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Information transmission in parallel threshold arrays: Suprathreshold stochastic resonance

N. G. Stocks
School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom

~Received 22 September 2000; published 28 March 2001!

The information transmitted through a parallel summing array of noisy threshold elements with a common
threshold is considered. In particular, using theoretical and numerical analysis, a recently reported@N. G.
Stocks, Phys. Rev. Lett.84, 2310 ~2000!# form of stochastic resonance, termed suprathreshold stochastic
resonance~SSR!, is studied in detail. SSR is observed to occur in arrays with two or more elements and, unlike
stochastic resonance~SR! in a single element, gives rise to noise-induced information gains that occur inde-
pendent of the setting of the threshold or the size of the signal. The transmitted information is maximized when
all thresholds are set to coincide with the signal mean. In this situation, and for large arrays, the noise can
enhance performance up to approximately half the theoretical noiseless channel capacity. The theory is tested
against digital simulation.

DOI: 10.1103/PhysRevE.63.041114 PACS number~s!: 05.40.2a, 02.50.2r, 05.45.2a
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I. INTRODUCTION

The study of stochastic resonance~SR! @2# in threshold
based systems has received considerable attention in re
years@2–5#. In such systems it is well known that, via the S
effect, the addition of noise can lead to an enhancemen
the system’s response to subthreshold signals. Initial stu
used sinusoidal input signals and the output signal-to-n
ratio ~SNR! to characterize the SR effect—the effect ma
fests itself as a noise induced maximum in the SNR. M
recently, SR has been extended to include aperiodic bro
band signals@6# and information theoretic measures, such
the average mutual information, have been introduced
characterize the dynamics@3,7–11#. Both broadband signal
and information theory are employed in this study.

The great majority of previous studies@2# have focused
on single element SR systems. Attention has recently tur
to the study of networks of SR elements. A large numbe
network configurations and connectivity have been stud
and include, globally coupled networks@12–14#, randomly
connected networks@15# and linear chains@16–18#. In com-
parison, parallel arrays of threshold elements, in whichN SR
elements are placed in parallel and their outputs summed
common summing point, have received relatively little atte
tion with only a handful of studies@19,6,20–22#. Parallel
arrays~ensembles! are of considerable importance in man
signal processing applications. For example, they can
used to model DIMUS sonar arrays~in the on target posi-
tion! @23# and, for regularly spaced thresholds, Fla
analogue-to-digital converters~ADC’s! @24#. Additionally,
parallel arrays have recently been used to model ensem
of sensory neurons@6,21,22#. Consequently, the study of in
ternal system noise and SR effects in these systems a
importance to a number of signal processing and neuroph
ological applications.

Stochastic resonance is commonly understood to be
enhancement, by noise, of the response of a system to aweak
signal. By weak, one normally means with reference to
appropriate scale. This scale can either be taken as
~internal/external! noise intensity or, in a single thresho
system such as a simple comparator, as the threshold l
1063-651X/2001/63~4!/041114~9!/$20.00 63 0411
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However, when determining whether SR is in principle o
servable, it is the size of the signal compared to the thresh
level that is the important quantity. Normally, SR is on
observed if the signal is smaller than the threshold level,
it is subthreshold. For larger, suprathreshold signals, the
effect disappears@3,25,7#. This has led to the common belie
that SR type effects can only be observed for predomina
subthreshold signals. However, as will be demonstrated,
is only true for single element threshold systems. It is de
onstrated here that parallel arrays can display another f
of SR—termed suprathreshold stochastic resonance~SSR!—
that occurs when the signal is predominantly suprathresh
Additionally, this new form of SR leads to significantl
greater signal enhancements than can be obtained using
threshold signal levels. The paper is organized as follo
Sec. II introduces the model array and in Sec. III the cal
lation of the transmitted information and the theory of t
SSR effect are presented. Section IV discusses the di
simulation and in Sec. V the theory and digital simulati
results are compared and discussed. Finally, in Sec. VI, c
clusions are drawn.

II. MODEL

A summing array ofN threshold devices~Fig. 1! is con-
sidered. Each threshold device is subject to the same in
signal x(t) but independent noise,h i(t). The devices are
modeled as Heaviside functions, the outputs,yi(t), being
given by the response function,

yi~ t !5H 1 if x~ t !1h i~ t !.u i ,

0 otherwise,
~1!

whereu i are the threshold levels andi 51,2, . . .N. The re-
sponse of the array is obtained by summing the individ
responses of each device. Consequently,y(t) represents the
number of devices that are triggered at any instant of tim
The signal is taken to be aperiodic and broadband. Altho
the initial theoretical discussion in Sec. III assumes no s
cific form for the signal distribution—all results presente
are for Gaussian signal and noise.
©2001 The American Physical Society14-1
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By a suitable choice of threshold settings, the array can
used to model a number of applications arising in engine
ing and neurophysiology. For example, placing the thre
olds levels regularly across the signal space results in a
form quantization scheme, identical to that found in Fla
analogue-to-digital converters. This case has been stu
previously@1,26#. However, in this study, only the situatio
where all the threshold levels are set to same value,u, will
be considered. Arrays of this form have recently been c
sidered in connection with neuronal ensembles@6,21,22# and
are also applicable to digital-multibeam-steering~DIMUS!
arrays used in passive sonar@23#.

III. AVERAGE TRANSMITTED „MUTUAL …

INFORMATION

A. Theoretical preliminaries

An information theoretic measure—the average mut
information—will be used to quantify the amount of info
mation transmitted through the array. Although, traditiona
the SNR is often used to characterize SR, in practice this
only a limited utility for nonlinear systems subject to broa
band excitation. The SNR only provides a meaningful m
sure under the assumption that the dynamics are app
mately linear and the noise is Gaussian. If these assump
are valid then the SNR can be related to the information fl
through the system@27#. Consequently, measuring the SN
is equivalent to measuring the transmitted information. Ho
ever, for weak noise, the dynamics of these arrays are hi
nonlinear and no simple relation between the SNR and
transmitted information exist. It is in this regime that th
SNR fails to give a meaningful characterization of the
sponse. For example, passing a signal through a determ
tic ~noiseless!, but noninvertable transfer function yields a
infinite output SNR but, by construction, information is lo
about the signal, i.e., no unique function exists that maps
response back into the signal. Other linear signal proces
techniques, such as cross correlation, also suffer from sim
deficiencies.

The average mutual~or transmitted! information,I, for the
array shown in Fig. 1~which in information theory is re-

FIG. 1. A summing array ofN threshold devices. Each device
subject to the same signal~a Gaussianly distributed signal with zer
mean and standard deviationsx) but independent Gaussian noise
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garded as a semi-continuous channel! can be written@28#

I 5H~y!2H~yux!

52 (
n50

N

Py~n!log2 Py~n!

2S 2E
2`

`

dxPx~x! (
n50

N

P~nux!log2 P~nux!D . ~2!

H(y) is the information content~or entropy! of y(t) and
H(yux) can be interpreted as the amount of encoded in
mation lost in the transmission of the signal.Py(n) is the
probability of the outputy(t) being numerically equal ton
andP(nux) is the conditional probability density of the ou
put being in staten given knowledge of the signal value,x.
Px(x) is the probability density function~pdf! of the signal.
The logarithms are taken to base 2 soI is measured in bits.

Equation~2! represents the appropriate definition of info
mation for a channel that has a continuous input signal b
discrete output@28#. It should be noted that this definitio
has no explicit time dependence and, therefore, does
strictly treat the signal as a stochastic process. For this
son, I does not represent an information flow~measured in
bits/s! but the average amount of information, measured
bits, that a measurement of the output yields about the
stantaneous input signal value.

It will be assumed initially that the noise has an arbitra
pdf, Ph(h), with a standard deviation,A^h2&2^h&25sh . If
all information is lost in transmissionH(yux)5H(y) ~which
occurs assh→`) and henceI 50. Alternatively, if all en-
coded information is transmitted (sh50) H(yux)50 andI
5H(y). Given it is straightforward to show@27# that for any
nonzerosh , H(yux),H(y), it would seem to follow that
maximum information transfer occurs when there is no int
nal noise. However, this is not necessarily the case bec
internal noise also serves to increaseH(y). Consequently,
the maximization ofI by internal noise is a balance betwee
additional useful information generated by the noise and
increased loss in information transmitted through the ar
with increasingsh . It is this ability of noise to maximize the
transmitted information that is termed SR.

B. Calculation of I

The calculation of the transmitted information is straigh
forward when all thresholds are set equal to an arbitr
valueu. To proceed, it is first useful to simplify the formul
for I. The conditional probability,P(nux), is easily obtained
by noting that for any given signal value,x, each device acts
independently under the influence of its own noise sour
Consequently, the probability thatn devices are triggered is
given by the binomial distribution and henceP(nux)
5Cn

NP1ux
n P0ux

N2n , whereP1ux is the conditional probability of
a device being in state 1~triggered! which is given by the
cumulative distributionP1ux5*u2x

` Ph(h)dh. Cn
N is the bi-

nomial coefficient andP0ux512P1ux . Using this result and
4-2
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noting that(0
NnP(nux)5NP1ux and (0

NP(nux)51, the sec-
ond summation on the right-hand side~RHS! of Eq. ~2! can
be carried out to yield

(
n50

N

P~nux!log2 P~nux!

5 (
n50

N

Py~n!log2 Cn
N1N~P1uxlog2 P1ux1P0uxlog2 P0ux!.

~3!

Noting thatPy(n)5*2`
` P(nux)Px(x)dx, the transmitted in-

formation can now be written in the simplified form

I 52 (
n50

N

Py~n!log2 P8~n!2S 2NE
2`

`

dxPx~x!

3~P1uxlog2 P1ux1P0uxlog2 P0ux! D , ~4!

P8~n!5E
2`

`

dxPx~x!P1ux
n P0ux

N2n ,

wherePy(n)5Cn
NP8(n).

Given the signal and noise distributions,Px(x) and
Ph(h), Eq. ~4! can be used to calculateI numerically.

C. Suprathreshold SR„SSR…

The specific case whenu5^x&, where^x& is the first mo-
ment of Px(x), is now considered. It will be demonstrate
that under this condition a new form of SR, not observable
a single threshold device, can be anticipated.

Although, in general,Px(x) andPh(h) must be specified
to enableI to be obtained, this is not the case when the
distributions are of the same form andu5^x&. Under these
conditions, the integrals and summations in Eq.~4! can be
solved analytically. However, it should be stressed that
following analysis only applies under the assumption t
Px(x) andPh(h) are identical, i.e., all moments, except th
first, are the same. This condition applies, for the Gauss
signal and noise to be considered, when the signal and n
variances are equal.

Assuming identical signal and noise distributions~a part
from a nonzero signal mean! the signal distribution can be
written asPx(x)5Ph(x2^x&). TakingPh(h) to be an even
function of h and, without loss of generality, zero mean,
follows that, P1ux5*u2x

` Px(^x&2s)ds. Introducing the
change of variable,y5P1ux , yields dy/dx5Px(^x&2u1x)
and settingu5^x&, gives forP8(n) in Eq. ~4!,

P8~n!5E
0

1

dyyn~12y!N2n. ~5!

The expression forP8(n) is in the form of a beta function
@29#, the integral can now be solved to giveP8(n)5n!(N
2n)!/(N11)!. This in turn yieldsPy(n)51/(N11) which
is independent ofn. This result states that all output states,n,
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are occupied with equally probability; this is the well know
condition for maximum entropy@27#. Hence, this leads to the
interesting result thatH(y) is maximized when the signa
and noise distribution are matched. This does not imp
however, thatI is also maximized.

To finalize the calculation, the second integral on the R
of Eq. ~4! can be solved using the same procedure to gi
2N/2 loge2. Combing this result with the result forPy(n)
and substituting into Eq.~4! finally yields the exact result

I 5 log~N11!2
N

2 loge 2
2

1

N11 (
2

N

~N1122n!log2 n.

~6!

It is interesting to note that this results states thatI is depen-
dent only on the number of elements in the array and
therefore, independent on the exact form of the signal
noise distributions. Equation~6! was, however, derived un
der the assumption that the signal and noise distributi
were the same. If they are not, then no simple change
variable could be found that removed the functional dep
dence of the signal and noise PDFs.

Of particular interest is howI scales withN. This can be
determined by approximating the summation in Eq.~6! using
the formula (2

Nf (n)5*1
N11f (n)dn21/2„f (1)1 f (N11)….

This yields

I 5
1

2
log2~N11!2

1

2 loge 2
1O~1/N!. ~7!

Consequently, for largeN, I'1/2 log2 N.
It is now straightforward to establish that this result im

plies that a noise induced maximum must occur inI. As
already discussed, in the limitsh→`, I must tend to zero. In
the limit sh→0, I→H(y). Therefore, a noise induced max
mum must occur ifH(y) ~evaluated atsh50) is smaller
than the finite noise result given in Eq.~7!. It is straightfor-
ward to show that this must be the case whenN is suffi-
ciently large. In the absence of noise all the devices switc
unison and hencePy(n)50 for n51,2 . . .N21, Py(0)
5*2`

u Px(x)dx andPy(N)512Py(0). This implies

I ~sh50!52Py~0!log2 Py~0!2Py~N!log2 Py~N!. ~8!

I (sh50) is maximized whenPy(0)5Py(N)51/2. This oc-
curs whenu5^x& @as long asPx(x) is even functioned abou
its mean# and givesI (sh50)51bit. In general,I (sh50)
<1 for arbitraryu andPx(x). Consequently, in the absenc
of noise, the maximum information the array can transmi
only 1 bit; hence from Eq.~7! it is easy to infer that for
sufficiently largeN a noise induced maximum must occu
Unlike conventional SR, this SR effect is to be anticipat
when all thresholds are set suprathreshold~in the sense tha
deterministic signal induced threshold crossings are m
mized! with respect to the signal and will, therefore, be r
ferred to as suprathreshold SR~SSR!.
4-3



n
a
t
g

er
al

t
at
is

ow
ve
f
ha
ta

all

III
lic-

the
as
s

the

s-
m-

y to

in-

so-

or-
ted
nal
and
lts

lts
nce
le

fi-
the
rted

the
of

r of
e

N. G. STOCKS PHYSICAL REVIEW E 63 041114
D. Gaussian signal and noise

Although much of the above discussion has placed
restrictions on the signal and noise pdfs, Gaussian signal
noise are used for the results presented in Sec. V. Here
calculation ofI is considered for this particular case. Takin
Px(x)5(1/A2psx

2)exp„2(x2^x&)2/2sx
2
… and Ph(h)

5(1/A2psh
2)exp(2h2/2sh

2) gives P1ux5 1
2 erfc(2u) where

u5(x2u)/A2sh
2. Substituting these quantities into Eq.~4!

and performing a change of variable tou gives

I 52 (
n50

N

Py~n!log2P8~n!1NE
2`

`

du
s

Ap

3expX2S su2
~u2^x&!

A2sx
D 2CX1

2
erfc~2u!log2

1

2

3erfc~2u!1S 12
1

2
erfc~2u! D log2S 12

1

2
erfc~2u! D C,

~9!

where

P8~n!5E
2`

`

du
s

Ap
expF2S su2

~u2^x&!

A2sx
D 2G

3S 1

2
erfc~2u! D nS 12

1

2
erfc~2u! D N2n

,

and s5sh /sx , Py(n)5Cn
NP8(n). Equation ~9! can be

solved numerically to obtainI. In the particular caseu
5^x& it can be seen thatI depends only on the paramet
s—wheres2 is interpreted as the inverse signal-to-intern
noise ratio.

E. NÄ1 and uÄŠx‹

The results obtained in Sec. III C indicate that SSR is
be anticipated ifN is sufficiently large—thus suggesting th
SSR cannot be observed in a single threshold system. Th
consistent with previous studies@3,25# that have demon-
strated that SR effects are removed if the threshold is l
ered to suprathreshold levels. However, this can be pro
under general conditions and for completeness a proo
included here. The only assumption that will be made is t
the signal and noise PDF’s are even functions of their s
variable. In this case settingu5^x& results in Py(0)
5Py(1)51/2 ~independent ofsh) and henceH(y)51.
Therefore,I 512H(yux) for arbitrarysh , where

H~yux!52E
2`

`

dxPx~x!@P1ux log2 P1ux

1~12P1ux!log2~12P1ux!#. ~10!

Differentiating I with respect tosh gives

dI

dsh
5E

2`

`

dxPx~x!log2S P1ux

12P1ux
D dP1ux

dsh
. ~11!
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Given that P1ux21/2 is always an odd function aboutx
5^x&, it follows thatdP1ux /dsh will also be an odd function
aboutx5^x& with a negative sign forx.^x&. Splitting the
integral in Eq.~11! into the ranges2`→^x& and ^x&→`
~that isP1ux between 0 and 1/2 and then 1/2 and 1! it can be
seen that, the factor log2 @P1ux /(12P1ux)#,0 for x,^x& and
positive otherwise. The integrand is therefore negative for
x and it follows thatdI/dsh,0 for all sh . Therefore SR
can not occur.

IV. SIMULATIONS

To confirm the validity of the theory developed in Sec.
digital simulations were also undertaken. Due to the simp
ity of the array, the algorithm to generatey(t) was straight-
forward but some care was required when calculating
transmitted information. The transmitted information w
obtained by constructing the distribution
Py(n),Px(x),P(nux) and using Eq.~2! directly. To obtain
good statistics~approximately 1% error!, signal lengths in
excess of 105 independent samples were used to obtain
distributions. The ‘‘bin’’ size used to constructPx(x) was
also found to critically affect the results. Becausex is treated
as a continuous variable andy as a discrete one, it is nece
sary thatx is discretized into many more bins than the nu
ber of states occupied byy ~ which is simply given byN). In
practice, to produce convergent results it was necessar
discretizex with a resolution better than 1/100N. Conse-
quently, increasing the number of elements not only
creases the time required to computey, but also requires an
increase in the signal length to compensate for the finer re
lution required when discretizingx. This was found to limit
the number of devices that could be simulated to,100.

V. RESULTS AND DISCUSSION

In the previous section, theoretical arguments were f
warded that suggest a new form of SR is to be anticipa
when all the thresholds are set to coincide with the dc sig
level. In this section a comparison between the theory
the results of the digital simulation are presented. All resu
presented are for Gaussian signal and noise with^x&50 and
^h&50.

A. NÄ1

To place the multielement results in context, the resu
for N51 are first reviewed. Figure 2 shows the depende
of the transmitted information on noise intensity for a sing
element. The threshold value,u, is expressed in units of the
standard deviation of the signal,sx . Clearly, an SR effect
~i.e., a noise is induced maximum! is only observed when
u52.83. Lowering the threshold below this level signi
cantly improves the transmitted information but removes
beneficial role of the noise. This behavior has been repo
previously in a number of different threshold systems@25,3#.
Lowering the threshold removes SR effects by making
signal ‘‘more suprathreshold.’’ The suprathreshold nature
the signal is clearly observed by considering the behavio
I whens50. Without noise, signal information can only b
4-4
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transmitted through deterministic threshold crossings—as
threshold is lowered these increase and hence the info
tion increases. As discussed in Sec. III EH(y) ~and henceI )
is maximized by settingu5^x&; this condition maximizes
the deterministic threshold crossings and leads to a tran
of 1-bit of information.

For a single device, it can be seen that the noise-indu
enhancements are relatively weak. Consequently, they
only observed if the contribution to the information fro
deterministic threshold crossings do not dominate—it w
observed that this requiresu>2.45. In this case the signa
spends at least 99.3% of its time below the threshold
hence can be termedpredominantlysubthreshold. It is inter-
esting to note that, due to symmetry, the same SR effects
also observed ifu<22.45, i.e., when the signal spend
99.3% of its time above the threshold. This indicates that
fashion of using the term suprathreshold to distinguish
dynamics from the subthreshold case is somewhat amb
ous. Clearly what is meant here is to distinguish between
cases of deterministic and non-deterministic threshold cr
ings. For this reason, the termpredominantly suprathreshold
will be used to indicate the situation where determinis
threshold crossings dominate the transmitted information
an individual device.

B. uÄŠx‹

Here it is demonstrated that the situation is quite differ
if there is more than one device. Figure 3 shows the res
for all u5^x& and variousN. It is immediately observed tha
SR type behavior is manifest for allN.1. As N increases,
the maximum value attained byI also increases. These re
sults are in keeping with those presented in Sec. III a
confirm the existence of SSR. It is noted that SSR occ
even if there are only two elements; this was not anticipa
because Eq.~7! is only valid whens5sh /sx51 and hence
does not predict the value of the maximum. The maximum
seen to shift to higher noise intensities asN increases but, for
reasons discussed below, cannot passs51.

FIG. 2. Plot of transmitted information againsts5sh /sx for
N51 and variousu. The data points are the results of the digi
simulation and the solid lines were obtained by numerically eva
ating Eq.~9!.
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The results in Fig. 3 were obtained withsx51, however,
the theoretical analysis in Sec. III indicates that the inform
tion is dependent only on the ratiosh /sx and not onsx
alone. Hence, the same set of curves can be reprod
for arbitrarysx—as long as the noise is scaled according
i.e., SSR occurs for arbitrary signal strengths. This is,
course, not true of SR in a single element where SR effe
disappear for sufficiently large suprathreshold signal am
tudes.

The mechanism giving rise to SSR is quite different
that of classical SR and is not connected to a previou
reported form of suprathreshold SR@30#. In the absence of
noise, all devices switch in unison and consequently the
ray acts like a single bit ADC (I 51). The fact that all de-
vices switch in unison in response to the signal implies t
they also carry identical information about the signal. Co
sequently, no additional information is obtained by havi
more than one device. Ideally, one would wish that the
vices carry at least a degree of independent signal infor
tion. This degree of independence is facilitated by the ad
tion of noise. At any instant of time, finite noise results in
distribution of thresholds that, in turn, leads to the sign
being ‘‘sampled’’ atN randomly spaced points across th
signal space. In effect, the noise allows additional bits
information ~output states! of the system to be accessed, r
sulting in an increase in the output entropyH(y). Although,
the information content of each individual device is reduc
because of the noise~all of which individually follow the
N51 curve!, the sum total from all the devices results in
net gain in information. Consequently, SSR largely aris
due to the initial increase inH(y).

This can clearly be seen in Fig. 4, which shows the c
tributions of H(y) and H(yux) to I. For all values ofN,
exceptN51, H(y) rapidly increases with noise intensity
reaches a maximum, and then decreases.H(y) reaches its
maximum value of log2(N11) when all output states ar
equally probable; as discussed in Sec. III, this occurs w
the signal and noise PDF’s are exactly matched which
quires s51. In contrast, the conditional entropy,H(yux),
always increases monotonically with increasing noise int
sity but, initially, at a slower rate. It increases asymptotica

-

FIG. 3. Plot of transmitted information againsts5sh /sx for
variousN and u50. The data points are the results of the digi
simulation and the solid lines were obtained by numerically eva
ating Eq.~9!.
4-5
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to the entropy given by2(0
NPy(n)log2 Py(n) wherePy(n)

5Cn
N/2N. The monotonic behavior ofH(yux) and the fact

that H(y) always reaches its maximum whens51, implies
that the maximum inI must always occur fors<1. This
conclusion is valid independent of the value ofN but, as
discussed below, is dependent on the threshold level b
set equal to the signal mean. Consequently, although aN
increases the maximum in the information shifts to high
noise intensities it cannot exceed unity.

These results tend to suggest that at largeN Eq. ~6! gives
a reasonable estimate for the maximum information atta
able which is approximately equal to half the maximum o
put entropy. In the absence of noise, the maximum ou
entropy of log2(N11) also represents the channel capacity
the array and, hence, these results indicate that SSR can
to information gains which approach half the noiseless ch
nel capacity. This is an interesting result when compared
the performance of a single device. In Fig. 2 the results
u52.83 indicate that SR effects are relatively weak—t
maximum noise-enhanced information gain is only ab
0.05 bits—compared to a noiseless channel capacity of 1
Thus, noise only helps to recover at most 5% of the poten
channel capacity of a single device compared to a poss
50% for an array.

In Sec. III it was predicted that for largeN and s51, I
should scale approximately as 1/2 log2(N). This is tested in
Fig. 5. The solid line was calculated using Eq.~6! and the
circular data points are the results from the digital simu
tion. Good agreement is observed thus confirming the va
ity of Eq. ~6!. The dashed line was obtained from the a
proximation derived in Eq.~7!. Despite slightly under-
estimating the exact result this approximation clearly p
dicts the correct scaling at largeN, thus confirming the
1/2 log2(N) scaling. However, it is important to note th
scaling was derived for the specific cases51. For other
values ofs the scaling breaks down; this is demonstrated
the simulation results fors50.2 ~crosses!—the dot-dashed
line is a fit to the data. The fit predicts a scaling ofI
;0.29 log2(N) and, therefore, generally the scaling is seen
dependent on noise intensity asI; f (s)log2(N) where f (1)
51/2.

FIG. 4. Plot of~a! H(y) and~b! H(yux) againsts for variousN
andu50. The curves were obtained from Eq.~9!.
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C. u dependence

All the results discussed so far were obtained by sett
all thresholds equal to the mean of the signal, the depende
on u is now discussed. Figures 6 and 7 show the effects
varyingu; Fig. 6 shows the transmitted information and F
7 the contributions fromH(y) andH(yux). In these figures
the number of elements was held fixed (N563). Considering
Fig. 6, it can be seen that, similar to theN51 case~Fig. 2!,
the information is maximized whenu5^x&50. However,
SR type behavior is now observed independent of the thre
old value and is significantly enhanced—even for the s
threshold signals. Additionally, asu is increased the maxi
mum in I is shifted to higher noise values and can eas
surpasss51. The reason for this can be seen in Fig. 6~a!;

FIG. 5. Scaling ofI with N. The crosses and circles are da
points from the digital simulation. The solid line was obtained fro
Eq. ~6!, the dashed line is the approximation Eq.~7! and the dot-
dashed line is a fit to the data.

FIG. 6. Plot of transmitted information againsts for N564 and
variousu. The curves were obtained from Eq.~9!.
4-6
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the position of the maximum inH(y) is seen to strongly
depend on the threshold setting. This is, of course, an o
ous result—as the thresholds are moved away form the
nal mean, larger noise intensities are required to distrib
the threshold levels over the signal space.

The results in Fig. 6 raise an interesting point; as
thresholds are increased away from the signal mean there
smooth change from suprathreshold to subthreshold sign
However, there is no obvious change over between SSR
conventional SR. This implies these two effects cannot
distinguished. Obviously when the signal is subthreshold
mechanism giving rise to SSR does not ‘‘switch off’’—th
noise still enables additional output states of the system t
accessed thus resulting in an improvement of the transm
information. In this respect the term SSR is a bit of a m
nomer, the SSR mechanism does enable noise to enhanc
detection of suprathreshold signals but not exclusively
Comparing the subthreshold results~u52.83! in Figs. 2 and
6 shows that the subthreshold SR effect is significantly
hanced by increasingN. This is because both SSR and co
ventional SR effects are now contributing to the informati
gain.

D. Signal power and signal-to-noise ratio SNR

Traditionally, SR effects have been characterized
quantities such as the output signal power and SNR. It
therefore, of some interest to consider these quantities
this system. The broadband nature of the signals means
Fourier techniques cannot be employed to experiment
measure either the signal power or the SNR; they can, h
ever, be easily obtained from a time domain analysis. T
response of the array,y(t), can be split into a signal contri
bution, ^y(t)& and a noise contribution,n(t) where y(t)
5^y(t)&1n(t). The bracketŝ¯& denote an ensemble ave
age over the noise and hence, in the limitN→`, y(t)
→^y(t)&. The signal power,Sp , and noise power,Np are
then given by

Sp5„^y~ t !&2^y~ t !…2, ~12!

Np5„n~ t !2n~ t !…2, ~13!

FIG. 7. Plot of~a! H(y) and ~b! H(yux) againsts for various
N564 and variousu. The curves were obtained from Eq.~9!.
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where bars denote time averages. The SNR is defined in
conventional manner as the ratioSp /Np . Equations~12! and
~13! enable the SNR to be obtained from simulation data
the time domain. To proceed further with the calculation o
notes that the signals and noise used in this study are
godic, hence the time averages can be replaced with aver
over the signal distribution. For the caseu5^x&, the statistics
of the response follow a Binomial distribution and hence

Sp5N2E
2`

`

Px~x!~P1ux2 ȳ!2dx, ~14!

Np5NE
2`

`

Px~x!P1ux~12P1ux!dx, ~15!

where ȳ5*2`
` Px(x)P1uxdx. Equations~14! and ~15! can

now be used to calculate the SNR numerically.
Before discussing the results it is worth noting that t

definition of the SNR differs slightly from that typically use
to characterize SR for sinusoidal signals. For a sinuso
signalSp yields thetotal integrated signal output power, i.e
the power in the fundamental plus all harmonics. This diffe
from the conventional definition used for SR which norma
only considers the power in the fundamental. However,
broadband signals it is not possible to distinguish individ
spectral components and hence the modified definition
necessary.Np is essentially unchanged from the standa
definition and is simply equal to total integrated power of t
spectral background~as opposed to the power at the forcin
frequency.! It should be noted that the SNR defined in th
manner~i.e., total signal power over total noise power! is the
one conventionally used in engineering when treating bro
band signals@27#.

Figure 8 shows the dependence ofSp on noise intensity
for several values ofu and Fig. 9 shows the SNR. Conside
ing the signal power first, it is clear that for predominan
suprathreshold signals~i.e., u50 and 1.5! no maximum is
observed. Increasing the threshold value, however, does
to a noise-induced maximum whenu.2. These results seem

FIG. 8. Plot of the signal power,Sp , againsts for N564 and
variousu. The curves were obtained from Eq.~13!.
4-7
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to indicate, therefore, that a subthreshold SR effect occ
but there is no evidence that the SSR mechanism leads t
enhancement of the signal power. In principle, this rai
question about whether SSR is truly an SR effect—this is
course, purely a matter of definition—but it does illustra
that SSR has to be defined as an improvement in the tr
mitted information rather than signal power. The reason w
SSR improves the transmitted information but not the sig
power is straightforward to understand. Foru5^x&50 and
s50 the output of the array switches between its maxim
range 0 andN—thus the signal power is maximized. Addin
noise can only result in this range being reduced—thus l
ering the signal power. However, in the noiseless case
that is known about the signal is its polarity—the who
array switches toN when the signal is above zero and to
when below—thus all but 1-bit~assuming both output state
are equally probable! of signal information is lost. The prob
lem with signal power as a measure of system performanc
that it does not take into account the form of the response
only quantifies the size of the signal-induced effect. T
may have some use in the context of signal detection~pro-
vided one does not need to know much about the sig
being detected! but is not so useful when the ‘‘quality’’ of
signal detection is important.

The results for the SNR~Fig. 9! are more surprising. No
form of SR effect, SSR or subthreshold SR, could be
tected regardless of the positioning of the threshold. T
SSR effects do not occur can easily be inferred from
results in Fig. 8, but the fact that conventional SR effects
also not observed is unexpected. This result has been
firmed both numerically@solid line obtained using Eqs.~14!
and~15!# and by digital simulation using Eqs.~12! and~13!
~circular data points!. The reason that SR does not occ
even for predominantly subthreshold signals is due to
distributed nature~in signal space! of the signal. Gaussian
signals, although appearing to decay relatively quickly due

FIG. 9. Plot of the output signal-to-noise ratio againsts for
N564 and variousu. The data points are results from th
digital simulation and the curves were obtained from Eqs.~13! and
~14!.
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the exp(2x2) factor, do not decay ‘‘quickly enough’’ for SR
effects to occur. The peak-signal-to-threshold distance is
well defined, as it is in the case of a sinusoid, and henc
smearing of the SR effect takes place. This is also the rea
why the curves of signal power in Fig. 8 show an initi
decrease with increasing noise intensity. Although a Gau
ian distribution is not a good representation of real signa
for signals such as speech and music the situation is wo
These distributions tend to have long tails that are typica
characterized by exponential decays and hence have an
slower decay than a Gaussian@31#. Consequently, SR effect
in the SNR are not generally to be anticipated in thresh
based systems when complex signals are used.

These results help to set the SSR effect in context. Ba
on the SNR it seems that, at least for Gaussianly distribu
signals, no form of SR effect is observed; but in the tra
mitted information both SSR and conventional SR occ
Consequently, the fact that SSR is defined as an impro
ment in the transmitted information is not so restrictive as
first might appear.

VI. CONCLUSIONS

The phenomenology of a new form of stochastic re
nance, termed SSR, that occurs in parallel threshold ar
has been discussed in detail. SSR is found to differ from
in a single threshold element in a number of important wa
First, SSR can be observed with signals of arbitrary mag
tude; there is not, therefore, the restriction that the sig
must be weak ~subthreshold! for SR effects to be
observed—as is the case in a single threshold element.
ond, the SSR effect is maximized~maximum noise-induced
information gains! when the threshold level is set to coincid
with the dc-signal level. In a single element, this conditi
removes the beneficial role of the noise. Third, SSR c
result in large information gains—for large arrays the no
can recovery of up to 50% of the noiseless channel capa
This appears to be significantly greater than is attainable
single element. Indeed, these information gains appea
significant. In a recent study@1# it was found that, for signals
comparable in size to the internal noise, arrays desig
around the SSR effect could outperform those desig
around conventional quantization techniques. This there
seems to indicate that SSR may well have signal proces
applications for the detection of weak signals. As discus
in the introduction, the array studied is a good model o
DIMUS sonar array in the on target position. Although t
noise sources at the hydrophones are predominantly f
external sources, due to the physical separation of the hy
phones they are nevertheless largely independent. Co
quently, the results presented suggest that these noise so
are actually necessary for high fidelity signal detection a
coding and should be taken into account when design
both the array and the signal-processing stages.

Finally, it is of some interest to discuss the results in t
context of neuronal ensembles. It has recently been dem
strated that the SSR effect also occurs in an array
FitzHugh-Nagumo neurons@32#. Therefore, the results pre
4-8



m
ta
al
h
om
w
y

the
bles
ov-
e
ase
also

INFORMATION TRANSMISSION IN PARALLEL . . . PHYSICAL REVIEW E 63 041114
sented for the simple threshold network should have so
applicability to real neuronal ensembles. It has been es
lished that the transinformation is maximized when
thresholds are set to coincide with the dc-signal level. T
has an interesting analogy to the well established phen
enon of dc adaptation in sensory neurons. One well kno
example is in light and dark adaptation of the human e
ev
l
sti
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@33#. The threshold levels adapt, via chemical changes in
cones and rods, to the ambient mean light level. This ena
the eye to operate over a wide range of light intensities c
ering a 109 fold change in energy flux. Therefore, it may b
possible that dc adaptation takes place, not only to incre
the dynamic range over which the eye can operate, but
to enhance signal encoding via the SSR effect.
ev.
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