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Thermocapillary-buoyancy convection in a shallow cavity heated from the side
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Combined thermocapillary-buoyancy convection has been investigated numerically in an extended cavity
with differently heated walls. When the Marangoni number Ma grows, the unicellular flow is replaced by a
steady bicellular or multicellular flow and then either by a hydrothermal wave or an oscillatory multicellular
flow, depending on the dynamic Bond numbery3o The appearance of a hydrothermal wave prevents the
propagation of the stationary roll structure, which spreads from the hot side, over the whole cavity. The
hydrothermal wave itself looks as a succession of the cetigingfrom the cold side towards the motionless
rolls on the hot side. For an intermediate interval of;Bathe parallel flow is unstable with respect to the
hydrothermal wavéHTW), but the multicellular periodic structure generated by the side-wall perturbation is
stable, so that the HTW decays in space when propagating on the background of the multicellular structure.
The nonlinear competition between finite-amplitude, boundary-induced steady patterns and hydrothermal
waves is essential. A nonlinear simulation of flow regimes in a wide region of the values of dynamical Bond
number and Marangoni number is presented. A number of phenomena that cannot be predicted in the frame-
work of the linear stability theory, specifically those characteristic for the motion in the intermediate interval of
Bogyn, as well as the secondary transition from steady to unsteady flows at laggg, Behich takes place
when the Marangoni number Ma grows, are described.

DOI: 10.1103/PhysRevE.67.066308 PACS nunterd7.27—i, 44.27+g, 44.25:+f

[. INTRODUCTION moving downstream has been predicted by the linear stabil-
ity theory [9] and observed experimental[yL0] (see also
During the past decades, convective flows in systems witiRef.[11]). Surprisingly, many experimenfd2-15 revealed
free boundaries attracted much attention, specifically due tthe appearance of one more flow pattestgadytransverse
their relevance to crystal growth processes under microgravmulticellular pattern“cat's-eyes flow”), in an apparent dis-
ity conditions [1]. The simplest convective flow appears agreement with the theory. The explanation of this paradox
when a free surface of an extended liquid layer is subject tavas given by Priede and Gerbdth6]. The standard linear
a horizontal temperature gradief]. This nearly parallel stability theory determines the threshold ot@anvectivein-
convective flow is produced by a combined action of twostability, i.e., the instability which develops in the reference
effects, the buoyancy and the thermocapillary effect. Thédrame movingwith the group velocity of wave§l7]. The
relative weight of each effect is determined by the so calledocal growth of disturbances, which leads to an experimen-
dynamic Bond number Bg, which is the ratio of the Ray- tally observable wavy motion, starts after crossing another
leigh number Ra and the Marangoni number Ma. The paralboundary in the parameter space which is calledattsolute
lel convective flow becomes unstable when the temperaturimstability boundary. In the region of convective instability,
gradient increases. the crucial point is the influence of rigid lateral walls which
The first experiments on the wave instability have beerproduces steady vortexlike disturbances of the flow. These
done by Volkoviski[3] (1935, who investigated the propa- finite-amplitude boundary disturbances generate a steady
gation of a thermocapillary flow from warm container onto structure which either decays in space and therefore is local-
the inclined plate. In the case of a purely thermocapillaryized near the lateral boundafiy the case of the “nontrans-
flow (Bogy,=0), several instability modes have been foundparency’) or fills the whole layer forming a steady multicel-
by Smith and Davig4-7|. The most widespread type of lular pattern (in the case of the “amplification’ [17].
instability, hydrothermalinstability, leads to the appearance According to the extended linear stability theory developed
of obliqgue waves moving upstregm]. The numerical simu- by Priede and Gerbef{l16] (the calculations have been done
lations justify the predictions of the linear stability analysisfor Pr=13.9), for relatively small values of the dynamical
[8]. Bond number, Bg,,<<0.2, the boundary of the absolute in-
Under the combined action of thermocapillarity and buoy-stability is rather close to that of the convective instability,
ancy (Bqy,#0), a transition from oblique, three- thatis why the standard linear stability theory gives a rather
dimensional, hydrothermal waves to two-dimensional wavegiood prediction. In an intermediate interval, €.Bogy,
< 0.3, the boundary of the absolute instability is still lower
than that of the development of a steady multicellular flow in

*Electronic address: nepom@math.technion.ac.il the whole layer, but it is much higher than the boundary of
Electronic address: vshev@ulb.ac.be http://www.ulb.ac.bethe convective instability. For larger values of Be
polytech/mrc Bogyn>0.3, the parallel flow is replaced by the steady mul-
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to define also the deviation from the linear temperature pro-

. file ®=0,—x/T", wherel'=L/d is the aspect ratio.
D free surface In variablesy,w the governing equations in Boussinesq
L T approximation are written as
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FIG. 1. Geometry of the system. The aspect ratiB#s24.7. WJFUF +U IX +WE_ Erv 0, @
ticellular flow produced by the lateral boundary. The predic- Vy=w, O0=x=<I, 0=z<l, 3

tions of the extended linear stability theory agree well with

experimental observatiof44,15. Note that the appearance Where

of boundary-induced steady patterns on the background of an 2 2, .2

oscillatory-unstable steady state is known also for chemical Vo= 05t 072,

reaction-diffusion systems8-20Q. . . . .
However, the linear theory is unable to predict the motionWIth boundary conditions at rigid surfaces=0, x=I".

in the i_n.termediate interygl of %9,?, where the non[inear @=0, =0, aylax=0, @)

competition between finite-amplitude, boundary-induced

steady patterns and hydrothermal waves is essential. It alsg the bottonz=0,

cannot describe the secondary transition from steady to un-

steady flows at large B9,, which takes place when the 0,0=0, =0, dyliz=0, (5)

Marangoni number Ma grows. In order to investigate the

above-mentioned phenomena, we have carried out in that the free surface=1,

present paper a nonlinear simulation of flow regimes in a

wide region of values of dynamical Bond number and Ma-

rangoni number. In Sec. Il, we give a mathematical formu-

lation of the problem and describe the numerical method. In

Sec. I, the results of the simulation are presented. A specialhe dimensionless parameters which appear in Egs(6)

attention is paid to the essentially nonlinear phenomena. Seeve the thermocapillary Reynolds number, Grashof number,

tion IV contains the discussion of results and conclusions. and Prandtl number: Rg= yATd/pv?, Grh,=gBATd/v?,

Pr=wv/k, wherep is the density of the liquidg is the gravity

accelerationg is the heat expansion coefficient, aki the

thermal diffusion coefficient. Indexn means “mathemati-
Thermocapillary and buoyancy convection are consideregal” (see below. One can define also the Marangoni number

in a high-Prandtl fluid filling the rectangular cavity of the Ma,=Re&,Pr and the Rayleigh number Ra Gr,,Pr.

depthd and the length. (see Fig. 1 Two vertical isothermal This formal mathematical choice of parameters, though

side walls are kept at the temperatiitg on the left and at convenient for carrying out the simulations, does not reflect

the temperaturd@, on the right AT=T,—T,). Both bottom the physical aspects of the problem. Indeed, the characteristic

and top boundaries are assumed to be thermally isolated. Th&locity of the flow generated by the thermocapillary stress

fluid is supposed to be Newtonian and the surface tension iS proportional to the horizontal component of the tempera-

on the free surface is a linear function of the temperafyre ture gradientAT/L, rather thamAT/d. Therefore, the physi-

o=0o—y(T—T,), Where y=—4do/dT is assumed to be cal phenomena are characterized by the modified Reynolds

constant and positive. It is assumed that the dependence 8d Grashof numbeifsi4],

the viscosity upon the temperature does not play an impor- )

tant role as the applied temperature difference is rather small Re— ﬁ A_T —Re. /T )

[21], therefore we ignore it in our analysis. We consider two- pr? L = Rém/L,

dimensional flows with velocity components (W) and de-

fine the stream functiogs and the vorticityw by formulas

00
+F1). (6)

3,0=0, =0, w=—RQn( X

1. FORMULATION OF THE PROBLEM

d* AT
Gr= 9,82 T=Grm/F, (8)
U oW Y Ay 4
gz ox’ 9z’ ax’ as well as by the modified Marangoni and Rayleigh numbers,
Ma = Re Pr and Ra= Gr Pr.
We scale the problem by usinyd?/ v, v/d, v/d?, v as units It should be taken into account that under the conditions

for the length, time, velocity, vorticity, and the stream func- of a real experiment, the geometric parameters of the system,
tion, wherev is the kinematic viscosity. The dimensionlessd andL, are not changed while the temperature difference
temperature is defined &, = (T—Ty)/AT. Itis convenient AT is varied. Thus, Re and Gr are not independent but pro-

066308-2



THERMOCAPILLARY-BUOYANCY CONVECTION INA.. .. PHYSICAL REVIEW E67, 066308 (2003

portional, while their ratio, the dynamic Bond number TABLE I. Comparison of results for Pr1.
Bogyn=GI/Re=gppd?/y, is fixed.
Throughout the present study the aspect ratio will remairPresent work:

constant]'=24.7. This choice corresponds to the conditions(61%81) Re<10®  Nunot  NUgoig  #imax< 1072
of the experimen{13] done withL =74 mm,d=3 mm. Ac- g [23] 1 193 192 0.479
tually, the calculations have been done for two different lig-p, oot resuit: 194 1.90 0.483
uids with close Prandtl numbers: the decane with P4.79 (¥IRe)

and the 1cSt silicone oil with Pr13.9 respectively. One may ¢ [23] 5 3.42 3.41 0.366

find their physical properties in Ref§13,14] correspond- P t It 3.45 3.37 0.367
ingly. Most of the results have been obtained for=RB8.9; (l;j;zr; result ' ' '
the results for P+ 14.79 will be given only for the high
Bond numbers, Bg,,=0.65.

For the chosen liquid and aspect ratio, the problem is, . .
controlled by two parameters, the dynamic Bond numbe =4, and P_F0'015'_ The dlﬁgrence in t.he vaIue; of the
Bogyn and the Marangoni number Ma. Note that for the fixedSt'€am function maxima obtained for this very high Rey-
value of I', the variation of Bond number means a simulta-"0/ds number is about 1%: For example, present calcula-
neous change of the depth of the liquid and the length of thd0NS 9iVemax=107.3 versugiya,=108.6 in Ref[24]. For
cavity. Because the physical parameters of the fluid are fixef'® Pure buoyancy convection, the code was also checked
and the depth of the liquid is determined by 3, we shall using the De Vahl Davis te$P5], the results of which are
describe our results using the dimensional temperature di€hown in Table II. , » o
ferenceAT in addition to Ma, so that they can be more easily Al these tests provide a sufficient validation for the
compared  with the experimental data; Ma present numerical code. The results of grid refinement study

=CPrT ! Bog, AT. The coefficientC=(y%/p%v*Bg)¥2 & shown in Table Ill, when Re=26666.7,I'=4, and Pr
yn= b . . L =0.015.
depends only on the physical properties of the liquid. In the A nonuniform mesh 30% 51 has been used for the basic

case of 1cSt silicone 0ilC=293.89, where\ T is measured ) :
t calculations. For the high values of Reynolds number, Re

in degrees Kelvin. :
>40, (Re,>1000), the calculations were done on the
stretched grid 60% 101.

I1l. NUMERICAL METHOD AND CODE VALIDATION

Although the above written two-dimension@D) equa-
tions look simple, to carry out the simulations for such a
large aspect ratio is not an easy task. To solve the problem, A. Stationary flows
the time-dependent equations are approximated by central
differences on a stretched mesh. The smallest step sizes g
chosen near the rigid walls and free surface. An alternatingat
direction implicit (ADI) method is used to solve the time-
dependent problem for the vorticity, the temperature, and th
stream function. The time derivatives are forward differ-
enced. The Poisson equatit8) for ¢ is solved by introduc-
ing an artificial iterative term, analogous to the time-
derivative one. For the convergence of iterations for rathe
high values of Rg, the choice of the iteration parametér
plays a crucial role. Two different approaches are used:
for a new set of parameters a constant valué wfas chosen
according to Ref[22]; (b) at the first iteration the value af
is chosen assy=min(Ax;,Az) and thend is strongly in-
creased 6> &,) and slowly moves back further to the initial
value &, .

Depending upon the characteristic set of parameters, the
first or the second approach was used. The numerical steady
state solution, if it exists, is obtained by the convergence of
the transient calculations.

As a first check of the basic state calculations, the absopresent work 1.654 7.136 13.50 2357
lute value of the stream function minimum and the Nusselippnishi 1.657 7.146 13.59 23.92
numbers on the hot and cold walls are compared with thosegt al. [24]
obtained in Ref[23] (see Table )l The agreement is very pe vahl Davis
good, all the deviations are about 1%. Bench mark 1.653 7.142 13.54 23.59

An additional check is made by comparing present resultgo|ution[25]
with those given by Ohnishi et a24] for Re,=26 666.7,

IV. DESCRIPTION OF RESULTS

A return flow appears in the liquid layer as soon as the
rizontal temperature gradient is established between the
eral walls of the cavity. On the free surface, the liquid is
moving from the hot wall towards the cold one due to the
ﬁ/larangoni and buoyancy forces. At very small temperature
difference AT) between distant walls, two small cat’s-eye
vortices appear near the rigid walls. With increasid@
these two cat’s eyes quickly merge, leading to a single con-
Uective cell and then to the appearance of a stronger cell near
the hot wall and a larger but weaker cell in the volume. The
typical pattern flow of the steady state for the chosen, rather
high-Prandtl number fluid, Pr13.9, is shown in Fig. 2. The
levels of 12 isotherms are taken @g;=0.08. The stream-
lines are also chosen equidistant according to the minimal
and maximal values o¥ in the cavity.

TABLE Il. Test of De Vahl Davis for buoyancy convection.

Ra=10° Ra=10" Ra=10° Ra=1C°
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TABLE Ill. Convergence on the grid. 1.0
Grid #max ::'I; 05F  _ __ooo===" |
& -
100%x 25 101.57 - =« Bop=028
128x32 104.40 ——  804,=0.08
0.0

160x40 106.49 0.0 8.2 16.4 24.7
200x 50 107.33 x (179

FIG. 3. The temperature distribution along the free surface close
i . to the threshold of the instability: Bg,=0.08 when Ma
For a fixedAT, the temperature drops grow slowly with —go7(AT~13 K) and BQy,=0.28 when Ma 960(AT~11 K).
the Increase Of the Bond numbel’, see F'g 3 FOI’ a f|xed Bonﬁhe |arge temperature drops exist near the r|g|d walls.

number, the temperature drops grow faster than the imposed ) ) -~
temperature difference between remote walls. As a result, iRéen carried out for different values of the aspect raftio;
relatively thick layers, e.g., Be0.728, just before the onset the numerical results have been obtained in the 2D case with
of oscillatory instability the effective temperature gradient in@ constant aspect ratio. Although the 2D results correctly
the core of the cavity {T/dx) is up to three times smaller reflect the physics of the phenomena, the critical numbers

than the imposed T/L, see Ref[26]. Therefore the effec- CcOUld be slightly different. Note, that the critical Bg ob-
’ éerved in our calculations is rather close to the theoretical

tive temperature gradient should be used for the calculation s .
of the crﬁ)tical Margangoni number prediction of Priede and Gerbefh6]. _
Althouah th t ratio | ) | a7 We have never observed a genuine unicellular flow at the
ough the aspect ratio is very largeé=24.7, one can threshold of the appearance of HTWSs, but it does exist far

expect that the horizontal temperature gradient in the middl%elow that threshold. The cat's-eyes flow, observed for Ma
of the CaVity will differ from that in an infinite Iayer, because <100. is replaced by the one-cell flow. WF“Ch is detected in

of the existence of the thermal boundary layer near the rigid, (ather narrow region of Marangoni numbers, Md20
vertical walls. It was shown experimentall$4,15 and nu- -+ 20y04. For higher Ma, even for the smallest values of the
merically [26] that the temperature drops exist near both thegynamical Bond number Bgn, We observed a bicellular
rigid walls. Despite the fact that the thickness of the thermajoy that consisted of a strong cell near the hot wall and a
boundary layer near the cold wall is ml,!ch smaller than thayeaker cell in the rest of the cavity, see Fig. 2. The fluid
near the hot one, the temperature drop is larger near the colfoyes counterclockwise in both cells. The cell near the hot
wall. wall has a relatively small size, e.g., in Fig. 2 the ratio of the
sizes of these cells in the horizontal direction is 1:21. The
B. Stability diagram maxima of the stream functions are located at the depth

According to our simulations, further development of the =2/3, and the separation of the cells does not go up to the
flow structure with the increase dfT depends upon the free surface. That could explain why the unicell flow has
dynamic Bond number: for B,=<0.25 the steady flow be- been observed rather often in the experiments, when the
comes unstable to hydrothermal wavésTWs) and for measurements are done near the free surface. For larger val-
Bogy«=0.323 the steady unicellular state is transformed intd€S of Bayn, several cells develop?d near the hot ’\’/(aée
a steady multicellular state and then bifurcates to a timeP€oW. Thus, we find that the term “unicellular flow” is not
dependent one. The experimental results, reported in Rregufficiently accurate for the description of the flow prior to
[14], determine a different value of the critical Bond number, the onset of HTWs, and we shall not use this term hereafter.
Bogy,~0.222. This discrepancy may have several reasons; 1Nhe results to be presented here will be focused on the
(i) it is rather difficult to obtain experimentally that exact study of the different types of instabilities, arising under the

values of the critical parameter§ij) the experiments have Vvariation of the two control parameters: §g and Ma. The
transition map from steady statbicellular or multicellular

isotherms flow) to oscillatory one is shown in Fig. 4 in terms of the

1.0 critical Marangoni number versus the dynamic Bond num-
N 0. ] ber. The value of Ma, at which the oscillations ©f(t) or
(t) are sustained, is referred to as the critical Marangoni
0.0
8.2 16.4 2

.7 number, Ma Ma,,. The solid line corresponds to the nu-
merical results; the crosses on the curve indicate the points
stream lines for which calculations have been done. The diamond at
Bogyn=0.18 when Ma741 corresponds to the experimental
point [15] in Fig.2 whenL,=30 mm, h=1.2 mm, AT
=6 K. The broken line corresponds to the Marangoni num-

[*J

0.0

0.0 8.2 16.4 24.7 bers, recalculated through the efficient temperature gradient
X (1/d) (90 4/3X) mg in the middle of the cavity:
FIG. 2. The steady state distribution of the isotherm®gfand 90, AT\ 1
the isolines of when Prk13.9, Bq,,=0.08, Ma=141 (AT Mags=Ma —) (—) . 9)
=3 K). 2 mdl L
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1800 ‘o isotherms
N O'SM\W\\\\\\I
0.0
0.0 8.2 16.4 24.7
;
g 1050 .
=
1
[ .
It 0.0 8.2 16.4 24.7
Loy aan - exp[14] X (1/9)
Al sl oo — exp[15]
300 _ AT . FIG. 5. Snapshot of the isotherms &, and isolines of the
0.0 0.2 0.4 0.6 0.8 stream functionys when Bgy,=0.08, e=0.0465, Ma= 636 [0,

Bond number =0.08, ¥i=¢nint Ay(0.5+1)].

_ FIG. 4. Stability diagram for P¢13.9 andF=24.7._The solid  Eqr such a wave the functior, ¢ are approximately pro-
line shows the numerical results and the broken line represenEortionm to the real part of exik&+ e 1/) andk=k. +ik.
B, ) r 11

some of them, recalculated through the efficient temperature grad|: . :
. . . . :<0. i -
ent, Eq.(9). The dashed lines confine the transient region between' 0. The quantity 1k;| characterizes the length of the pen

the hydrothermal wavéHTW) and oscillatory multicellular cells e_t(;atlon Illntlc; tlr:“e; rf\f,ltyt];]or a pltirtu“rba;tlorl gen_eratsd by (’;he
(OMC). The steady multicellular cell$SMC) extend up to the siae wall. i » the muftiroll structure 1S observe

HTW, when Bq, < 0.25. over the whole cavity. .
QAn The next transition corresponds to the birth of a hydro-

thermal wave at the cold wall. This hydrothermal wave,

is rather difficult to determine precisely the effective tem-moving from the cold side, appears earlier than the rolls

perature gradient, as the temperature distribution along thg°Ming from the hot side occupying the whole cavity. Even-

cavity has a pronounced wavy profile. Triangles on the bro;ually, the hydrothermal wave is observed as a succession of

ken line show the experimental results of Riley and Neitzelthﬁ rolls rr]noxing from the cold side towards the motionless
[14] in terms of Ma;. For the Bond numbers Bo0.222, 0llS on the hot side.

when the hydrothermal waves were observed in the experi- A sn_apsh(_)t of the o!lstr_lbuuon of_the_lsotherms and the
ment, the results are in a good agreement. streamlines in the cavity is shown in Fig. 5 for the Bond

Note that the effective critical Marangoni Main the number Bgy”fo'OS at the temperature difference slightly
limit Bog,,—0 also well agrees well with the theoretical above the critical value of the onset of the hydrothermal

prediction of Smith and Davi§4]. The broken line can be waves: Ma= 636. and e=(Ma-— Ma?’)/Ma”%O'OA'GS' As .
continued with the same slope as soon as the applied temperature dlfferencg exceeds a certain
value, the hydrothermal wave, generated in the cold part of
MaC! =290+ 474.82Bq,,, the cavity, propagates from the left to the right. Recall that
the motion of rolls in the direction from the cold end to the

and it gives M§=290 for the infinite layer versus Ma NOtend is a characteristic feature of the HTW
~267 for PE=9.25 in[4]. One may see in Fig. 5 that the centers of the rolls are

The stability diagram in Fig. 4 can be roughly separatedocated on the ling~2/3, and with the increase of the Bond

into three regions, according to the slope of the CurVenumber they retain their position in the vertical direction

Ma(Boy,,). Note that the treatment of our results reveals aanng this line. In the horizontal direction, the rolls perform a
yn)-

curious fact, namely, that the oscillatory multicellular state:s_tr"’mslat'Onal motion towards the hot end above the onset of

begin when Bg,, achieves k. (It corresponds to Bg, instability. Only far away from the threshold of the instabil-

; . ; 4 ity, e>1, do they start to move in the vertical direction.
~0.32) It may be a sign of a possible analytical solution. '’ C .
) y 9 P y Therefore it is useful to observe the temporal behavior of the

stream function along this ling=2/3.

To demonstrate that the HTW is moving from the cold
side towards the hot side, the distributions of the stream
In the present section, we consider the left part of thisfunction along the cavity on the height=2/3 are shown in
curve, 0.8<Bogy,=<0.25, where the HTW dominates. For Fig. 6@ during half the period of the oscillation near the
the small depth of cavity, Bg,<0.3, with the increase of threshold of instability. The solid line corresponds to the in-
the temperature difference a few rolimore than onemay  stantt=t, and the other curves are given with a time interval

appear near the hot wall. The transition from one-roll to mul-At=11/10, wherell is the full period. It is obvious that the
tiroll flow structureis nota result of instability. It is caused HTW is propagating from the cold side towards the hot one.
by the influence of the lateral wall that generates a waveNote that the strength of the steady roll near the hot \aé
stationary in time, but spatially spreading towards the coldnaximal value ofys in the vortex centgris much larger than
side with the increase of the applied temperature gradienthat of the other ones. To display better the characteristics of

Actually, for the oscillatory multicellular flowisee belowy, it

C. Multicellular structures and time-periodic hydrothermal
waves at small values of the dynamic Bond number

066308-5



SHEVTSOVA, NEPOMNYASHCHY, AND LEGROS PHYSICAL REVIEW 67, 066308 (2003

1.50 (0) _ Q=Il° 0.26
...... t=to+At
_ 1.25- — - t=ty+2at
N 3
& 1.00 i
& 2
>
0.75
0.50 . . A . :
0.0 8.2 16.4 24.7 0.0 8.2 16.4 247
X (1/d)
o.10 FIG. 7. Five snapshots of the stream function deviation from
0.05 average P(t;)= () — o, When z=2/3, Baqy,,=0.142, Ma
~ =735, €=0.083 AT=11.8).
7 o000
>
= —0.05 tions of the steady rollsee Fig. 7. It oscillates with the
frequency characteristic for the HTW=0.519. The ampli-
—OJ%O ™ e 47 tude of the oscillations of the steady roll near the hot wall is
’ ) X (1/d) ’ ’ not negligible. Note that the maximum and minimum devia-

. tions of the stream functioﬁ/ within the oscillation period

FIG. 6. Instant values ofa) y(t;) over the half period anb) 516 |ocated at the same position. It means that this roll
deviation from averagej(t)=(t)) ¢, When z=2/3, Bayn  oscillates in time but its center is motionless in space.
=0.08, Ma=600.4~Ma, (AT=12.8). With increasing Bond number, the critical temperature

_ L . differenceAT,,, at which the HTW arises on the cold wall,
the HTW propagation, the deviation of the_ stream fU”Ct_'Onincreases. Recall that with a growth AfT, the amount of
from the average value over the whole period of the oscillageagy rolls established near the hot side is also increasing.
tions, #(t) = ¢(t) — ¢, , is shown in Fig. €b) along the cav-  Moreover, the strength of each of them increases faster than
ity at the same deptk=2/3. The different curves are pre- that of the waves near the cold side. Therefore the region of
sented with the time stept=I1/5. As it follows from Fig.  the collision of the HTW and steady rolls is slowly shifted
6(b), the amplitude of the oscillations of the HTW is increas- away from the hot side towards the cold one, until the Bond
ing with receding from the cold wall. number achieves the value Bg~0.25.

For this set of parameters, the HTW collides with the only  For the comparison of the development of two structures,
one steady rol(see also Fig. b the left boundary of which is  the wavy one and the steady one, related to different sides of
rather close to the hot wallx;~23.9. The hydrothermal the cavity, let us introduce a new characteristic, the ratio of
wave “feels” the presence of the steady roll: it decays in thethe maximal value of the stream function in the region “con-
region 21.xx<23.9. Here it is defined that the wave starts quered” by the steady rolls to the maximal valueyofn the
to decay when not only the amplitude of the oscillationsHTW spreading from the cold side,
decreases but also the oscillations become nonharmonic and
succession of the snapshots in time is out of order. From the rsy=max Js)/max yrw).
right side it is confined by the steady roll. The vertical dotted
lines atxy=21.1 andx.=23.9 in Figs. 6a) and Gb) frame

) S Actually, in the multicellular structure the first cell near the
the area of the decay. The amplitude of oscillations has Y

~ - ) fot side always has the maximal value of the stream func-
pronounced peak)(t)max=0.071, and it is achieved rather tjon, therefore, max.) is the maximaly inside the first roll.
C|Ose to the hOt Wa”,X~ 18. With increasing Marangoni The dependence of th|S Va'mew upon the Bond number
number, the amplitude of the oscillations grows and thes given in Table IV for approximately the same distance
maximum of the amplitude slowly shifts to the middle of the from the critical pointe. The growth ofrs,,, with the Bond
cavity. For example, for Ma636¢=0.0465 the maximal number, confirms the increasing role of the steady rolls. For
value of the deviations ig(t;)=0.1568 and it is located at this region of Bond numbers, where the HTW dominates, the
x~15.3. points can be fitted by a linear law

The situation in the case, when 8§g=0.142 and Ma
=735, is shown in Fig. 7. For this set of parameters the
amplitude of the oscillations is saturated, and it is almost
constant in the central part of the cavity, while the HTW
decays significantly near the hot side, in the region 26 TABLE IV. The dependence ofs, upon the Bond number
<23.4. Again, one motionless roll is established at the hot'Nen the HTW dominates.
side before the HTW starts to propagate from the cold side

rs,=1.3+1.841BQy,.

As € is higher in this case than in the previous one, shown inBodyn 0.08 0.142 0.18 0.22 0.25
Fig. 6, the HTW is relatively stronger. € 0.0302  0.03125 0.0308  0.034  0.030
Particularly for this case, Bg,=0.142,e=0.083, the in- rsy 1.441 1.560 1.636 1.699 1.754

tensity of the HTW is sufficient to produce forced oscilla-
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TABLE V. Evolution of rs,, when moving above the threshold 0.6090 )
of instability, Bqyy,=0.142.
Ma 678 699 735 780 881 & 06085 ]
€ 0.002 0.031 0.083 0.15 0.30 0.6040
rsy 1.652 1.560 1.477 1.378 1.278 o 100 200 300 400
Dimensionless time
Further, like in the stability diagrarfsee Fig. 4, the slope -8.60[ 0y
will change.
When moving into the supercritical region while keeping . |
the Bond number constant, one can find that the relative> ~*%°
importance of the HTW grows. It is confirmed by the de-
crease of the parametes,, with the growth ofe, shown in -7.90
— V] 100 200 300 400
Table V.fOI' BQiyn_ 0142 . Dimensionless time
Despite the complicated spatial structure of the flow, the .
temporal evolution of patterns in the region B<0.25 is FIG. 9. Dependence of the temperat@g (2) and the velocity

perfectly periodic in time. The analysis of the numerical re-(b) upon time at the middle of the cavity on the free surface,

sults reveals that the oscillations produced by the HTW have I'/2 for Boyy,=0.28, Ma=989, €=0.029.

a rather low frequency, which changes very slowly with in- ) . )

creasing of the depth of the liquid layer, e.§=0.52 for ~ hot wall, fill the part of the cavity wittx.=16.7.

B0gyn=0.08 andf =0.48 for Bq,,,,=0.30. It corresponds to Figure 8 gorresp(_)nds to the flow structure slightly above

the dimensional frequenc§~0.5 Hz for silicone oil 1cSt the onset of instability, Ma 989, ande=0.029. The hydro;

and the depth of the layer 1 mm. By the order of magnituddn€rmal wave, moving from the cold side faces a strong “re-

it is in excellent agreement with a frequency, measured irp/Stance” of the steady rolls. This means that while the par-

experimentg 14]. Another experimental value of the nondi- @€l flow is unstable with respect to the HTW, the

mensional frequencyy=29.23, from Table IV in Ref[15] multicellular periodic structure generated by the side-wall

obtained in case df.=30 mm.h=1.2 mm. differs from our Perturbation is stable, so that the HTW decays in space when
X ’ . ] . .

value, which is equal tey=9.96 after being recalculated in propagating on the background of the multicellular structure.

the variables of Ref[15] , only by 8%, though the Prandtl On One hand, under the impact of the powerful HTW all the
numbers in the experiment and in the simulations are differ-rons that belong to the multicellular structure oscillate in
. _ time, but they resist rather strongly and the centers of the
ent: Pg,=10.3 versus P+ 13.9. . .
rolls do not move in space. Eventually, the amplitude of the
temperature oscillations near the hot wall is 32 times smaller
. . . than that near the cold side. On the other hand, the HTW
D. Modulated hydrothermal waves in the intermediate loses sharply its power due to the collision with the station-

interval of Bogyn ary structure. As a result a calm regi@oractically vortex-

The second range on the stability diagram, 8%y, free zong is observed in the central part of the cavity, 10.6
<0.30, corresponds to the qualitative change in the develop=X<16.7. _
ment of the flow organization. One of the characteristic fea- L€t US discuss now the temporal evolution of patterns at
tures is the change of the slope on the stability diagram, se80ayn=0.28. The oscillations of the temperature and the ve-
Fig. 4. The variation of the intensity of the stream functionlocity with time in the middle of the cavityx=T'/2, are
with time along the cavity on the line=22/3 is shown in Fig. Shown in Fig. 9. Obviously, the observed hydrothermal wave

8 for Boyy,=0.28. Five steady rolls, which are born on the S modulated in time The hydrothermal wave for Bg,
=0.28 has a fundamental frequenigy=0.476, but also two

28 : . - more close frequencied,;=0.488 andf,=0.464, appear.
: : The Fourier analysis shows that in the middle of the cavity,
21| ! the component with the frequengy has the amplitude com-
§ § parable with that for thé,. The frequencyf, reaches the
14 R “f,y - ] maximal amplitude near the collision area, ¥5x3<18.5.
YN N BIETRS : The modulation of the temperature and velocity time depen-
07 | dences in Fig. 9 is caused by these satellite frequencies. The
: ' modulation of ®(t) and V(t) is observed at first time for
0.0 Bogyn=0.25 and exists for all the Bond numbers in this tran-
0.0 8.2 /& 16.4 247 sient range.
x¢ We suppose that the modulation of the hydrothermal wave
FIG. 8. Distribution of¥,; along the cavity over the half period arises due to its collision with a powerful chain of vigorous
of oscillations at fixed time moments. B=0.28, Ma=989, ¢ rolls, which has its own characteristic frequency of oscilla-
=0.029. tions. For the smaller Bg, the critical temperature differ-

At Bogyn>0.25, the oscillations become more complex.

V(zm2/3)

- ! calm =
.1:‘,—10.(-3E region E:t:,,-1(-3.7
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By BOge= 028 1

N o - BOg,=0.142 ]
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AP T~ (9) ] ¥
0.0L= =]
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L ——— Boy= 0.28 ]
o4l - — — - Boy,=0.142
[ T ]
< 3 =~ b
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X (1/d)

FIG. 10. Results of Fourier spectrum: the distribution of the : :
amplitude of the fundamental frequency of the velodi&y and 0.0 8.2 16.4 24.7
temperature(b) along the cavity for different Bond numbers; x (1/9)
fBofygz(?)éMZ’ Ma= 1304, fo=0.519 and Bgy,=0.28, Ma=989, FIG. 11. (a) Instant profiles ofj(t;) over the half period antb)

0_ . .

deviation from average over period of oscillatioﬁ&ti)zw(ti)

ence AT is lower, so that the steady rolls are not strong~ #a When z=2/3, Bqy,=0.30, Ma=1102, ¢=0.026 AT
enough to cause additional frequencies. =12.2).

The variation of the amplitude of the Fourier component . . .
with the fundamental frequency along the cavity, shown inconfmed be.tween them, IOOKS like a motion of a ball pushed
Fig. 10 for Bqy,=0.142 and Bg,,=0.28, confirms the de- from b_Ot_h sides by the_elastlc walls. . .

- yn : n - from Fig. 1(b), the amplitude of the oscil-
scription of the motion given above. The amplitudes are ob- _AS |t_|s Seen 9. AL .
tained by the Fourier analysis of the time sign@&) and Iatl(_)ns in this central area is Ia_rger than that in the _decay
V(t) recorded at differenk positions, and each of them is regions. The HTW loses energy N the favor of the stationary
normalized by the same constant. ForyBe-0.28 both am- wave, and. as it follows from Fig. 11, all stationary rolls
plitudes drastically decrease arriving at the poigt10.6 oscillate with time. The frequency of the os_cnlatlons is equal
and they drop by two orders of magnitudexat=16.7. " to the f_requ_ency of the HTW, but the amplitude of the rolls’

Note that in the case of Bp,=0.142, the amplitude of Osclilll)?gi?\zgih\;exairglaelk thof at i in th
the velocity oscillations,Ay(x) has its maximum in the = is sianifi gl IO a rar\]/e m?] Wane 'r? © crése
middle of the cavity and decreases smoothly towards the ho'%odynfo':30 IS significantly larger than that of the steady
and cold sides, see dashed line Fig(alOThe amplitude of 1.40 : : :
the temperature has maximum closer to the hot side, sharpl First half of a period L (@)
decreasing in the region of the decay of the HTW. Closer to__ 1.34 At

)

the hot side the amplitude slightly increases again, indicatingw
the oscillations of the stationary rdee Fig. 1(b) and also ‘E 1.28 \
Fig. 7]. The different positions of the amplitude maxima of 3 122
the velocity and temperature indicate the thermal nature ol
the boundary-generated stationary rolls. 1.16 . . .
The most amazing case corresponds tg,860.3. Itis a 9.2 10.1 11.0 1.9 12.8

first sign that the multirolls intend to control the heat and
mass transfer in the cavity. For this combination of param- 1.4
eters, the strength of the second roll from the hot side is the
same as the strength of the HTW. According to Fig(al,l 1.34

the HTW still exists in small region near the cold wall, 0 3 1.28

<x=6.8, followed by the region of decay 6:%<9.9. On & )

the side of the multiroll structure there is also a small region> 5, L-2%

of decay, 14.xx<15.5. In the central part, between the

regions of the decay of both waves, 9.9<14.1, there is a 1.16 .5 : :

region of the “shuttle” motions. A roll, pushed by the HTW, 9.2 101 x '(11'}3d) 1.9 128
moves to the right and after collision with a stationary wave,

goes back. The broken lingg=9.9 andx.=14.1 in Fig. 11 FIG. 12. Instant profiles ofi(t;) over (a) the first and(b) the

are framed for this region. One may say that the strength afecond half of the oscillation period when Bg=0.30. This is the
both waves is similar, therefore the motion of the (9l  enlarged central part of the Fig. (&l clarifying the return motions.

066308-8



THERMOCAPILLARY-BUOYANCY CONVECTION INA. .. PHYSICAL REVIEW E67, 066308 (2003

1.07:% Ma= 1102
N 0.5~ AV, .= 3.34
t=1/5
0.0 : :
0. 24.7
1.0 -, o, o T = . . .
~N 05 AV,..= 3.28
- t=2T/5
0.0 : :
0.0 24.7
1.0 : E0) _0_
N 0.5 T AV~ 2.76
t=37/5
0.0 . .
0.0 247
1.0 A
-0 Lo---- O, ______
N 0.5 ' | T AV,= 2.23
| t=4T/5
0.0 - I
0.0 24.7
1‘0 Y7~ Ay
N 0.5 &V = 3.43
t=5T/5
0.0 : :
0 5 10 15 20 r

x (1/49)

FIG. 13. Snapshots of the deviations of the stream function from average over the period of the oscilléfjeng(t)— s, When
Bogyn=0.30, Ma=1102, €=0.026. The solid and dashed lines correspond to the negative and positive vallgy. of

multicellular structureg/see Fig. 1la)]. The wavelength of our results are similar to the experimental results of Ref.
the wave propagating on the background of the latter strud-14], where for their highest Bond number, Bg=0.222,
ture is even larger than that of “free” traveling wavgsee  for which they observed the HTW, the measured value of the
Fig. 11(b)]. Probably, this circumstance is caused by the difwavelength was\/d=2.70. Near the hot wall the wave-
ference in the dispersion relation of both kinds of walfes  |ength is almost twice smallex/d~ 1.5, indicating another
the same frequency, the wave numbers are diffgrent origin of the flow pattern.

f Trt‘e Sﬁ‘?"el of Fig. 1(8) ql%es r}ot a”?]W a clearl recognlftuI):rj The behavior described above is clearly visible from the
of the shuttle motions. Therefore the central part o 'g'r%napshots of the fUNCHONK(X,2,t) = P(X,2,t) — thay(X.2)

11(a) at an enlarged scale is shown in Fig. 12. The instan o n T WA
prc()fi)les of y(t) agre shown separately for%he first and the OVer the period in the whole cavity in Fig. 13. The isolines of

second half of a period, curve 1 corresponds+d,, curve the deviation functionj(t) are shown inside the whole cav-
2 corresponds to=t,+ At, etc. According to the succession ity at five different instants of time during one period of the
of curves, at the first half of a period the roll moves to theoscillations. The levels of isolines are equidistant. To present
left and at the second half it moves to the right. the oscillations with very different amplitudes on both sides,
The dimensionless wavelength is seen to be a one mork9 different levels of isolines are plotted. The location of the
proof of the existence of two different mechanisms of thecells near the cold side at different time moments indicates
pattern generation on both sides of the cavity. According tdhe propagation of the wave to the right. The presence of
the linear theory of Smith and Davigl] for zero-gravity = some “ghosts” in the right part reveals the oscillations of
conditions, the wavelength of the HTW /d~2.4. Our stationary rolls under the influence of the collision with a
calculations for the smallest Bond number, (3g=0.08, HTW.
give a close value near the cold sidgdd~2.54. It is ob- Let us describe now the evolution of temperature fields. A
tained that the wavelength of the HTW practically does notfew, usually ten, snapshots of the temperature have been re-
depend upon the Bond number. Even at the transient regimeprded over period in equidistant time moments=1I1/N,
when Bg,,=0.28 and Bg,,=0.30, the wavelengths near hereN is the amount of snapshots ahH is a period. The
the cold wall aren/d=2.74 and 2.95, respectively. Note that temperature profiles at time instan®y(t;) =®q(Ati) are
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FIG. 14. Snapshots of the temperati@g(t;) during one circle 0.10 _\ NN NN RRNNNNY 0.080
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x=0.25"; (b) x=0.5["; (c) x=0.74" (ten snapshots at each loca- N N Y RN \\\\\;\\
tion). SRS SO O \ N
NN NSRS R NN
0.00
0 5 10 15 20 25

shown in different locations along the cavity in Fig. 14. In X
agreement with the above described behavior of the flow

pattern for Bg,,=0.30, the largest temperature oscillations  FIG. 16. The coexistence of the different types of motions de-
are observed in the region controlled by the HTW when pending on the dynamic Bond number.

=0.25I". The amplitude of oscillations, being smallest on

the free surface, is almost constant at the deeper part, O deviations of the tem ;

X . perature from the average value during
<0.75. In the region of the shuttle motior= 0.5 I, the one period of oscillations,
temperature oscillations are one order of magnitude smaller
than atx=0.25T", although they are well visible. The maxi- 5
mal variations of the temperature are observed near mid- 0;=0(t;))—0,,, where O,,=
depth of the cavity, 04 z<0.75. In the region controlled by
the steady rollsx=0.75T", the temperature profile is prac-

tically unchanged within the oscillation period. . -
One more confirmation of the fact that we deal with the2'® shown. In accordance with the prediction of Sniih

; P . he maximum amplitude of the temperature oscillations is
hydrothermal wave is presented in Fig. 15. In that figure, théreached at half a depth. As it follows from Fig. (&5 for

Bogyn="0.08, when the HTW exists almost in the whole vol-

N
21 Oq(t)),

Zl -

100 ume, the maximum amplitude is achieved at the depth a little
0.75 bit higher thare=d/2. For the Bond number Bg,= 0.3, the
maximum amplitude is located at=0.75d. Note that this
N 050 temperature distributi_on corresp_onds to th(_a re_zgion_ of the
’ shuttle motion. The minimal amplitude of oscillations in both
cases is observed on the free surface.
0.25 The coexistence of two different types of motions, the
0.00 HTW and multirolls structure, and transition between them

146  —0.73 0.00 0.73 146 aI_ong the cavity are summarized in the dlagram shown in

1004(0,-0,,) Fig. 16. The values of the Bond numbers, for which calcula-
o tions have been done, are written on the left side. This dia-
gram is built on the basis of the animation of the numerical

1.00 results. In the processing of numerical results for the sus-
0.75 | tained oscillations the short “movies” have been done. It
’ allowed to determinéwith some tolerangeregions in space
where the HTW collides with the multirolls structure. The
~ 0.50 i various shadings correspond to the different scenarios of the
flow organization. Near the cold wall, on the left side, the
0.25 ] HTW controls the situation up to Bg,=0.30 (shaded by
(b) diagonal lineg The region, occupied by the multirolls near
0.00 the hot wall, is slowly extending coming from the right side,

-0.46 -0.23 0.00 0.23 0.46

100+(6,-0,,) until it conquers the whole cavity, Bp,>0.3 (another type

of shading. The space, shaded by the mesh, displays either
FIG. 15. Deviation of the temperature from the average duringthe region where the oscillatory structures, usually the HTW,

one circle of the oscillations at the position=T'/2 (a) Boy,, decay or calm region, e.g., for Bg=0.28. Only for the

=0.08, (b) Bogy,=0.3. Bogyn=0.30 in the central part of the cavity the return mo-
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Snapshot of isotherms

VNV,

0.0 82 16.4 24.7

V' ( Bogy=0.142 )

Snapshot of stream lines

(v)

0.0 8.2 16.4 247 -330

X (1/9) ° 2 4 &
Dimensionless time

FIG. 17. Snapshot of the oscillatory multicellular state when

. 18. f velocit time for diff t
Pr=14.79, Bg,,=0.728, Ma- 1836, ¢=0.3 (AT=13). FIG. 18. The dependence of velocity upon time for differen

regimes of instability(a) hydrothermal wave, Bg,=0.142 andb)
multirolls, Bayy,=0.65.
tion of a few rolls(kind of “oscillator”) has been observed.
This is shown by special shading. becomes four times larger: the dimensionless frequency for
the HTW is practically constant and it is abdut0.5, and
_ » for the multirolls it begins fronf =2 and slightly grows with
E. Multicellular structures and the transition to nonsteady increasing Ma. This is confirmed by Fig. 18, where the de-
motions for large Bagyn pendence of velocity upon time is shown for two different

For Bayy,>0.3 the multirolls structure fills the cavity be- regimes, e.g., Bg,=0.142, upper plot, and Bg,=0.65,
fore the instability sets in. For the investigated Bond num-lower plot. The solid curves show normalized velocity
bers, 14 corotating rolls are established in the cavity befor&/* (t) =V(t) —0.5(Vmaxt Vmin) Near the cold side, whex
the onset of the oscillations. The leading role is played by the=3I'/8 and dashed curves correspond to the velocity near
first roll near the hot side. The observed value of the strearthe hot side, whex=7I"/8.
function inside this cell is considerably higher than any other For Baqy,,<0.25, the velocity and temperaturgot
ones throughout the calculatiofigp to e~1). shown oscillations have a perfect sinusoidal form both near

Above the threshold of oscillatory instability, just this roll the hot and cold walls, only the amplitudes vary. Usually the
pushes the chain of vortices and the disturbances propagatependence® (t) andV(t) are out of phase, but the phase
from the hot to the cold side. The initial impulse is strength-shift is constant along the cavity. If we plot the temperature
ened with the increase of Ma, and eventually at some timelistribution instead of velocity in Fig. 18), only the scale
instants for certain Ma>Ma, the small vortex with the would be different. For the transient regime, G280y,
opposite direction of the circulation appears near the free<0.30, the time signals look still sinusoidal but their ampli-
surface between the first roll and the second roll. The snapude is differently modulated at the various space points
shot of the oscillatory multicellular state in Fig. 17 is chosenalong the cavity(e.g., see Fig. @
in such a way as to demonstrate the existence of this vortex As soon as the multirolls take power the time signA(s)
with counter clockwise direction of a circulation. It is shown and ©(t) are not anymore sinusoidal, although periodical
by the dashed lines in Fig. 17 for the streamlines when Pand self-sustained.
=14.79, B@y,=0.728, Ma=1836,e=0.3. Just near the hot walk="71"/8, the signaV* (t) is qua-

It seems that the physical mechanism of instability issisinusoidal, but arriving at the center of the cavity the signal
similar to those described in Ref®27,28. This mechanism already receives a complex shape, although the amplitude is
is related to the temporal interaction between large-scalenly 2 or 2.5 times smaller. Closer to the cold watl,
thermal structures within the flow field near the hot wall and=3I'/8=6.9, as it shown by solid line in Fig. 18, the
the temperature sensitive free surface. The transition frorsignal completely changes the shape and the amplitude re-
steady to oscillatory regime occurs when the fluid motionduces by approximately ten times. Further the shape of the
becomes sufficiently strong, so that the cold tonfirgen,  signal remains approximately the same, but the amplitude
established inside the liquid near the hot wall, is able tocontinues to decreasd,(x=0.12)=0.1A,(x=6.9). Ana-
influence the thermocapillary surface. On the snapshot adfyzing the similar signals at other positions along thaxis,
isotherms in Fig. 17, it is clearly seen that the colder regiorone may draw a conclusion that this wave has an amplitude
framed by the first isotherm penetrates rather deeply andonstant in time but varying in space. The qualitative behav-
closely to the hot wall. For supporting oscillations, the aredor of the temperature is similar, but for the latter regime the
of free surface sensitive to cooling has to lie within the in-phase shift between the temperature and velocity does spa-
fluence of the cold finger. tially vary.

The first characteristic feature of the side-wall instability  To clarify once more the direction of the propagation of
is a high temporal frequency. Near the transition between théhe oscillation in the case of high Bond number, the snap-
HTW and multirolls instability (Bgy,=0.3), the frequency shots of the deviations of the stream function from average
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10 Mo= 1695

ar= 12.7
‘l’m- 9.46
t=T/5

~N 05

0.0
0.
1.0
N 05
0.0 FIG. 19. Snapshots of the de-
0. viations of the stream function
1.0 from average over the period of
the oscillationsy(t) = y(t) — ¢,
N 0.5 when Bgy,=0.65, Ma=1695, €
=0.09. To show the structure of
0.0 weak deviations near the cold side
0. (x=0), 21 equidistant isolines are
1.0 plotted. Moreover, maximal and
minimal values of the stream
N 05 function are reduced by 40%.
0.0
0.

1.0

0.0

W)= () — i, Over the period of oscillations are shown and the first harmonic become equal just after crossing the
in Fig. 19 for Bqy,=0.65, Ma=1695. The amplitudes of middle of the cavity. Further to the left, the first harmonic

oscillations are very different on both sides, therefore the2f, becomes leading and closer to the cold wall all ampli-

maximal and minimal values of the stream function are retudes rapidly decrease. Despite the large aspect ratio, the
duced by 40% and 21 equidistant isolines are plotted. Thetrong interaction of different harmonics is observed. Possi-
levels of isolines are not written in order to simplify the bly the amplification of the second harmonics near the cold

picture. side is caused by a certain nonlinear interaction between dif-

Intensive oscillations are born at the hot side=(") and

then they propagate to the left decaying in space on the back- ,
ground of the system of vortices. The structure starts as ¢€ 10 =/ 8 x=or/8
bivortex, but then it loses the bivortical shape due to the g 8
decay and smoothening. In the left part of the cavity, the &
intensity of oscillations is so small that the centers of vorti- 2
ces are motionless. It is worth comparing this picture with a ¢ i o | l N
similar one for the small Bond number, see Fig. 13. Com- 02 46 810 0246810 0 2 4 6 810

x=5r/8

4

Q = N U & O

ON & O

parison clearly demonstrates that for small Bond number de- Frequency Frequency Frequency
viations spread from the cold to the hot side, while for higher
Bond number the oscillations propagate in opposite direc- 0.40 0.6

x=4/8 x=3r/8 x=20/8

b b
» ®

tion. 0.30

The decay of oscillations propagating to the left is com- 0.4
patible with the results of Fourier analysis for §g=0.65. 0.20
The results of the temporal Fourier analysis at different £ o.2 0.10 02
points along the cavity are shown in Fig. 20 for the velocity = o¢ L l 1 000 A 0.0 A A
on the free surface. Near the hot sides 71'/8, (first plot) 02 46 810 0246810 0246 810

. . . A . Frequency Frequency Frequency

the oscillatory flow practically consists of a single Fourier
modef,. With receding from the hot wall, at least two higher  FIG. 20. The temporal power spectrum of the surface velocity at
harmonics 2, and 3, with distinguishable amplitude ap- different positions along the cavity when 8g=0.65;x=0 corre-
pear in the spectrum. The amplitudes of the main frequencgponds to the cold walk=T corresponds to the hot wall.

Power spectrum
o © © o
o

o
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€ ;'g v, za1 0008 v, 273 | 008 V. 2173 paring the liquids with P£13.9 and P+14.79, e.g., 1cSt
£ 0.006 0.06 silicone oil and decane.
§o° 0.004 0.04
g b.002 002 V. CONCLUSIONS
a
°-°o > SL e 18““"0 o GL 8‘ 100'000 > sk =70 Combined thermocapillary-buoyancy convection in shal-
Frequency Frequency Frequency low cavity with differently heated walls has been investi-
gated numerically. The results are obtained for a fluid of
Prandtl number 13.9 with an aspect rakie-24.7.
¢ 2° o 1. o 25| ° o =15 The presence of the remote walls drastically changes the
£18 20 4 flow organization, which would be expected from the results
& 10 for the infinite layer:(a) quantitatively—due to the tempera-
$os 2 ture drops near the rigid walls arfd) qualitatively—due to
& 00 L A o ) o the appearance of a new type of instability.
"0 2 4 6 810 0 2 4 6 810 0 2 4 6 8 10 In the previous sections, we have shown that there exist
Frequency Frequency Frequency two various types of instabilities which are determined by

. two control parameters: the dynamic Bond number and Ma-

FIG. 21. The temporal power spectrum of the surface velocity anaoni number. For relativelv small Ma and nuMbers

and surface temperature at different depths in the center of th 9 e y . &e T

cavity; Bay,=0.65. the steady convective cell appears in the volume, which is
Y split into a stronger cell near the hot wall and a larger but

. . . . ... weaker cell in the rest of the cavity.
ferent harmonics, which cannot be explained in qualitative sz, increasing Marangoni number this steabicellular
terms. . . ) or multicellulap flow gives rise to the oscillatory flowhy-
The results of the temporal Fourier analysis at differeénty qihermal wave With increasing dynamic Bond number,
depths are shown in Fig. 21 for the velocity and the temperag,e small cell near the hot side grows and other cells appear

ture at the middle of the cavity when B =0.65. The main  hich spread towards the cold wall. The intensity of the

frequency of the velocity field and its harmonics have theyoiion in the corotating cells rapidly diminishes with the

largest amplitude on the free surfatze;l_. As the veloCity  gistance from the hot end. The multirolls invade the cavity
has a minimum at the line=2/3, all amplitudes are smallest pefqre the oscillatory instability sets in. The transition from a

at this depth, compare the scales. Closer to the bottom, gteady bicellular flow to a steady multicellular flow is not a
=1/3, the amplitudes of, and 2, are equal, although one oyt of instability.

order of the magnitude smaller than that on a free surface.  The results of calculations are summarized as a stability
The temperature oscillations of the main frequehgye- diagram Ma,(Boy,,) in Fig. 4. The different types of insta-
tain the leading position in the middle of the cavity for vari- bility have beenyidentified unambiguously: for the small
ous depths, although the amplitude has a pronounced maxgong numbers, Bg,<0.3, the instability begins as a hydro-
mum at the deptte=2/3, e.g.,A¢(z=2/3) is 28 while  hermal wave which is generated on the cold wall. This hy-
Ap(z=1)=2. _ - , drothermal wave, moving from the cold side, appears earlier
Above the threshold of instability the amplitude of the than the rolls coming from the hot side conquering the whole
spatial oscillations grows with the increaseeoflt becomes cavity.
tight for the 14 rolls to exist togeth(_er and at certain set of Contrary to the majority of the experimental results in the
parameters the amount of rolls begin to decrease. The ev@ytended layers, a genuine unicellular flow was never ob-
lution of the number of the rolls versus Marangoni number iSgaryed at the threshold of the appearance of the HTW. For
shown in Fig. 22 for P—F14.79._ Note_t_hat no essential dif- {he smallest values of the dynamical Bond numbeg,Bpa
ference in the development of instability was found on com+;ce|iylar flow was established in the cavity. For larger val-
ues of Bqy,, several cells were developed near the hot wall.

.g 14 Probably, a special experimental technique should be applied
S | - in order to explore the separation of the vortices at sehall
e 12r - ] near the hot wall. Thus, the term unicellular flow is not suf-
P - ] ficiently accurate for the description of the flow prior to the
o 10T E— 7 onset of the HTW.
e I -_— 1 For the larger Bond numbers, Bg=0.323, the threshold
s 8 —_— of the instability represents the transition from steady multi-
3 | . cellular flow to oscillatory multicellular flow. Contrary to the
E 6 . HTW, in the latter regime the disturbance wave is generated
z : at the hot wall and propagates to the left.
2000 M 4000 The oscillation frequency of the multicellular flow is
° about four times higher than the frequency of the HTW.
FIG. 22. The amount of rolls in the cavity versus the Marangoni ~ For the intermediate interval of Bg, the parallel flow is
number; Pe=14.79,T =24.7. unstable with respect to HTW, but the multicellular periodic
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structure generated by the side-wall perturbation is stablehe experimental datdl4,15 is presented in Fig. 4. For the
The simulations revealed some nontrivial features of the invalues of the Bond number, when the flow is controlled by
teraction between the instability-generated HTW and wallthe instability-generated HTW, the results for the instability
generated steady patterns. A HTW typically decays in thehreshold and the frequency of the oscillations are in a good
region of steady pattern. However, it induces oscillations ofagreement.

the wall-generated system of vortices. The HTW penetrating For the oscillatory multicellular flow, the available experi-
into the region occupied by the steady pattern keeps its fremental and numerical results correspond to the different sets
quency but changes its wavelength. Under the conditions ad parameters. To the best of our knowledge, there are no
a coexistence of both types of mOtion, the HTW near th%xperimenta| results in the transient regime_

cold wall and oscillating multicellular structure near the hot  The validation of the predictions of the nonlinear simula-

wall, satellite frequencies of the oscillations appear, whichions can be done by means of new experiments.
lead to a more complicated, quasiperiodic, temporal behavior

of waves.

The results of the simulations concerning the instability
threshold coincide qualitatively with the prediction of the
linear theory[16] that takes into account the difference be- A.A.N. acknowledges the hospitality of the Microgravity
tween the convective and absolute instabilities, as well as thResearch Center at Free University of Brussels. The collabo-
penetration of side-wall disturbances into the cavity. rative work was supported in part by the EU network ICO-

The comparison between the results of simulations anéAC.
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