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Shape effects on the one- and two-electron ground state in ellipsoidal quantum dots
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The ground state of two conduction-band electrons confined in ellipsoidally shaped quantum dots has been
calculated within the effective-mass approximation, using both a perturbative scheme and a variational ap-
proach. The problem is studied using prolate spheroidal coordinates, which allows us to exactly solve the
single-particle problem and therefore to make a suitable ansatz for the two-electron variational wave function.
The different contributions arising from the Coulomb repulsion and dielectric effects are calculated and dis-
cussed. The dot anisotropy is shown to strongly influence the electron-electron correlation.
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I. INTRODUCTION

The progress in manipulating very small structures~usu-
ally referred to as nanostructures! has given the possibility o
realizing low-dimensional systems1–5 and opened new per
spectives in device fabrication such as single-elect
transistors,6 memory devices, and lasers.7 From the techno-
logical point of view the study of very small structures h
allowed the improvement of device performances~lower
heat dissipation, faster response, etc.!. On the other hand, the
wide interest in studying, both theoretically and experime
tally, nanostructures is given from the fact that on reduc
the structure dimensions the confinement of holes and e
trons shows surprising features which can be underst
only in the framework of quantum mechanics. As the parti
de Broglie wavelength becomes comparable with the st
ture dimensions, quantum effects become relevant, giv
rise to a discrete spectrum of energy levels like for atom
This has gained for quantum dots the name of artific
atoms.1,8–10

The improvement of both experimental methods of co
fining electrons and investigation techniques such as cap
tance spectroscopy has allowed the study of single-elec
features of quantum dots.11–19 In particular addition spectra
~that is, the energy required to add one electron to
N-electron system! have been widely measured and studie
Many theoretical investigations have also been done
which the quantum dot is simulated with a confinement
tential for electrons and holes, assumed to be in the form
a spherical potential well,20,21 isotropic22–28 or anisotropic29

harmonic potential~parabolic confinement!, on-site repulsive
potential,30 infinite barrier at the dot boundary,31 and Gauss-
ian potential.32 There have been many numerical approac
for studying few- and many-electron properties of these
tentials ~such as variational calculations, Hartree a
Hartree-Fock methods, power series expansions, WKB
proach, and several diagonalization techniques!. Most of
these models use the effective-mass approximation for e
trons and holes. However, pseudopotential calculation33

have shown the need of an atomistic description of sm
nanocrystals, which is the best way of taking into acco
interband coupling and the wave function decay outside
dot, both consequences of quantum confinement. Neve
0163-1829/2001/64~12!/125325~9!/$20.00 64 1253
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less, it is important to stress that the effective-mass appr
mation begins failing as very small dimensions are reac
as shown, for example, in Refs. 34 and 35 and that it
been widely used to explain many properties of quantum
spectra. Moreover, the main problems with the effectiv
mass approximation arise for exciton spectra,36 because they
involve hole states. In our case we want only to investig
large-dot conduction-band electron states, for which we
lieve that the simpler effective-mass approximation sho
reproduce realistic results.

It is worth pointing out two other important aspects abo
the progress in quantum dots fabrication. First, shape con
of semiconductor colloidal nanocrystals has been dem
strated to be possible. Rod-, arrow-, teardrop-, and tetrap
shaped CdSe nanocrystals have been fabricated,37,38 using
suitable chemical reagents in the so-calledbottom-upap-
proach andoriented attachment. Rodlike quantum dot geom
etry has been varied from a nearly spherical one to a hig
anisotropic one. These very recent developments open
possibility to investigate experimentally the relation betwe
quantum confinement and the actual dot shape and an
ropy. Second, doping of colloidal quantum dots has be
realized,39 using an electron transfer technique common
employed for organic polymers. In this way conductio
band electron properties~such as infrared spectra! can be
investigated.

The theoretical aspects of single- and many-particle pr
erties of anisotropic quantum dots have been studied for
cular, elliptic, and triangular vertical quantum dots,40 ellip-
soidally deformed vertical quantum dots,41 quantum
confinement within an ellipsoidally deformed harmon
potential,29 and ellipsoidal quantum dots.42,43 In these last
two works, the dot anisotropy has been taken into acco
within a perturbative scheme, as a correction to the spher
quantum dot spectrum, while the valence-band degene
has been properly taken into account. On the other hand
previous works,44,45we have shown that if an effective-mas
single-band model is assumed, the single-particle ellipso
quantum dot spectrum can be exactly studied, and the e
of the dot shape on the infrared optical properties taken
account for an arbitrary anisotropy. The exact treatment c
not be performed or becomes very demanding if band mix
and degeneracy are considered. We believe that even if
©2001 The American Physical Society25-1
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mistic calculations are the proper way of describing the b
structure of confined structures,46–48 effective-mass calcula
tions can give realistic descriptions of the quantum dot pr
erties, if the dot dimensions are chosen not too small an
care is taken about the boundary conditions.49,50Moreover, it
must be stressed that our main interest is in bringing out
relation between the one- and two-electron ground-s
properties and the dot shape, rather than band mixing
degeneracy effects which have already been studied.33,36,51

In Sec. II we present how, with a suitable coordina
change, we can exactly solve the single-electron confinem
in an ellipsoidal quantum dot. Because of the dielectric m
match between the quantum dot and the surrounding
dium, dielectric effects must be included in the electro
spectrum calculation.33,51 Therefore, in Sec. III we show th
analytical calculation of the surface polarization charge
tential induced by an electron moving inside an ellipsoi
medium. The study of the two-electron ground state is p
formed both in the strong confinement regime~correlations
effects are supposed negligible in this case! and by using the
variational method. A suitable trial wave function, able
account for the electron-electron correlation as well as for
dependence on the dot anisotropy, is made, as shown in
IV. It must be pointed out that by using the curvilinear coo
dinates proper of the ellipsoidal quantum dot, the choice
this function can be done in a more appropriate way. Mo
over, Coulomb and dielectric effects, often evaluated a
first-order correction to the confinement energy, can be ta
into account even if their contributions become very r
evant. In Sec. V we present our results about the one-
two-electron ground states, showing the different contri
tions arising from the electron confinement~kinetic energy!,
Coulomb repulsion, and dielectric effects. It is shown h
the electron-electron correlation changes with both the
anisotropy and the dielectric mismatch. Finally, in Sec.
we draw some conclusions.

II. SINGLE-PARTICLE ENERGIES

In previous works44,45 it has been shown that th
effective-mass single-electron problem within an ellipsoi
quantum dot can be exactly treated by performing a suita
coordinates transformation. Let us consider an ellipsoid w
azimuthal symmetry around thez axis and let us indicate
with a and c its semiaxes in thex-y plane and along thez
axis, respectively. If (x,y,z) indicate the Cartesian coord
nates, we can define a new set of coordinates (j,h,w) ~pro-
late spheroidal coordinates! as follows:

x5 fA~j221!~12h2!cosw,

y5 fA~j221!~12h2!sinw, ~1!

z5 f jh,

where 1<j,1`, 21<h<11, 0<w,2p, and f repre-
sents the ellipsoid semifocal distance. Using the transfor
tion ~1! the ellipsoid boundary can be represented by
equation likej5 j̄. It is not difficult to show that the follow-
ing relations hold:
12532
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H fAj̄2215a

f j̄5c
⇒5 f 5cA12

1

x2
5ce,

j̄5
1

A12
1

x2

5
1

e
,

~2!

wherex5c/a is the ellipsoid anisotropy ande5 f /c is its
eccentricity. It is evident that Eq.~2! is valid only if x.1,
which follows from the fact that the transformation~1! pa-
rametrizes the space with ellipsoidal surfaces which have
semiaxis along thez direction greater than the semiaxes
the x-y plane. Writing the Laplacian operator in the ne
coordinate system it is possible to show that the solution
the Schro¨dinger equation

2
\2

2m*
¹W 2c5Ec ~3!

~wherem* is the electron effective mass andE its energy!
can be factorized. In other words, it can be written
c(j,h,w)5 je(j)S(h)exp(imw) where the azimuthal sym
metry around thez axis has been taken into account a
je(j) andS(h) are, respectively, solutions of the two sep
rated equations:

d

dj F ~j221!
d je~j!

dj G2S A2h2j21
m2

j221
D je~j!50,

~4a!

d

dh F ~12h2!
dS~h!

dh G1S A2h2h22
m2

12h2D S~h!50.

~4b!

In Eqs. ~4a! and ~4b!, A is a separation constant an
h5 fA2m* E/\2. These equations are formally equivale
but must be solved in different ranges of the respective v
ables. Their solution is more difficult than in spherical coo
dinates because they are coupled by both the eigenvalh
and the separation constant. Some further mathematica
tails can be found in Refs. 44 and 45. Here it is enough
say that the hard wall boundary condition@that is, je( j̄)
50# ~Ref. 52! leads to a wave function in the form

cn,l ,m~j,h,w!5 jel ,m~hn,l ,m ,j!Sl ,m~hn,l ,m,h!exp~ imw!,
~5!

wherehn,l ,m gives the quantum-dot-confined electronic spe
trum. It is important to stress that the particle total angu
momentum is no longer a motion constant~as happens in the
case of the spherical quantum dot! because of the loss o
symmetry with respect to an arbitrary rotational axis. The
fore the ellipsoidally shaped quantum dot consta
of motion are its Hamiltonian @with eigenvalues
(\2/2m* f 2)hn,l ,m

2 #, the z component of the particle angula
momentum~with eigenvaluesm\), and the parity operato
@with eigenvalues (21)l#. Let us note thatn51,2,3, . . . , l
50,1,2, . . . , andm52 l , . . . ,0, . . . ,l .
5-2
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III. DIELECTRIC EFFECTS

It is known that if an electron is moving in a quantum d
whose dielectric constant is different from that of the s
rounding medium, a surface polarization charge appears.
dielectric potential generated by this surface charge acts
the electron itself and must be taken into account to prop
describe the electron motion inside the dot.56–61By denoting
with I the quantum dot region (1<j<j̄ in our case!, with II

the surrounding medium (j. j̄), and with « I and « II the
respective dielectric constants, the classical calculation of
total electrostatic potential at a given pointrW when the elec-
tron is atrW0 can be performed by solving the Poisson eq
tion with the conditions that~i! the dielectric potential be
null at large distances,~ii ! it be finite for rWÞrW0, ~iii ! it be
continuous on the surfaceS which separates the mediumI
from the mediumII , and ~iv! its normal derivative be dis
continuous onS ~the ratio between the external normal d
rivative to the internal one in each point ofS being s if s
5« I /« II is the dielectric mismatch!. Because this total elec
trostatic potential is obtained as the sum of the surface
tential F(rW,rW0) ~that is, the potential due to the polarizatio
charge which appears onS) and the Coulomb potential of
point charge atrW0 in the bulk medium, we can write

F~rW,rW0!5G~rW,rW0!2Gb~rW,rW0!, ~6!

where G(rW,rW0) is the Green function of our problem an
Gb(rW,rW0) the Green function for a point charge moving in t
bulk material~infinite medium with dielectric constant« I).
The expansion of the first one in prolate spheroidal coo
nates is62

Gb~rW,rW0!5
q

4p«0« I

1

urW2rW0u

5
q

4p«0« I

1

f (
l 50

1`

~2l 11! (
m50

l

emi mF ~ l 2m!!

~ l 1m!! G
2

3Pl
m~h0!Pl

m~h!Pl
m~j,!Ql

m~j.!

3cos@m~w2w0!#, ~7!

where e051,e15e25•••5em5•••52, j,5min$j,j0%,
j.5max$j,j0%, and Pl

m and Ql
m are, respectively, the first

and second-kind associated Legendre functions. By using
expansion~7! and solving the Poisson equation with the co
ditions given above, Eq.~6! becomes

F~rW,rW0!5
q

4p«0« I

s21

f (
l 50

1`

~2l 11! (
m50

l

emi mF ~ l 2m!!

~ l 1m!! G
2

3
Ql

m~ j̄ !Ql
m8~ j̄ !

Pl
m~ j̄ !Ql

m8~ j̄ !2sQl
m~ j̄ !Pl

m8~ j̄ !

3Pl
m~j0!Pl

m~h0!Pl
m~j!Pl

m~h!cos@m~w2w0!#,

~8!
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whereq52e is the electron charge.
In the calculations we are going to show we have assum

that« I has been assumed as the bulk dielectric constant.
could give incorrect results for the dielectric contributions.
fact, many works9,63–66have demonstrated that on reducin
the dot dimensions the dielectric constant gets lower valu
Nevertheless, all these calculations show that for dot dim
sionsR.5 –6 nm the difference between the confined a
the bulk dielectric constants is negligible. Therefore, beca
we are going to consider large dots, no correction is expec
to come from a size-dependent dielectric constant.

IV. TWO-ELECTRON GROUND STATE

Let us consider two conduction-band electrons mov
inside the ellipsoidal quantum dot. The ground state for
noninteracting system is simply given by the product of tw
single-particle ground-state wave functions:

C0~rW1 ,rW2!5 je0,0~h1,0,0,j1!S0,0~h1,0,0,h1!

3 je0,0~h1,0,0,j2!S0,0~h2,0,0,h2!. ~9!

The two-electron Hamiltonian actually contains interacti
terms as follows:

H5
p1

2

2m*
1

p2
2

2m*
1

e2

4p«0« I

1

urW12rW2u

2 1
2 eFs~rW1!2 1

2 eFs~rW2!2eFp~rW1 ,rW2!, ~10!

where Fs(rW)5F(rW,rW) and Fp(rW1 ,rW2)5F(rW1 ,rW2). In Eq.
~10! it has been considered that the classical energy nee
to realize the electrostatic configuration with both electro
inside the dot is given by the sum of their Coulomb rep
sion, the interaction of the two electrons with their respect
surface charge~being a self-interaction effect, a factor 1/
arises for these contributions! and the interaction of one elec
tron with the surface charge generated by the second
These last two will be referred to in the following, respe
tively, as self-interaction energy and electron-electron s
face interaction. It must be pointed out that, if« I.« II ~that
is, s.1), all the electrostatic terms raise the system to
energy. Moreover, the Coulomb repulsion and the electr
electron interaction via the surface polarization charge t
to push the electrons far from each other while the s
interaction polarization terms have the opposite effect, pu
ing both electrons toward the quantum dot center.

In the strong confinement regime the electrostatic ter
can be treated as a first-order correction to the kinetic ene
because the main contribution to the ground-state ene
arises from quantum confinement. Nevertheless, the more
dot dimensions increase, the more both the polariza
terms and the Coulomb interaction correlate the two el
trons. This means that the wave function~9! realistically de-
scribes the two-electron system only in the strong confi
ment regime, but it is not suitable for studying large do
Therefore we have investigated the effect of both the
dimensions and its anisotropy by using the variatio
method. The trial wave function has been chosen as follo
5-3
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C~rW1 ,rW2!5C0~rW1 ,rW2!Ccorr~rW12rW2!, ~11!

whereC0 is given in Eq.~9! and the correlated motion of th
electrons is described via the factor

Ccorr~rW12rW2!512a@11u~rW12rW2!#exp@2u~rW12rW2!#,
~12a!

u~rW12rW2!5Ab@~x12x2!21~y12y2!2#1g~z12z2!2.
~12b!

The function~11! reflects the system ground-state properti
In fact ~i! it depends only onw12w2 ~that is, it is invariant
for rotations of both the electrons of the same angle aro
the z axis!, ~ii ! it is invariant for reflection of both the elec
trons @that is, with respect to the transformation (rW1 ,rW2)
→(2rW1 ,2rW2)#, ~iii ! it is symmetric with respect to the ex
change of the two electrons~corresponding to the single
spin state!, ~iv! it is null if any of the two electrons is on th
ellipsoid boundary, and~v! it is continuous with all its first
and second partial derivatives.a, b, andg are three varia-
tional parameters (0<a<1, b,g>0), whose value must be
determined by requiring that the energy functional

E@a,b,g#5
^CuHuC&

^CuC&
~13!

be minimum. The particular choice of the correlated part
the wave function~11! can be justified by considering that~i!
if a50, it becomes the uncorrelated wave function,~ii ! if
aÞ0, it describes the correlated system for which the pr
ability of finding the two electrons at the same position
12a times smaller than that of finding them far from ea
other ~this probability being null ifa51), ~iii ! if bÞg, it
can account for the quantum dot anisotropy and therefore
the dependence of the electron-electron correlation on it,
~iv! if the distance between the two electrons is very lar
the wave function becomes the uncorrelated one.

V. RESULTS

In this section we want to discuss the main results
tained by using the theoretical background presented in
previous sections.

In the single-particle picture, the electron energyE(1) is
the sum of two contributions, the confinement~kinetic! en-
ergy K and the self-interaction energyEs (E(1)5K1Es).
They can be written, respectively, as

K5
\2

2m* c2
k~x!, ~14a!

Es5
e2

4p«0« Ic

es~x!

2
, ~14b!

wherek andes are two adimensional functions.
Solving with a midpoint shooting method, Eqs.~4a! and

~4b!, we have calculated the exact67 single-particle confine-
ment energy for the ellipsoidal quantum dot. A more detai
discussion can be found in Refs. 44 and 45. Here we s
12532
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only our results concerning the ground-state energy. For
electron kinetic energy we get

k~x!52.817 1816.478 45~x10.043 72!1.960 84, ~15!

with 1<x<5. Moreover, the self-interaction dielectric shif
have been calculated as a first-order correction~that is, by
evaluating the self-interaction mean value on the grou
state!, for some values of the dielectric mismatchs. A poly-
nomial interpolation of the obtained numerical results h
been performed as follows:

es~x!5a01a1x1a2x21a3x3, ~16!

with 1<x<5. The coefficientsai are given in Table I for the
considered values ofs. All the interpolation formulas we are
showing reproduce our numerical data with an error at m
of 0.5%. Forx→1 ands53 exactly the same result as i
Ref. 58 for the Si spherical quantum dot embedded in SiO2 is
obtained. From these results, the dot energy spectrum de
dence onx clearly comes out, showing that if a nonspheric
quantum dot is considered, volume confinement can be w
described only if related to the actual dot geometry.

Starting from the single-particle picture presented abo
the two-electron ground state has been investigated, loo
in particular for the dependence of the electron-electron c
relation on the dot geometry. The ground-state energy
been first calculated in the strong confinement regime,68 that
is, taking the Coulomb interaction, self-interaction potenti
and surface interaction mean values on the uncorrela
ground-state wave function~9!. We get

E0
(2)52K1Ec12Es1Ep , ~17!

where

Ec5
e2

4p«0« Ic
ec~x!, ~18!

Ep5
e2

4p«0« Ic
ep~x!. ~19!

As for the self-energy correction, a polynomial interpolati
has been calculated for the surface electron-electron inte
tion:

ep~x!5b01b1x1b2x21b3x3, ~20!

TABLE I. The coefficients of Eq.~16! for some values ofs.

s a0 a1 a2 a3

0.1 20.473 56 20.818 60 20.084 09 10.009 35
0.5 20.248 03 20.434 31 20.031 75 10.003 43
3.0 10.786 34 11.650 47 20.048 28 10.004 94

10.0 12.758 32 17.757 76 20.879 92 10.081 61
15.0 12.448 80 115.131 73 23.231 84 10.421 42
5-4
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with 1<x<5. The coefficientsbi are given in Table II. As
x→1 the previous formulas giveep5s21, as it is for the
spherical quantum dot.58 Finally, the Coulomb energy ha
been calculated, giving

ec~x!51.774 0411.117 55ux21.009 62u0.854 86. ~21!

Even in this case the spherical quantum dot limit56 is ob-
tained asx→1.

The strong confinement regime description presen
above treats the electrostatic contributions to the tw
electron ground state as ‘‘small’’ corrections to their kine
energy. However, it is known8 that as the dot dimension
increase, this calculation scheme cannot realistically desc
the system, because the electrostatic terms become co
rable with the electron kinetic energy. Therefore, as
plained in Sec. IV, we have performed a variational calcu
tion choosing the trial wave function as shown in Eq.~11! to
take into account correlation effects for geometries wh
cannot be described within the strong confinement pictu
The energy functional~13! has been minimized for differen
values ofx with respect to the three parametersa,b,g ~we
will indicate with amin ,bmin ,gmin their respective values a
the minimum point!. We are going to show first the resul
obtained without taking into account the dielectric effects,
that a better understanding of the role played by the C
lomb repulsion can be reached. We will discuss the impli
tions of dielectric effects later. In Fig. 1 we show the result
this calculation performed for CdSe ellipsoidal quantum d
(m* /me50.13, « I510.0), with fixeda512 nm, as a func-
tion of c5ax. The solid line represents the energy function
calculated at its minimum point ~that is, E(2)

[E@amin ,bmin ,gmin #), the dashed one the same energy
calculated by settingb50 ~that is,E@amin ,0,gmin #, which
takes into account only the electron-electron correlat
along thez direction!, and the dotted one the ground-sta
energy in the strong confinement regime@which is given by
Eq. ~17! and corresponds to seta50 in Eq. ~13!#. It comes
out that on increasingx or, equivalently,c, the ground-state
energy~solid line! becomes coincident with the energy ca
culated taking into account only the electron-electron co
lation along thez direction~dashed line!. This means that for
x@1 the electron-electron correlation in thex-y plane is
negligible, as expected. In fact, on increasingc with fixed a,
we get longer and longer quantum rods. The total grou
state energy arises from the contribution of both the confi
ment energy, which is minimum if both electrons are in t
ellipsoid center, and their Coulomb repulsion, which pus
the electrons far from each other, toward the ellipsoid bou

TABLE II. The coefficients of Eq.~20! for some values ofs.

s b0 b1 b2 b3

0.1 20.272 46 20.633 40 10.005 14 10.001 19
0.5 20.155 23 20.352 55 10.008 01 21.061 2631025

3.0 10.601 12 11.528 15 20.140 44 10.012 35
10.0 12.394 14 17.621 11 21.105 27 10.098 66
15.0 13.553 29 112.201 02 21.909 88 10.167 19
12532
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ary. The minimum energy configuration is reached with t
two electrons placed along thez axis in such a way that they
stay as much as possible far from each other and from
ellipsoid boundary. On the contrary, asx→1 ~spherical
quantum dot limit! we obtain thatE@amin ,0,gmin # becomes
coincident with the uncorrelated ground-state energy.
other words, if only the electron-electron correlation along
particular direction~the z axis in our case! is taken into ac-
count, the same result as using the strong confinemen
gime approach is obtained. This reflects the spherical s
metry of the problem, which cannot give rise to a groun
state configuration in which the two electrons are plac
along some privileged direction. It is worth noting that
variational approach for the two-electron ground state in C
spherical quantum dots has been done, using a different
wave function, in Ref. 56. We have calculated these ener
using our variational approach and obtained exactly the s
results. A quite important check for our calculation is that w
get, in this case,bmin /gmin .1 within at most 1%.

The inset of Fig. 1 shows the values ofa calculated with
fixed a512 nm as a function ofc, without (s51, solid line!
and with (s510, dashed line! dielectric effects. On increas
ing c we geta→1, which corresponds to a null probabilit

FIG. 1. The ground-state energy calculated using the variatio
method is shown~solid line! for CdSe quantum dots (m* /me

50.13, « I510.0) with fixeda512 nm as a function ofc. Dielec-
tric effects have not been included. The energies calculated ta
into account only the electron-electron correlation along thez axis
(b50, dashed line! and for uncorrelated electrons (a50, dotted
line! are shown for comparison. The inset shows the value ofa at
the minimum point as a function ofc calculated without (s51,
solid line! and with (s510, dashed line! dielectric effects.
5-5
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of finding the electrons at the same point. This further brin
out the strong relation between the electron-electron corr
tion and the dot geometry.

The projection of the pair correlation function@that is, the
probability of finding one electron atrW1 if the second one is
at rW2 given by uC(rW1 ,rW2)u2# in the x-z plane is plotted for a
CdSe ellipsoidal quantum dot witha512 nm and c
524 nm in Fig. 2. The results obtained both without a
with dielectric effects~these last ones will be discussed late!
are shown, respectively, in parts~a! and~b! of the figure. The
pair correlation function is plotted for different positions
the fixed electron~indicated with a large dot!, to better un-
derstand the ground-state spatial configuration. The white
gions correspond to a maximum of the function. As alrea
stressed previously, the configuration with maximum pro
ability is with the two electrons placed along the ellipso
major axis.

The electron-electron interaction affects also the corre
tion energy, defined asEcorr5E(2)2E0

(2) ~that is, the differ-
ence between the solid line and the dotted one in Fig. 1!. In
Fig. 3~a! the ratioEcorr /E(2) ~that is, the relative error don
if the uncorrelated ground-state energy is assumed! for three
values ofa as a function ofx is shown. It is an increasing
function of both a and c. All the obtained results clearly
show that for long quantum rods the system descript
within the strong confinement regime becomes misleadin

The same variational technique has been used inclu
dielectric effects for studying how they can affect t
electron-electron correlation. The numerical results obtai

FIG. 2. Projection of the pair correlation function in thex-z
plane for a CdSe ellipsoidal quantum dot witha512 nm andc
524 nm. The results obtained both without~a! and with~b! dielec-
tric effects are shown. The position of one electron is taken fi
and is indicated with a large dot. The white regions correspond
maximum of this function. The effect of the dielectric mismat
on the spatial configuration of the two electrons clearly comes
~see text!.
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for the two-electron ground state of CdSe ellipsoidal nan
rystals, with fixeda512 nm ands510 as a function ofc,
are shown in Table III. For each value ofc, the kinetic en-
ergy 2K, the Coulomb repulsionEc , the self-polarization
2Es , and the surface electron-electron interactionEp are cal-
culated both with the described variational technique and
the strong confinement regime (a50). It comes out that the
more the two electrons have the possibility to be far fro
each other~on increasingc), the more the correlation energ
associated with their Coulomb repulsion increases. Mo
over, there is a quite relevant contribution to this correlat
energy arising from the surface electron-electron interac
for high dot anisotropies. This can be explained by cons
ering that this interaction pushes the electrons far from e
other, even if it is less strong than the direct Coulomb rep
sion. Therefore this contribution to the correlation ener
becomes more significant on increasingc, because in this
case the electron quantum confinement decreases and
surface interaction is able to push them far from each ot
toward the ellipsoid boundary. This is also supported fro
the fact that, on the contrary, on increasingc the self-

d
a

ut

FIG. 3. ~a! The ratioEcorr /E(2) ~relative error done if the un-
correlated ground-state energy is assumed! for three values ofa as
a function ofx is shown. Dielectric effects have not been include
The effect of the Coulomb electron-electron correlation becom
relevant on increasinga and/orc. ~b! The total correlation energy
calculated fora512 nm as a function ofx is shown for three val-
ues of the dielectric mismatchs. The contribution of the surface
electron-electron interaction clearly comes out on increasingx.
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TABLE III. Two-electron ground-state kinetic (2K), Coulomb (Ec), self-polarization (2Es), and surface
interaction (Ep) energies calculated for CdSe ellipsoidal quantum dots with fixeda512 nm ands510 as a
function ofc. Both the strong confinement regime and the variational results are shown. It comes out t
increasing the dot major axis a quite relevant contribution to the correlation energy arises from the s
interaction energy.

c512.0012 nm c518 nm c524 nm c536 nm
a5amin a50 a5amin a50 a5amin a50 a5amin a50

2K ~meV! 41.34 40.17 34.12 32.55 33.11 29.65 32.24 27.2
Ec ~meV! 18.34 21.53 14.97 19.10 11.02 17.21 6.478 15.1
2Es ~meV! 117.4 116.5 102.8 101.7 94.49 92.35 84.87 81.3
Ep ~meV! 107.4 108.0 92.42 93.57 80.22 83.90 62.72 71.9
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polarization energy calculated on the uncorrelated w
function becomes smaller and smaller than the one ca
lated at the minimum point, showing that the electrons
farther and farther from the ellipsoid center. This result
confirmed by comparing the values ofamin in the inset of
Fig. 1 calculated without (s51, solid line! and with (s
510, dashed line! dielectric effects. It is clear that by includ
ing dielectric effects, for nearly spherical quantum do
smaller values are obtained~because the self-polarization po
tential pushes the electrons toward the ellipsoid cent!,
while on increasingc greater values are obtained, because
the additional contribution to the electron-electron corre
tion energy due to the surface interaction. The same comp
son can be done on the pair correlation function, as in Fig
It comes out that the inclusion of dielectric effects in t
minimization of the functional~13! leads to a ground-stat
wave function where the distance between the two electr
has increased with respect to the cases51. A final check of
these results is given in Fig. 3~b!, where the correlation en
ergy obtained by taking into account only the Coulomb
pulsion (s51, solid line! and the one calculated by includin
dielectric effects (s55, dashed line, ands510, dotted line!
are shown. Only for nearly spherical quantum dots is
correlation energy smaller if dielectric effects are n
included.

Finally, in Fig. 4 the energy differenceD between the
one- and two-electron ground-state energies is shown,
CdSe nanocrystals witha512 nm, as a function ofx and for
several values of the dielectric mismatchs. It is a decreasing
function of x. This dependence becomes stronger and st
ger as« II →1 (s510). If we plotD as a function of« II , we
get that, in the same limit, a strong increase ofD is observed,
in accordance with the results shown in Ref. 51.

VI. CONCLUSIONS

In this paper we have studied shape effects on the o
and two-electron ground state in ellipsoidal quantum do
Using a suitable coordinate system which allows us to
actly solve the single-particle effective-mass Hamiltonia
we have calculated the electron energies both in the str
confinement regime and with a variational calculation. T
variational wave function has been chosen in such a wa
take into account both the electron-electron correlation
to the Coulomb potential and dielectric effects and the
12532
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isotropy effects naturally induced by the ellipsoidal boun
ary. We have shown that if geometry deviations with resp
to the spherical quantum dot are considered, quantum c
finement effects must be related to the dot shape.
electron-electron correlation is a function of the dot anis
ropy. In particular, starting from the spherical quantum d
and considering longer and longer quantum rods, the
electrons are found to be placed along the ellipsoid ma
axis, with a probability of finding them in the same pla
which becomes smaller and smaller. It has been shown
for sufficiently anisotropic quantum dots, it is enough to ta
into account only the correlation along the ellipsoid ma
axis, the one along the two minor axes becoming negligib

FIG. 4. The differenceD between the energies of the one- a
two-electron ground states is shown for several values ofs. It is a
decreasing function ofx. This shape dependence becomes v
strong as« II →1.
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Dielectric effects have been studied as a function of b
the dielectric mismatch between the dot and the surround
medium and the dot anisotropy. It comes out that on incre
ing the dot anisotropy significant contributions to the cor
lation energy are given by the electron-electron surface
teraction. The distance between the two electrons incre
with respect to the cases51. This shows that neither dielec
tric effects can be neglected in the one- and two-elect
ground-state energy calculation, nor can they be treated
turbatively ~losing in this way all information about thei
effect on the electron-electron correlation!. The energy dif-
s.
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ferenceD between the one- and two-electron ground-st
energies has been calculated, showing that the depend
on the dot anisotropy becomes stronger as the externa
electric constant approaches 1.
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