
ksu − d ·Fuul

Eu − Es
DU2

. s5d

All terms linear in the electric field strength contain the
products of the same formal structurek0udutlktuduul, which
vanish by symmetry. This is a consequence of the following
elementary argument.

As by assumption the optical transition between the states
u0l and uul is allowed, these states must have different pari-
ties, i.e., the excited state is ofungeradesud symmetry. In the
productk0udutlktuduul the first factor vanishes unless the state
utl belongs to theu symmetry species, while the second fac-
tor vanishes unless the same stateutl belongs to theg sym-
metry species. These two conditions are mutually exclusive,
so the product under consideration is always equal to zero.

This considerably simplifies the final formula. In addition,
in the absence of magnetic field the wave functions may
always be chosen as real, giving rise to real transition mo-
ments. With this assumption and after some elementary alge-
bra, Eq.s5d may be recast into the form

fusFd = fus0dS1 −
DaF2

2E0u
+

2

ud0uu2 o
i,j ,l=1

3

k0udiuul

3o
tÞ0

o
sÞu

kuudluslksudiutlktudju0l
sE0 − EtdsEu − Esd

FjFlD , s6d

where i , j , l label the Cartesian components of the corre-
sponding vectors.

The sum over states in the above expression may be
thought of as an off-diagonalsin the basis of zero-field eigen-
statesd matrix element of third-order hyperpolarizability
scoupling the ground state with the excited stateud. The “di-
agonal” hyperpolarizabilitiessexpectation valuesd are small
as a rule, and their off-diagonal analog should be at least as
small as they are. In effect, the last term in the above equa-
tion is expected to provide only a marginal correction. This
expectation is supported by the following argument.

An elementary rearrangement transforms Eq.s6d to yield
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fusFd = fus0dH1 −
DaF2

2E0u
+

2

ud0uu2

3 o
i,j ,l=1

3

o
tÞ0

o
sÞu

F k0udiutlktudju0l
E0 − Et

G
3F kuudluslksudiuul

Eu − Es
G 3 FjFl

k0udiuulksudiutl
k0udiutlksudiuulJ , s7d

where the terms in square brackets are readily identified as
contributions to the sum-over-states expressions for the cor-
responding polarizability components.

It is now expedient to introduce the constant

R= o
i
F k0udiuulksudiutl

k0udiutlksudiuulGav
, s8d

where av denotes averaging over the statess and t of the
molecule. This allows one to rewrite Eq.s7d in the approxi-
mate form

fusFd = fus0dS1 −
DaF2

2E0u
+

R

2ud0uu2
a0auF

2D , s9d

whereau and a0 are the directionally averaged polarizabil-
ities in theuth excited state and in the ground state, respec-
tively, salternatively, this could be expressed in terms of in-
dividual Cartesian components of the corresponding
polarizability tensorsd.

The importance of the last term in Eq.s9d depends on the
value of the constantR. The contributions from individual
states to the average of Eq.s9d are expected to have different
signs, which in the first approximation may be considered
random. The averaging of Eq.s9d is extended over all the
electronic states of the molecule, so that the number of terms
is very large, while the negative and positive contributions
should be more or less equally probable. Hence, considerable
cancellations are expected to occur. As the averaging is done
over two sets of statesss and td, the cancellations should be
pretty complete, resulting in a small value ofR. sA similar
mechanism accounts for the generally small values of the
hyperpolarizabilities.d Accordingly, most of the numerical es-
timates to follow will be done for the limiting caseR=0.

Of course, the above argument is not valid for a forbidden
transition, wherefus0d=0, and the last term in Eq.s9d is
singular. In that case the appropriate formula for the per-
turbed value of the oscillator strength should be obtained
directly from Eq.s5d, which is not pursued here because the
present paper is focused on the properties of very intense
transitions.

III. INTERACTION WITH LIGHT WAVES

In the standard consideration of the coupling between a
molecular exciton located at sites and the radiation field,30

the transition dipole momentdsu=k0udsuul is represented by a
classical oscillating dipoledsustd. Its equation of motion30 in
the electric fieldE8sr ,td

F ]2

]t2
+ v0u

2 sFdGdsustd =
e2fusFd

m
d̂sud̂su·E8sr s,td s10d

is parametrized by the frequencyv0usFd and the oscillator
strength fusFd of the transition under consideration. These
two quantities depend on the slowly varyings“static”d exter-
nal electric fieldF according to the results of the preceding
section. Note that the static field is also added at the right-
hand side of Eq.s10d.

Strictly following the classic derivation of Ref. 30, the
part of the electric fieldE8sr ,td which oscillates with the
frequencyv of exciting light is then decomposed into the
field of a free electromagnetic wave and the combined field
of all the oscillating dipoles. Subsequently, Maxwell’s equa-
tions are used to relate the fields to the current and charge
density. This is most conveniently done in terms of the scalar
potentialwsr ,td and vector potentialAsr ,td.

In the Coulomb gauge

= ·Asr ,td = 0, s11d

Maxwell’s equations for the transverse part

S=2 −
1

c2

]2

]t2
DAsr ,td = −

4p

c
j 'sr ,td s12d

and for the longitudinal part

=2wsr ,td = − 4prsr ,td s13d

of the field fEqs. s94d,s95d of Ref. 30g are uncoupled31 and
may be solved separately.

The sources of the field are given byfEqs. s82d,s83d of
Ref. 30g

j sr ,td =
]

]t
Psr ,td + c = 3 M sr ,td, s14d

rsr ,td = − = ·Psr ,td, s15d

whereP is the electric polarization vector of the medium. It
can be expressed in terms of oscillating electric dipolesdsustd
fEq. s84d of Ref. 30g:

Psr ,td = o
su

dsustddsr − r sd. s16d

Following Philpott30 we neglect magnetic polarizationM , as
the magnetic effects are of no interest here. Equations13d
can be easily solvedsAppendix Ad, yielding the longitudinal
electric field

Eisr s,td = − = wsr s,td = −
4p

n0
o
s8u8

Tss8ds8u8std + F, s17d

where

Tss8 =
n0

4p
s1 − dss8d

s1 − 3R̂ss8R̂ss8d

uRss8u
3 s18d

denotes the dipole tensorsdss8 appears here, because atr
=r s the field due to the dipolesdsustd must be omittedd and
Rss8=r s−r s8.
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The transverse part of the electric field is given by the
vector potential

E'sr ,td = −
1

c

]

]t
Asr ,td. s19d

Substituting Eqs.s17d and s19d into the equation of motion
s10d yields

o
s8u8

FS ]

]t
+ v0u

2 sFdDdss8duu8 +
4pe2fusFd

mn0
sd̂sud̂sudTss8Gds8u8std

=
e2fusFd

mn0
sd̂sud̂sudSF −

1

c

]

]t
Asr s,tdD s20d

while Eq. s14d allows one to rewrite Eq.s12d in the form

S=2 −
1

c2

]2

]t2
DAsr ,td = −

4p

c

]

]t
P'sr ,td. s21d

For a crystal in a static electric field, interacting at the
same time with the monochromatic driving field of fre-
quency v all dynamical quantities have only two Fourier
components in frequency domain: the static componentsde-
noted by the subscriptSd and the optical componentsdenoted
by the subscriptDd. Upon Fourier transformation to fre-
quency domain the equations corresponding to different fre-
quencies decouple from each other. For zero frequency, the
corresponding equation reconstitutes the standard result de-
scribing the static polarization of the dielectric:

o
s8

f1dss8 + 4pass0dTss8gPs8S= ass0dF, s22d

=2ASsr d = 0. s23d

The part of the field that is relevant to optical phenomena is
readily singled out at the optical frequency

o
s8

f1dss8 + 4passvdTss8gPs8D =
iv

c
assvdADsr sd, s24d

S=2 +
v2

c2 DADsr d = i
4p

c
vPD

'sr d, s25d

where we have introduced the polarizability tensor

assvd =
e2

mn0
o
u

fu

v0u
2 − v2d̂sud̂su s26d

and polarization per unit cell

Psi =
1

n0
o
u

dsui, s27d

where i =S,D. Equationss24d,s25d show explicitly that the
static field does not contribute at optical frequency, and con-
sequently affects crystal absorption and reflection merely via
the field-induced changes of the molecular transition fre-
quencyv0u and oscillator strengthfu.

Following Ref. 30, the above equations may be readily
solved for a crystal with one molecule per unit cell in the

absence of light waves, i.e., when the driving field vanishes,
ADsr ,td=0. This yields the frequencies of Coulombic exci-
tons as the roots of the equation

detu1 + 4pasvd ·Tskdu = 0, s28d

where

Tskd = o
n

Tnn8 expfik · sr n − r n8dg s29d

is the lattice sum representing the Fourier transform of the
dipole tensor.

For a single exciton branchsone allowed molecular tran-
sitiond the solution is

v2sFd = v0u
2 sFd + v0

2fusFdTskd s30d

yielding the approximate energy of the exciton

EsFd = E0usFd +
4p

n0
udusFdu2Tskd − ¯

> E0u +
4p

n0
ud0uu2Tskd −

1

2
FDa −

4p

n0
Ra0auTskdGF2,

s31d

whereTskd= d̂u·Tskd ·d̂u.
This shows that forR=0 the effect of the static electric

field consists in shifting the exciton energy according to Eq.
s3d, in perfect agreement with the classic argument of Ref. 4.
The term proportional toR is expected to be a small correc-
tion.

Following the standard practice,30,32 the lattice sum may
be split into the analytic and nonanalyticsdirection-
dependentd part

Tskd = ts0d + sk̂ · d̂d2. s32d

Substituting Eq.s32d into Eq.s31d one can easily see that the
nonanalyticity of the lattice sum leads to the dependence of
the exciton energy on the direction of wave vectork.

IV. POLARITON EFFECTS

For an infinite crystal and a finite driving transverse field
ADsr ,td we assume the vector potential of the form

Asr d = A0 expsik · r d, s33d

wherek is a vector from the first Brillouin zone andA0 is
perpendicular tok. It means that only the coupling of exci-
tons swith wave vectorkd to photons with the same wave
vector is taken into account; the coupling to photons with
wave vectorsk +K , whereK is any reciprocal lattice vector
sdifferent from null vectord is ignored. As mentioned by
Philpott sRef. 30d, this approximation holds extremely well
in the visible and ultraviolet range.

After the Fourier transformation tok space, Eqs.s24d and
s25d describing the part of the fields that oscillates with op-
tical frequency assume the form

f1 + 4pasvdTskdgP0 =
iv

c
asvdA0, s34d
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Sv2

c2 − k2DA0 = i
4p

c
vs1 − k̂ k̂dP0, s35d

where the amplitude of polarization is given byP0
=sn0d−1oudu, anddu is defined asdsu=du expsik ·r sd.

Solving Eq.s35d for A0 and substituting the result into Eq.
s34d leads to the equation forP0. Nontrivial solutions of this
equation exist only if

detus1 − n2d1 + f1 + 4pasvdTskdg−14pasvds1 − k̂ k̂du = 0,

s36d

wheren=cuk u /v is the refractive index. Equations36d is the
polariton dispersion relation.

For a crystal with one molecule per unit cell and all tran-

sitions polarized along the same directiond̂, Eq. s36d can be
simplified using the formula

f1 + 4pasvdTskdg−1asvd = f1 + 4pasvdTskdg−1asvdd̂d̂,

s37d

whereasvd= d̂ ·asvd ·d̂. Then the refractive index for pho-
tons linearly polarized alongêl can be calculated:

fnlsv,kdg2 = 1 +
4pasvdsêl · d̂d2

1 + 4pasvdTskd
. s38d

For the ordinary ray, the photon polarization vectorêl is

orthogonal to vectorsk̂ and d̂, while for the extraordinary

ray it lies in the plane of the vectorsk̂ and d̂.
After adding some phenomenological damping, the polar-

izabilty becomes complex:

assvd =
e2

mn0
o
u

fu

v0u
2 − v2 − ivgu

s39d

and so does the refractive index. Its imaginary part can then
be related to the extinction coefficient

« =
2v Imfnsv,kdg

c
. s40d

V. RESULTS AND DISCUSSION

Equations40d has been applied to simulate the absorption
spectrumsFig. 1d of a model crystal, and subsequently to
calculate the electro-absorption signal as the difference be-
tween the absorption spectrum at nonzero and at zero-electric
field. The spectra are shown for several values of the angleu
between the wave vector and the transition dipole moment,
representing different crystal orientations.

The input datasTable Id roughly mimic the situation in
sexithiophenes6Td, being based on the parametrization used
previously in the interpretation6 of the experimental EA spec-
trum of this crystal. Of course, this mimicry has to be taken
with a grain of salt, because the unit cell of the model crystal
used in these calculations contains one molecule, while that
of sexithiophene contains four molecules. However, our
present objective is not to reproduce in any detail the spec-

trum of a specific crystal, but to illustrate the salient features
of the coupling between the excitons and photons. Thus, the
effects of Davydov splitting are out of our present scope, so
that this simplified picture of the crystal is sufficient for our
purposes.

The assumed electric field of 23 kV/cm is typical of ex-
periments reported in the literature.7 The parameterR is not
known for sexithiophene, but on general grounds is expected
to be smallssee Sec. IId. Therefore, the EA signal calculated
for R=0 is expected to be reasonably realistic. This expecta-
tion is reinforced by the finding that for theR values up to
about 0.3 the signal does not change qualitatively, and the
quantitative differences grow rather slowly with increasing
R.

The dependence of the electro-absorption spectrum on the
angleu sFig. 2d is a consequence of the changes in the ab-
sorption spectrumsFig. 1d; the latter exhibits normal orien-
tational dispersion, resulting from the directional dependence
of the lattice sum of Eq.s32d. For all angles the EA signal
evidently follows the first derivative of the absorption spec-
trum, reconstituting the well-known result of the earlier phe-
nomenological approaches,4,5 based on the followingsclas-
sicd argument.

The absorption spectrumsdependence of the extinction
coefficient on photon energy Ed may be represented as
«sEd= fsEcdssE−Ecd, wheref is the oscillator strength of the
transition in hand, dependent on the transition energyEc, and

FIG. 1. Calculated absorption spectra foru=90° ssolid lined, 60°
sdotted lined, 30° sdash-dot lined, and 5°sdashed lined.

TABLE I. Input parameters for the calculation of the model
spectra.

Parameter Value

vu s0d 20 330 cm−1

ud0us0du 2.0 eÅ

n0 530 Å3

ts0d −0.17

g 1500 cm−1

F 23 kV/cm

Da 80 Å3

a0 93 Å3
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s is the shape function, centered atEc. The small shiftDEc of
the transition energy, induced bysweakd electric field, gives
rise to absorption change, which may be approximated as

D«sEd = ssE − Ecd
]fsEcd

]Ec
DEc + fsEcd

]ssE − Ecd
]Ec

DEc.

s41d

For allowed transitions, the first term is normally negli-
gible swhich is also the case in our present calculationsd,
while in the second term the differentiation with respect toEc
may be replaced by differentiation with respect toE, to yield
the derivative of thesmeasuredd absorption spectrum with
respect to photon energy

D«sEd > fsEcd
]ssE − Ecd

]Ec
DEc

= − fsEcd
]ssE − Ecd

]E
DEc

= −
]«sEd

]E
DEc. s42d

Substituting the expression for the shift from Eq.s3d, one
recovers the familiar expression4,5

D« = −
]«

]E
DEc =

1

2

]«

]E
DaF2. s43d

Consequently, the signal is proportional to the first derivative
of the absorption spectrum, and the prefactor in this depen-
dence is governed by the polarizability change between the
ground and excited electronic state of the molecule, which
exactly agrees with the EA spectrum of Fig. 2 calculated
numerically. The positive lobe of the first derivative precedes
the negative lobe on the energy scale, since the energy shift
is negative. These results reconstitute the common wisdom
existing in the field, and were to be expected.

It should be noted that the transition dipole moment of the
molecular state to which the exciting light is tuned enters the
overall F-induced shift on exactly the same footing as the
transition dipoles of other excited states do, i.e., only via the
corresponding contribution 4sF ·d0ud2/ sEu−E0d to the mo-

lecular polarizability. In this expression, the transition dipole
moment appears in thesecond power, and its contribution is
weighted by the inverse of the energy gap between the
ground and the excited electronic state. It should be empha-
sized that there is no termlinear in the transition dipole
moment.

This observation is important in view of the recent con-
troversial interpretation of the electro-absorption spectrum of
sexithiophene.7–9 The interpretation is based on the assump-
tion that the resonance position depends linearly on the tran-
sition dipole moment from the ground state to the relevant
excited state. In this way, the transition moment, which is an
off-diagonalmatrix element of the dipole moment operator
sand hence, strictly speaking, has no classical counterpartd, is
treated as if it were an expectation value, i.e., adiagonal
matrix element of the dipole moment operator. Even without
the derivation we have presented, it is obvious on quantum-
mechanical grounds that the difference between theeigenen-
ergiesof the two relevant electronic statessdefining the po-
sition of the optical resonanced must notdepend linearly on
any off-diagonal matrix element ofany operator.

This conclusively determines the shape of the signal due
to a Frenkel state as the first derivative of the absorption
spectrum, in contrast to the second-derivative shape, invoked
in Ref. 7. In fact, the second-derivative shape emerges as a
result of the off-diagonal coupling by the dipole moment
operator between two closely spaced electronic states. This is
illustrated by the following argument.

Let the position of the ground state serve as energy zero.
Suppose that in the absence of electric field two excited elec-
tronic statesu1l and u2l have the energiesE1 andE2, respec-
tively, and that the off-diagonal matrix elementd=k1udu2l of
the dipole moment operator does not vanish. Then in the
electric field the two states are coupled according to the
Hamiltonian

S E1 d ·F

d ·F E2
D s44d

with the eigenenergies

E± = 1
2sE1 + E2d ± 1

2
ÎsE1 − E2d2 + 4sd ·Fd2. s45d

In the absence of electric field the corresponding optical
transitions would be observed in absorption at energiesE1
andE2. It is readily seen that, owing to the dipole coupling,
in the electric field the lower state exhibits a redshift and the
upper state exhibits a blueshift, yielding a first-derivative and
an “inverted” first-derivativeswith negative lobe preceding
the positive lobed EA signal, respectively. In general, these
signals could be well separated on energy scale. In the spe-
cial case when the spectral widths of the transitions to these
states markedly exceed the differenceE1−E2, the two signals
fuse to yield a second-derivative shape. This usually happens
for charge transfer states, as is discussed in Appendix B.

It is clear on this view that the couplingsby the transition
dipole momentd of an isolated Frenkel state to the ground
state cannot produce a second-derivative EA signal, as pos-
tulated in Refs. 7–9. In the first place, in this case there is
only oneoptical transition: from the ground state to the ex-

FIG. 2. Electro-absorption spectra calculated withR=0 for u
=90° ssolid lined, 60° sdotted lined, 30° sdash-dot lined, and 5°
sdashed lined.
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cited state, while in order to get a second-derivative shape
two closely spaced transitions, shifting apart, are necessary.
Second, the spectral shift is due exclusively to the second-
order perturbational correction to transition energy, governed
by the polarizability changefsee Eq.s43dg. As stated above,
the transition dipole moment enters this expression in the
secondpower. In Ref. 7 it is the unphysical assumption that
the shift is proportional to thefirst power of the transition
dipole moment that gives rise to asnonexistent in realityd
pair of closely spaced statesswith the transition moments
oriented “upfield” and “downfield”d that shift apart in the
electric field. The second-derivative signal shape is an arti-
fact of the applied model, where the off-diagonal transition
dipole moment is confused with the corresponding expecta-
tion value.

For similar reasons the amplitude of the corresponding
EA signal, calculated with the same assumption, seemingly
agrees with experiment.7 In the correct expression, the dipole
coupling between the ground state and the excited state in
hand contributes to the observed EA signal via the corre-
sponding term in the polarizability change between the two
states. If this term is separated outsas is done for argument’s
sake in the derivation of Sec. IId, the corresponding transition
dipole momentd0u is weighted by the factorF ·d0u/ sEu

−E0d; the slarged denominator containing the energy separa-
tion between the two coupled states makes this contribution
quite small. In the numerical estimates7 of the shift induced
by the electric field this weighting factor is disregarded,
based on ansinvalidd intuitive argument, where the induced
dipole moment is identified directly with the transition dipole
moment rather than with the corresponding weighted contri-
bution. The absence of the weighting factor results in the
shift of the resonance position being overestimated by sev-
eral orders of magnitude, so that it seems to account cor-
rectly for the size of the observed spectral shift.

Although large values of the parameterR seem rather un-
likely in real systems, its influence on the EA spectrum has
also been tested. ForR=0, the effect of electric field is due
exclusively to the change of the molecular transition fre-
quencyv0e on the left-hand side of Eq.s7d; the correction
due to the change of the oscillator strength on the right-hand
side of this equation vanishes for centrosymmetric mol-
ecules. As shown in Sec. II, the leading contribution to this
latter change results from the second-order correction to
zero-field eigenenergies, is quadratic in the electric field
strength and is governed by the polarizability change. In the
transformation from Eq.s30d to the final expression for the
exciton energy given by Eq.s31d this term is exactly com-
pensated by the same factor in the energy of the molecular
transition, which enters in the denominator.

This is no longer true whenR is not negligibly small. The
EA signal predicted forR=1 swhich is probably unphysically
larged is displayed in Fig. 3. The obtained signal shapes are
unusual; some deviate significantly from the first derivative
of the absorption spectrum, but still they never resemble the
second derivative. To the best of our knowledge, signal
shapes similar to those shown in the figure have never been
experimentally observed for an allowed transition, in keep-
ing with our tentative expectation thatR is generally small.

VI. CONCLUSIONS

The interpretational paradigm of electro-absorption spec-
troscopy as applied to molecular crystals, was developed in
the last two decades of the past century.4,5 It was based on
the expansion of the absorption intensity in power series with
respect to the modulating electric field, and led to the con-
clusion that for centrosymmetric crystal consisting of cen-
trosymmetric molecules the Frenkel states give rise to first-
derivative EA signals, with the amplitude governed by the
polarizability change between the ground and excited elec-
tronic state, whereas the CT states give rise to second-
derivative EA signals, with the amplitude governed by the
dipole moment of the corresponding localized CT configura-
tions. Some exceptions to this latter rule may be encountered
and more complicated cases may emerge when quantum-
mechanical mixing between the different localized configu-
rationssFrenkel and CTd is included, but the gist of the origi-
nal intuitive picture remains valid.22,24–26

Recently, the applicability of the above interpretational
paradigm to very intense transitions has been challenged.7–9

According to the new approach, for such a transition the
transition dipole moment, which is an off-diagonal matrix
element of the corresponding operator, should be treated as if
it were a permanent dipole moment, which is an expectation
value sa diagonal matrix elementd of this operator. In effect,
a very intense Frenkel transition was predicted to produce a
second-derivative EA signal, contrary to the expectation
based on the classic argument.4,5

Among other conceptual problems the new approach cre-
ated, it has been unclear how the new paradigmsclaimed to
be valid for very strong transitionsd should match to the clas-
sic paradigm, valid for weaker transitions, and how this con-
ceptual gap could be bridged for the transitions of interme-
diate oscillator strength. In contrast to the classic paradigm,
based on a well-definedsand hence verifiabled derivation, the
new ad hoc approach has been based on purely intuitive
notions, not amenable to formal mathematical verification.
The present paper presents a systematic derivation of the
electro-absorption signal, valid for any nondegenerate Fren-
kel transition irrespective of its absorption intensity. The
derivation is open to complete formal scrutiny. The present

FIG. 3. Electro-absorption spectra calculated withR=1 for u
=90° ssolid lined, 60° sdotted lined, 30° sdash-dot lined, and 5°
sdashed lined.
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paper shows that the EA signals of all optical transitions,
regardless of their oscillator strength, are subject to exactly
the same classic interpretational rules,4,5 i.e., that very strong
transitions exhibit no peculiarities that would justify treating
them as exceptional.

Admittedly, the absorption and reflectance spectra of very
intense states have some specific features. Owing to the
strong interaction between the transition dipoles, the energies
of Coulombic excitons depend on the direction of the wave
vector, which results in the dependence of the absorption and
reflection spectra on crystal orientation.1–3 Moreover, the
strong coupling between the radiation field and the excitons
produces polariton states, responsible for the occurrence of
smetallically reflectingd stopping bands.30

It should be emphasized that the contentions expressed in
the present work do not apply to the published experimental
spectra of sexithiophene.7–9 These spectra are extremely
valuable; the single crystal spectrum7 is the first EA spectrum
of an organic single crystal that has ever been measured, and
represents a major breakthrough in electro-absorption spec-
troscopy. However, as has been demonstrated above, the
original interpretation of the spectra is not tenable.

The faulty interpretational approach7–9 led to the incorrect
conclusion that the EA spectra of the sexithiophene single
crystal and films were dominated by Frenkel excitations,
with no observable contribution from charge transfer states.
This conclusion is not valid. The observed EA signals evi-
dently exhibit second-derivative shape,7–9 which, as demon-
strated above, is ruled out unless contributions from CT ex-
citons are involved.

Theoretical calculations,6 based on a microscopic Hamil-
tonian, have quantitatively reproduced the sexithiophene EA
signal, and confirmed the CT provenance of a majority of the
observed spectral features. As the underlying theoretical
approach6 explicitly accounts for the mixing between the
Frenkel and CT states, the eigenstates are no longer assigned
as purely Frenkel or purely CT, but may still be characterized
by the dominant contribution that defines their actual prov-
enance; their vibronic replicas are also included in the
model, as well as other low-energy intramolecular excita-
tions. The treatment invokes no assumptions regarding the
shape of the EA signal, which is calculated directly as the
difference between the absorption spectrum at nonzero- and
zero-electric field.

The experimental EA spectrum of the sexithiophene
crystal7–9 interpreted in Ref. 6 was measured for the light
polarized along theb crystal axis. Owing to the peculiar
arrangement of the molecules in the unit cell, the corre-
sponding Davydov component of the lowest Frenkel exciton
has extremely low intensity, which makes the CT statesspo-
larized along this directiond discernible also in the absorption
spectrum. Apparently, quaterthiophene33 is an analogous
case. In other molecular crystalsssuch as, e.g.,
polyacenes4,5,25,34,35d the eigenstates of CT parentage are
rarely observable in absorption spectroscopy, being masked
by vibronic satellites of the lowest Frenkel transition. It is
usually the large sensitivity of the CT states to electric field
that amplifies their contribution to electro-absorption, mak-
ing it comparable to Frenkel contributions.

Accordingly, in most cases the observed EA signal of CT
origin could be identified by its second-derivative shape, but

was not directly attributable to the bands actually observed in
absorption spectroscopy. In effect, if the EA spectrum was
not calculated from a microscopic modelsas was done in
Refs. 6, 22, and 24–26d, but simulated by plain fitting, the
energies of CT excitons had to be introduced as free param-
eters and there was no cross-check on their values.
Sexithiophene is exceptional in the sense that itsb-polarized
absorption spectrum provides an additional verification of
the applied theoretical approachsnotably, confirming the cal-
culated positions of the CT statesd; for this reason, the inter-
pretation is in this case especially important conceptually.

The same physical mechanisms are expected to be opera-
tive in a variety of other interesting systems, such as other
oligothiophenes, perylene derivatives,24 etc. Electro-
absorption spectroscopy is a useful tool to investigate these
cases, especially in view of its ability to probe the charge
transfer states, vital for the process of charge carrier genera-
tion and consequently forsoptodelectronics. We hope that the
elimination of interpretational ambiguity will facilitate and
encourage further applications of this valuable experimental
technique.
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APPENDIX A

The solution of the Poisson equations13d is31

wsr ,td =E
R3

rsr 8,td
ur − r 8u

d3r8 + w0sr ,td, sA1d

wherew0sr ,td denotes the solution of the Laplace equation,
chosen in such a way as to satisfy the boundary conditions
which in this case are embodied in the presence of external
static electric fieldw0sr ,td=−F ·r . Upon substitution from
Eqs.s15d,s16d,sA1d becomes

wsr ,td = − o
s

dsstd ·E
R3

=dsr 8 − r sd
ur − r 8u

d3r8 − F · r

= o
s

dsstd ·E
R3

dsr 8 − r sd = S 1

ur − r 8u
Dd3r8 − F · r

= o
s

dsstd · sr − r sd
ur − r su3

− F · r . sA2d

APPENDIX B

In centrosymmetric systems, the linear dependence of the
energy eigenvalues on the off-diagonal matrix element of the
dipole moment operator may emerge only for the states that
at zero field aresquasid degenerate.36,37 This happens for
charge-transfersCTd states, as will be demonstrated below.
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For a pair of moleculesA andB let us take as the basis set
the localized CT configurationsuA+B−l and uA−B+l. In this
basis, the Hamiltonian reads

SECT + F ·d W

W ECT − F ·d
D , sB1d

whereW=kA+B−uHuA−B+l represents the matrix element that
governs the exchange of the charges between the two mol-
ecules. In the classical approximation,W is disregarded.
Then, owing to the linear dependence of the energies on the
perturbationF ·d, in an electric field one of the states under-
goes a redshift and the other one a blueshift, producing, ac-
cording to Eq.s43d, a first-derivative and an “inverted” first-
derivative EA signal, respectively. The two CT states split,
but in electric fields used in actual experiments this splitting
is much smaller than the spectral width of the corresponding
transitions. Consequently, the two first derivatives fuse to
yield a second-derivative shape of the EA signal, with the
amplitude proportional to the dipole momentd.

As demonstrated in the past quantitative reproductions of
the EA signals of several systems,22,25,26 the classical ap-
proach discussed above is insufficient to rationalize some
features of the experimental spectra; the quantum mechanical
off-diagonal interactionssdependent on intermolecular over-
lapd that govern charge transfer between the molecules turn
out to have crucial importance. In the simplistic dimer model
underlying Eq. sB1d, they are modeled by the charge-
exchange termW.

Accordingly, in the followingW is no longer neglected.
Then, upon transformation to the symmetry-adapted basis
uCT±l=2−1/2suA+B−l± uA−B+ld, the Hamiltonian of Eq.sB1d
becomes

SECT + W F ·d

F ·d ECT − W
D . sB2d

It is readily seen that in this representation the Hamiltonian
is diagonal at zero-field, its diagonal elements representing
the zero-field eigenenergies, and that the dipole moment op-

erator is in this basisoff-diagonal ssinced=kA+B−uduA+B−l
=kCT+uduCT−ld.

Yet, in the limit of very weak intermolecular interaction
W→0, the eigenvalues

E± = ECT ± 1
2fW2 + sF ·dd2g1/2 sB3d

still depend linearly on the perturbationF ·d and hence on
the dipole momentd which in the basis of the zero field
eigenstates isoff diagonal. In effect, the interaction with the
electric field again pushes the two eigenstates apart, giving
rise to a pair of first-derivative signalssone simple and one
invertedd. As previously, the spectral widths of the two states
are much larger than the field-induced shifts, so that the two
first-derivative signals fuse to yield a second derivative.

Based on Eq.sB3d it is readily seen that in fact the electric
field alwayspushes the two eigenstates apart, irrespective of
the actual value ofW. Consequently, even for substantial
values of the zero-field splitting 2W the signal will retain the
second-derivative shape, as long as the splitting is markedly
smaller than the spectral width. For CT states this is the
typical situation, since the off-diagonal CT interactions, be-
ing limited by intermolecular overlap, are usually not very
large. However, there are exceptions:22,25,26in some systems
sfullerene being a prime example26d, the off-diagonal CT
terms add and yield a cumulative splitting exceeding the
spectral width. In that case, the two eigenstates of CT origin
may give rise to a resolved pair of first-derivative EA signals
sone simple and one invertedd.

Based on the classic argument,4,5 first-derivative EA sig-
nals are usually attributed to Frenkel excitons and second-
derivative signals to CT states. Apart from the issue of the
mixing between the Frenkel and CT statesswhich is beyond
the scope of the present work, but has been exhaustively
treated in other papers22,24,25d the above results show that a
CT state, although typically expected to exhibit a second-
derivative EA signal, may in some instances produce a first-
derivative signal. On the contrary, a nondegenerate Frenkel
state is always bound to produce a first-derivative signalfas
follows from Eqs. s3d and s43dg, but never a second-
derivative signal.
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