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Shape effects on the one- and two-electron ground state in ellipsoidal quantum dots
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The ground state of two conduction-band electrons confined in ellipsoidally shaped quantum dots has been
calculated within the effective-mass approximation, using both a perturbative scheme and a variational ap-
proach. The problem is studied using prolate spheroidal coordinates, which allows us to exactly solve the
single-particle problem and therefore to make a suitable ansatz for the two-electron variational wave function.
The different contributions arising from the Coulomb repulsion and dielectric effects are calculated and dis-
cussed. The dot anisotropy is shown to strongly influence the electron-electron correlation.
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[. INTRODUCTION less, it is important to stress that the effective-mass approxi-
mation begins failing as very small dimensions are reached
The progress in manipulating very small structufesu- as shown, for example, in Refs. 34 and 35 and that it has
ally referred to as nanostructujdgs given the possibility of been widely used to explain many properties of quantum dot
realizing low-dimensional systef$ and opened new per- spectra. Moreover, the main problems with the effective-
spectives in device fabrication such as single-electronmass approximation arise for exciton specfraecause they
transistor€, memory devices, and laserérom the techno- involve hole states. In our case we want only to investigate
logical point of view the study of very small structures haslarge-dot conduction-band electron states, for which we be-
allowed the improvement of device performanadéswer lieve that the simpler effective-mass approximation should
heat dissipation, faster response, et©n the other hand, the reproduce realistic results.
wide interest in studying, both theoretically and experimen- It is worth pointing out two other important aspects about
tally, nanostructures is given from the fact that on reducinghe progress in quantum dots fabrication. First, shape control
the structure dimensions the confinement of holes and ele@f semiconductor colloidal nanocrystals has been demon-
trons shows surprising features which can be understoosirated to be possible. Rod-, arrow-, teardrop-, and tetrapod-
only in the framework of quantum mechanics. As the particleshaped CdSe nanocrystals have been fabricat®¥d,sing
de Broglie wavelength becomes comparable with the strucsuitable chemical reagents in the so-calleattom-upap-
ture dimensions, quantum effects become relevant, givingroach andriented attachmenRodlike quantum dot geom-
rise to a discrete spectrum of energy levels like for atomsetry has been varied from a nearly spherical one to a highly
This has gained for quantum dots the name of artificialanisotropic one. These very recent developments open the
atoms8-10 possibility to investigate experimentally the relation between
The improvement of both experimental methods of con-quantum confinement and the actual dot shape and anisot-
fining electrons and investigation techniques such as capadiepy. Second, doping of colloidal quantum dots has been
tance spectroscopy has allowed the study of single-electrorealized®® using an electron transfer technique commonly
features of quantum dot$~2° In particular addition spectra employed for organic polymers. In this way conduction-
(that is, the energy required to add one electron to amand electron propertiesuch as infrared specjrazan be
N-electron systemhave been widely measured and studied.investigated.
Many theoretical investigations have also been done, in The theoretical aspects of single- and many-particle prop-
which the quantum dot is simulated with a confinement po-erties of anisotropic quantum dots have been studied for cir-
tential for electrons and holes, assumed to be in the form ofular, elliptic, and triangular vertical quantum détsellip-
a spherical potential wef’*?!isotropi?=?2 or anisotropi¢®  soidally deformed vertical quantum ddfs, quantum
harmonic potentialparabolic confinemejton-site repulsive  confinement within an ellipsoidally deformed harmonic
potential*® infinite barrier at the dot bounda?y,and Gauss- potential?® and ellipsoidal quantum dofé*® In these last
ian potentiaf? There have been many numerical approacheswo works, the dot anisotropy has been taken into account
for studying few- and many-electron properties of these powithin a perturbative scheme, as a correction to the spherical
tentials (such as variational calculations, Hartree andquantum dot spectrum, while the valence-band degeneracy
Hartree-Fock methods, power series expansions, WKB afhas been properly taken into account. On the other hand, in
proach, and several diagonalization techniguédost of  previous works**we have shown that if an effective-mass,
these models use the effective-mass approximation for elesingle-band model is assumed, the single-particle ellipsoidal
trons and holes. However, pseudopotential calculations quantum dot spectrum can be exactly studied, and the effect
have shown the need of an atomistic description of smalbf the dot shape on the infrared optical properties taken into
nanocrystals, which is the best way of taking into accountccount for an arbitrary anisotropy. The exact treatment can-
interband coupling and the wave function decay outside th@ot be performed or becomes very demanding if band mixing
dot, both consequences of quantum confinement. Neverthend degeneracy are considered. We believe that even if ato-
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mistic calculations are the proper way of describing the band (
structure of confined structuré%;*® effective-mass calcula- f
tions can give realistic descriptions of the quantum dot prop- ¥2
erties, if the dot dimensions are chosen not too small and if fVé2—1=a
care is taken about the boundary conditiéh® Moreover, it _ ={ _ 1 1 2)
must be stressed that our main interest is in bringing out the fé=c = —:E
relation between the one- and two-electron ground-state 1
properties and the dot shape, rather than band mixing and 1__2
degeneracy effects which have already been stutfigtf? \
In Sec. Il we present how, with a suitable coordinatewhere y=c/a is the ellipsoid anisotropy and=f/c is its
change, we can exactly solve the single-electron confinememiccentricity. It is evident that Ed2) is valid only if y>1,
in an ellipsoidal quantum dot. Because of the dielectric miswhich follows from the fact that the transformati¢h) pa-
match between the quantum dot and the surrounding meaametrizes the space with ellipsoidal surfaces which have the
dium, dielectric effects must be included in the electronicsemiaxis along the direction greater than the semiaxes in
spectrum calculatiof®®! Therefore, in Sec. Ill we show the the x-y plane. Writing the Laplacian operator in the new
analytical calculation of the surface polarization charge pocoordinate system it is possible to show that the solution of
tential induced by an electron moving inside an ellipsoidalthe Schrdinger equation
medium. The study of the two-electron ground state is per-
formed both in the strong confinement regitoerrelations
effects are supposed negligible in this gamed by using the
variational method. A suitable trial wave function, able to
account for the electron-electron correlation as well as for it§wherem* is the electron effective mass afits energy
dependence on the dot anisotropy, is made, as shown in Se@gan be factorized. In other words, it can be written as
IV. It must be pointed out that by using the curvilinear coor- (&, 7,¢) =je(£)S(n)expime) where the azimuthal sym-
dinates proper of the ellipsoidal quantum dot, the choice ofmetry around thez axis has been taken into account and
this function can be done in a more appropriate way. Moreje(¢) andS(») are, respectively, solutions of the two sepa-
over, Coulomb and dielectric effects, often evaluated as &ated equations:
first-order correction to the confinement energy, can be taken

2

V2y=Ey 3)

2m*

. . . . . H 2

into account even if their contributions become very rel- i (§2—1)dje(§)}— A—h2g2+ )je(§)=0,
evant. In Sec. V we present our results about the one- and dé¢ dé 2-1

two-electron ground states, showing the different contribu- (43)
tions arising from the electron confinemekinetic energy,

Coulomb repulsion, and dielectric effects. It is shown how ¢ dS(7) » m?2

the electron-electron correlation changes with both the dot d—[(l— 7°) g, | T\ AThT" - 5| S(7)=0.
anisotropy and the dielectric mismatch. Finally, in Sec. VI, 7 7 1=7 (4b)

we draw some conclusions.

In Egs. (48 and (4b), A is a separation constant and

h=f\2m*E/#2. These equations are formally equivalent

) ) but must be solved in different ranges of the respective vari-
In previous work it has been shown that the gples. Their solution is more difficult than in spherical coor-

effective-mass single-electron problem within an ellipsoidalyinates because they are coupled by both the eigenvalue

quantum dot can be exactly treated by performing a suitablg,q the separation constant. Some further mathematical de-

coordinates transformation. Let us consider an ellipsoid withgjis can be found in Refs. 44 and 45. Here it is enough to

az_imuthal sy_mmetry_ arour_1d the axis and let us indicate say that the hard wall boundary conditigthat is je(g)

with a and c its semiaxes in th&-y plane and along the — 0] (Ref. 52 leads to a wave function in the form

axis, respectively. If X,y,z) indicate the Cartesian coordi- ’

nates, we can define a new set of coordinatge®,(p) (pro- Yot m(E70) =18 m(hn i mr €St m(hoy.m 7 EXRIME),

II. SINGLE-PARTICLE ENERGIES
44.45

late spheroidal coordinatesas follows: (5)
x=f\(£2—1)(1— 7°)cose whereh, | ,, gives the quantum-dot-confined electronic spec-

trum. It is important to stress that the particle total angular

= (2= 1)(1— 7D)sing, 1 momentum is no Io_nger a motion constéas happens in the
y (¢ J(1=n")sing @ case of the spherical quantum ddiecause of the loss of
z=féy symmetry with respect to an arbitrary rotational axis. There-

fore the ellipsoidally shaped quantum dot constants
where Isé<+x, —lsy<+1, Os<se<2m, andf repre- of motion are its Hamiltonian [with eigenvalues
sents the ellipsoid semifocal distance. Using the transformat;2/2m* £2)h2 | ], the z component of the particle angular
tion (1) the ellipsoid boundary can be represented by arfmomentum(with eigenvaluesn), and the parity operator
equation like&= ¢. It is not difficult to show that the follow- [with eigenvalues € 1)']. Let us note than=1,2,3..., |

ing relations hold: =0,1,2..., andm=—1,...,0... .
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. DIELECTRIC EFFECTS whereq= —e is the electron charge.
: . . N In the calculations we are going to show we have assumed
It is known that if an electron is moving in a quantum dot . : :
) . o thate, has been assumed as the bulk dielectric constant. This
whose dielectric constant is different from that of the sur- T . ) o
; . o could give incorrect results for the dielectric contributions. In
rounding medium, a surface polarization charge appears. Thfe

63-66 ;
dielectric potential generated by this surface charge acts o ct, many work$ have demonstrated that on reducing

the electron itself and must be taken into account to properlﬁsvgcr)tthgllzsesnséﬂr}(zeﬂ;: gﬁéﬁg&%ﬁggﬂg&t t%zttsfé?vgii \d/?rlr:J:ri
describe the electron motion inside the tft® By denoting :

] ; — ) sionsR>5-6 nm the difference between the confined and
with I the quantum dot region @ &=¢ in our casg with Il the ik dielectric constants is negligible. Therefore, because
the surrounding mediumé@§), and withe; and g, the  we are going to consider large dots, no correction is expected
respective dielectric constants, the classical calculation of th&y come from a size-dependent dielectric constant.
total electrostatic potential at a given po'ﬁwWhen the elec-
tron is atr, can be performed by solving the Poisson equa- IV. TWO-ELECTRON GROUND STATE
tion with the conditions thati) the dielectric potential be Let us consider two conduction-band electrons moving

null at large distancegji) it be finite forr#ro, (iii) it be  jhside the ellipsoidal quantum dot. The ground state for the

continuous on the surfacé which separates the medium  poninteracting system is simply given by the product of two

continuous orS (the ratio between the external normal de-

rivative to the internal one in each point 8fbeings if s Wo(Fr I)=ie~dh h
=g, /g, is the dielectric mismatghBecause this total elec- o(f1.r2)=1€0d N1.00.£)SodN1.0.072)
trostatic potential is obtained as the sum of the surface po- XjeodN1,00:62)S0,dN2.0,072)- 9

tential ®(r,ro) (that is, the potential due to the polarization The wo-electron Hamiltonian actually contains interaction
charge which appears @) and the Coulomb potential of & {arms as follows:

point charge at, in the bulk medium, we can write

o o o o p§+p§+ e? 1
(I)(r!ro)_G(r!ro)_Gb(rrrO)l (6) Zm* Zm* 477808| |F1_F2|
where G(F,Fo) is the Green function of our problem and —%e(PS(Fl)—%eq)s(Fz)—e(Pp(Fl,Fz), (10)

Gb(F,FO) the Green function for a point charge moving in the R . . o
bulk material(infinite medium with dielectric constant;).  where ®(r)=®(r,r) and ®(rq,r,)=®d(rq,r,). In Eq.
The expansion of the first one in prolate spheroidal coordi{10) it has been considered that the classical energy needed
nates i§ to realize the electrostatic configuration with both electrons
inside the dot is given by the sum of their Coulomb repul-
1 sion, the interaction of the two electrons with their respective
Amrege, m surface chargébeing a self-interaction effect, a factor 1/2
arises for these contributionand the interaction of one elec-
(|_m)!r tron with the surface charge generated by the second one.
These last two will be referred to in the following, respec-
(I+m)! . . i
tively, as self-interaction energy and electron-electron sur-
X P"(70) PI(7)P"(£2)Q(£~) face interaction. It must be pointed out thatgif>¢, (that
is, s>1), all the electrostatic terms raise the system total
xXco§m(e—¢g)], (7) energy. Moreover, the Coulomb repulsion and the electron-
) electron interaction via the surface polarization charge tend
where e=lei=€;=:--=€y=---=2, E-=min&&l o push the electrons far from each other while the self-
&=maxéél and P" and Q" are, respectively, the first- jnteraction polarization terms have the opposite effect, push-
and second-kind associated Legendre functions. By USing thﬂg both electrons toward the quantum dot center.
expansion(7) and solving the Poisson equation with the con- | the strong confinement regime the electrostatic terms

Gb( Fv I:)0) =

—+ oo

|
a 1 > (21+1) ZO €™

B darege) =)

ditions given above, Eq6) becomes can be treated as a first-order correction to the kinetic energy
i | because the main contribution to the ground-state energy

> qg s-1 ol (=) 2 arises from quantum confinement. Nevertheless, the more the
P(r.ro)= Arege, F ,:EO (2|+1)mzo €ml (I+m)! dot dimensions increase, the more both the polarization

terms and the Coulomb interaction correlate the two elec-

le(g)le’(E) trons. This means that the wave functi@) realistically de-
= = e scribes the two-electron system only in the strong confine-
PIOQ™ (6)=sQ(HPI” (£) ment regime, but it is not suitable for studying large dots.

m m m m _ Therefore we have investigated the effect of both the dot
X P& P (0 PE(E)PT(m)codm(e = o) ], dimensions and its anisotropy by using the variational
(8) method. The trial wave function has been chosen as follows:
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\I,(FlaFZ):\I,O(FlvF2)\Pcorr(F1_ Fz), (11) TABLE I. The coefficients of Eq(16) for some values o08.

whereW is given in Eq.(9) and the correlated motion of the s ay a; a, as
electrons is described via the factor

0.1 —-0.47356 —0.81860 —0.08409 +0.009 35

W (Fim )= 1— a1+ U(Fy— ) Jexd —U(Fo—Fo)]. 05 —024803 —043431 -003175 +0.00343

comiit T2 voe Y %1 30 +078634 +165047 —004828 +0.00494

10.0 +2.75832 +7.75776 —0.87992 +0.08161

U(rl_rz):\/5[(X1—X2)2+(Y1—Y2)2]+7(21_22)2- b) 15.0 +2.44880 +15.13173 —3.23184 +0.42142
12

The function(11) reflects the system ground-state properties
In fact (i) it depends only orp; — ¢, (that is, it is invariant
for rotations of both the electrons of the same angle aroun
the z axis), (ii) it is invariant for reflection of both the elec-

trons [that is, with respect to the transformation, (r,)

—(—ry,—rp)], (iii) it is symmetric with respect to the ex- with 1< y<5. Moreover, the self-interaction dielectric shifts
change of the two electron@orresponding to the singlet have been calculated as a first-order correctibiat is, by
spin statg (iv) it is null if any of the two electrons is on the evaluating the self-interaction mean value on the ground
ellipsoid boundary, andv) it is continuous with all its first  state, for some values of the dielectric mismatshA poly-

and second partial derivatives, 8, andy are three varia- nomial interpolation of the obtained numerical results has
tional parameters (8 a<1, 8,y=0), whose value must be been performed as follows:

determined by requiring that the energy functional

£ _(P[H|Y) es(x)=ao+arx+ax’+asx’, (16)
[a,ﬁ,ﬂ—W (13

only our results concerning the ground-state energy. For the
glectron kinetic energy we get

k(x)=2.817 18-6.478 4%y +0.043 7319084 (15)

with 1= y=<5. The coefficients; are given in Table | for the

be minimum. The particular choice of the correlated part ofconsidered values af All the interpolation formulas we are
the wave functior(11) can be justified by considering tha showing reproduce our numerical data with an error at most
if «=0, it becomes the uncorrelated wave functiéin, if ~ ©f 0-5%. Fory—1 ands=3 exactly the same result as in
«+0, it describes the correlated system for which the probRef- 58 for the Si spherical quantum dot embedded in, $0
ability of finding the two electrons at the same position isPtained. From these results, the dot energy spectrum depen-

1— « times smaller than that of finding them far from eachdence ony clearly comes out, showing that if a nonspherical
other (this probability being null ifa=1), (iii) if B#1y, it quantum dot is considered, volume confinement can be well

can account for the quantum dot anisotropy and therefore fdi€scribed only if related to the actual dot geometry.
the dependence of the electron-electron correlation on it, and Starting from the single-particle picture presented above,

(iv) if the distance between the two electrons is very largeN€ Wwo-electron ground state has been investigated, looking
the wave function becomes the uncorrelated one. In particular for the dependence of the electron-electron cor-

relation on the dot geometry. The ground-state energy has
been first calculated in the strong confinement redifrtaat
is, taking the Coulomb interaction, self-interaction potential,
In this section we want to discuss the main results oband surface interaction mean values on the uncorrelated
tained by using the theoretical background presented in thground-state wave functiof®). We get
previous sections.
In the single-particle picture, the electron enefgfy) is E52)=2K+EC+ 2Es+Ep, (17
the sum of two contributions, the confinemehinetic) en-
ergy K and the self-interaction enerdgys (EY=K+EJ).  where
They can be written, respectively, as

V. RESULTS

e
h? =——¢e(X), (18)
K= p— k(X), (143 ¢ Amegec ©
e edx) E :e—ze (x) (19)
amegec 2 (145 P Amege,c P
wherex andeg are two adimensional functions. As for the self-energy correction, a polynomial interpolation

Solving with a midpoint shooting method, Eqda) and  has been calculated for the surface electron-electron interac-

(4b), we have calculated the ex&Csingle-particle confine-  tion:
ment energy for the ellipsoidal quantum dot. A more detailed
discussion can be found in Refs. 44 and 45. Here we show ep(x)=bo+byx+ box?+bax?, (20
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TABLE Il. The coefficients of Eq(20) for some values o08.

S bo by b, bs 601

0.1 -0.27246 —0.63340 +0.00514 +0.00119

0.5 —-0.15523 -—0.35255 +0.00801 —1.06126<10 °
3.0 +0.60112 +1.52815 —0.14044 +0.01235 56
10.0 +2.39414 +7.62111 —1.10527 +0.098 66
15.0 +3.55329 +12.20102 —1.90988 +0.16719

with 1< y=<05. The coefficientd; are given in Table II. As S
x—1 the previous formulas give,=s—1, as it is for the v
spherical quantum déE Finally, the Coulomb energy has g
been calculated, giving QLTJ

\ " 12 16 20 24 28 32 36
¢ (nm)

ec(x)=1.77404+1.117 55y — 1.009 62085488 (21)

Even in this case the spherical quantum dot fifis ob-
tained asy—1.

The strong confinement regime description presented
above treats the electrostatic contributions to the two-
electron ground state as “small” corrections to their kinetic

444 a=12nm

energy. However, it is knovnthat as the dot dimensions *0 /x =1 x=3

increase, this calculation scheme cannot realistically describe . . . . \

the system, because the electrostatic terms become compa- 12 16 20 924 28 32 36

rable with the electron kinetic energy. Therefore, as ex- ¢ (nm)

plained in Sec. IV, we have performed a variational calcula-

tion Choosing the trial wave function as shown in E‘q]_) to FIG. 1. The ground-state energy calculated using the variational

take into account correlation effects for geometries whichmethod is shown(solid ling) for CdSe quantum dotsn{*/m,
cannot be described within the strong confinement picture 0-13, £,=10.0) with fixeda=12 nm as a function o€. Dielec-
The energy functionall3) has been minimized for different tric effects have not been included. The energies calculated taking
values ofy with respect to the three parameters,y (we into account only the electron-electron correlation alongzlagis

will indicate with @i , Bmin » Ymin their respective values at (B=0, dashed linpand for uncorrelated electronst €0, dotted

o . ! . line) are shown for comparison. The inset shows the value af

the minimum point. We are going to show first the results . ) ) ) -
. . Lo . . the minimum point as a function of calculated without §=1,
obtained without taking into account the dielectric effects, sq

that a better understanding of the role played by the Cou§0I|d line) and with (=10, dashed linedielectric effects.
lomb repulsion can be reached. We will discuss the implicaary. The minimum energy configuration is reached with the
tions of dielectric effects later. In Fig. 1 we show the result oftwo electrons placed along thkzeaxis in such a way that they
this calculation performed for CdSe ellipsoidal quantum dotsstay as much as possible far from each other and from the
(m*/mg=0.13, £,=10.0), with fixeda=12 nm, as a func- ellipsoid boundary. On the contrary, ag—1 (spherical

tion of c=ay. The solid line represents the energy functionalquantum dot limit we obtain thaE[ @, ,0,¥min ] becomes
calculated at its minimum point (that is, E®  coincident with the uncorrelated ground-state energy. In
=E[ amin :Bmin » Ymin 1), the dashed one the same energy butother words, if only the electron-electron correlation along a
calculated by settingg=0 (that is, E[ @min ,0,¥min ], Which  particular direction(the z axis in our casgis taken into ac-
takes into account only the electron-electron correlatiorcount, the same result as using the strong confinement re-
along thez direction, and the dotted one the ground-stategime approach is obtained. This reflects the spherical sym-
energy in the strong confinement regifivehich is given by  metry of the problem, which cannot give rise to a ground-
Eqg. (17) and corresponds to set=0 in Eq.(13)]. It comes state configuration in which the two electrons are placed
out that on increasing or, equivalentlyc, the ground-state along some privileged direction. It is worth noting that a
energy(solid line) becomes coincident with the energy cal- variational approach for the two-electron ground state in CdS
culated taking into account only the electron-electron correspherical quantum dots has been done, using a different trial
lation along thez direction(dashed ling This means that for wave function, in Ref. 56. We have calculated these energies
x>1 the electron-electron correlation in thkey plane is  using our variational approach and obtained exactly the same
negligible, as expected. In fact, on increastngith fixed a, results. A quite important check for our calculation is that we
we get longer and longer quantum rods. The total groundget, in this caseBmin / Ymin =1 within at most 1%.

state energy arises from the contribution of both the confine- The inset of Fig. 1 shows the values @fcalculated with
ment energy, which is minimum if both electrons are in thefixeda=12 nm as a function of, without (s=1, solid line
ellipsoid center, and their Coulomb repulsion, which pushesand with (s=10, dashed linedielectric effects. On increas-
the electrons far from each other, toward the ellipsoid bounding ¢ we geta— 1, which corresponds to a null probability
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20+
1 a=10 nm ()
184
] o= a=12nm
1G] wooe e a =18 nm
14+
98 1
|
<
~
:
&)
o . . - >
FIG. 2. Projection of the pair correlation function in tlez g
plane for a CdSe ellipsoidal quantum dot wil=12 nm andc =
=24 nm. The results obtained both withdat and with(b) dielec- g

tric effects are shown. The position of one electron is taken fixed @
and is indicated with a large dot. The white regions correspond to a
maximum of this function. The effect of the dielectric mismatch

on the spatial configuration of the two electrons clearly comes out

(see text 1.0 1.5 2.0 2.5 3.0
x =c/a

of finding the electrons at the same point. This further brings _ _
out the strong relation between the electron-electron correla- FIG. 3. (a) The ratioEc,, /E‘® (relative error done if the un-
tion and the dot geometry. correlated ground-state energy is assunedthree values o& as

The projection of the pair correlation functigthat is, the @ function ofy is shown. Dielectric effects have not been included.

. L > . - lation m
probability of finding one electron at, if the second one is The effect of the Coulomb electron-electron correlation becomes
relevant on increasing and/orc. (b) The total correlation energy

atr, given by|W(ry,r;)[?]in thex-z plane is plotted for &  cajculated fora=12 nm as a function of is shown for three val-
CdSe ellipsoidal quantum dot wite=12nm and ¢  yes of the dielectric mismatch The contribution of the surface
=24 nm in Fig. 2. The results obtained both without andelectron-electron interaction clearly comes out on increaging

with dielectric effectgthese last ones will be discussed later o

are shown, respectively, in paf@ and(b) of the figure. The for the two-electron ground state of CdSe ellipsoidal nanoc-
pair correlation function is plotted for different positions of 'yStals, with fixeda=12 nm ands=10 as a function o,

the fixed electror(indicated with a large ditto better un- &€ shown in Table Ill. For each value ofthe kinetic en-
derstand the ground-state spatial configuration. The white rrgy €, the Coulomb repulsiore., the self-polarization

gions correspond to & maximum o the function. As aready’ o; TV i Sy SP SECRR R DAREANER I
stressed previously, the configuration with maximum prob-, u q

de .. the strong confinement regime: € 0). It comes out that the

?nb;}'g ;in\;wth the two electrons placed along the ellipsoid more the two electrons have the possibility to .be far from
: . . each othefon increasing), the more the correlation energy

i The electron-_electron mterz(;\zc)non(gﬁects 9'30 the_correlaéssociated with their Coulomb repulsion increases. More-
tion energy, defined aqo, =E"'—Eg” (that'is, the differ- o er there is a quite relevant contribution to this correlation
ence between the solid line and the dotted one in Figlnl  energy arising from the surface electron-electron interaction
Fig. 3(a) the ratioE,, /E® (that is, the relative error done for high dot anisotropies. This can be explained by consid-
if the uncorrelated ground-state energy is assurf@dthree  ering that this interaction pushes the electrons far from each
values ofa as a function ofy is shown. It is an increasing other, even if it is less strong than the direct Coulomb repul-
function of botha and c. All the obtained results clearly sion. Therefore this contribution to the correlation energy
show that for long quantum rods the system descriptiorbecomes more significant on increasiagbecause in this
within the strong confinement regime becomes misleading.case the electron quantum confinement decreases and their

The same variational technique has been used includingurface interaction is able to push them far from each other,
dielectric effects for studying how they can affect thetoward the ellipsoid boundary. This is also supported from
electron-electron correlation. The numerical results obtainethe fact that, on the contrary, on increasingthe self-
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TABLE IIl. Two-electron ground-state kinetic (), Coulomb E.), self-polarization (E), and surface
interaction €,) energies calculated for CdSe ellipsoidal quantum dots with faced2 nm ands=10 as a
function ofc. Both the strong confinement regime and the variational results are shown. It comes out that on
increasing the dot major axis a quite relevant contribution to the correlation energy arises from the surface
interaction energy.

€c=12.0012 nm c=18 nm c=24 nm c=36 nm
= Apin a=0 = Amin a=0 &= pin a=0 = pin a=0
2K (meV) 41.34 40.17 34.12 32.55 33.11 29.65 32.24 27.27
E. (meV) 18.34 21.53 14.97 19.10 11.02 17.21 6.478 15.18
2E; (meV) 117.4 116.5 102.8 101.7 94.49 92.35 84.87 81.30
E, (meV) 107.4 108.0 92.42 93.57 80.22 83.90 62.72 71.90

polarization energy calculated on the uncorrelated wavésotropy effects naturally induced by the ellipsoidal bound-
function becomes smaller and smaller than the one calcuary. We have shown that if geometry deviations with respect
lated at the minimum point, showing that the electrons ardo the spherical quantum dot are considered, quantum con-
farther and farther from the ellipsoid center. This result isfinement effects must be related to the dot shape. The
confirmed by comparing the values af,,, in the inset of electron-electron correlation is a function of the dot anisot-
Fig. 1 calculated without =1, solid line and with (s  ropy. In particular, starting from the spherical quantum dot
=10, dashed linedielectric effects. It is clear that by includ- and considering longer and longer quantum rods, the two
ing dielectric effects, for nearly spherical quantum dotselectrons are found to be placed along the ellipsoid major
smaller values are obtaingbecause the self-polarization po- axis, with a probability of finding them in the same place
tential pushes the electrons toward the ellipsoid cénter which becomes smaller and smaller. It has been shown that
while on increasing greater values are obtained, because ofor sufficiently anisotropic quantum dots, it is enough to take
the additional contribution to the electron-electron correladinto account only the correlation along the ellipsoid major
tion energy due to the surface interaction. The same comparaxis, the one along the two minor axes becoming negligible.
son can be done on the pair correlation function, as in Fig. 2.

It comes out that the inclusion of dielectric effects in the 1
2004 "\ a=12 nm

minimization of the functional13) leads to a ground-state ;
wave function where the distance between the two electrons { T
has increased with respect to the casel. A final check of 1804 ‘\.\
these results is given in Fig(l3, where the correlation en- N
ergy obtained by taking into account only the Coulomb re- ] sy
pulsion (=1, solid line and the one calculated by including 1604 T~ 8=10(, =1.0)
dielectric effects §=5, dashed line, and= 10, dotted ling o T
are shown. Only for nearly spherical quantum dots is the 1404 - \"\-\,.
correlation energy smaller if dielectric effects are not \'\.\ Tl
included. —_ 1 e

Finally, in Fig. 4 the energy differencA between the :q>) 1204 S~ s=7(, =1.43)
one- and two-electron ground-state energies is shown, for I T,
CdSe nanocrystals with=12 nm, as a function gf and for — 1004 Tl
several values of the dielectric mismatgHt is a decreasing -
function of . This dependence becomes stronger and stron- | s=5 e, =2.0)
ger asg;;—1 (s=10). If we plotA as a function ok, , we 80 I T
get that, in the same limit, a strong increase\ds observed, 1 \\\
in accordance with the results shown in Ref. 51. 60 4 S, B=8 e, = 3.33)

VI. CONCLUSIONS 40 -
s=1( =10.0)

In this paper we have studied shape effects on the one- \
and two-electron ground state in ellipsoidal quantum dots. 20 i . i . i : ] :
Using a suitable coordinate system which allows us to ex- 1.0 1.5 2.0 2.5 3.0
actly solve the single-particle effective-mass Hamiltonian, Y = c/a

we have calculated the electron energies both in the strong

confinement regime and with a variational calculation. The F|G. 4. The difference\ between the energies of the one- and
variational wave function has been chosen in such a way tévo-electron ground states is shown for several values tifis a
take into account both the electron-electron correlation dudecreasing function of¢. This shape dependence becomes very
to the Coulomb potential and dielectric effects and the anstrong ass; —1.
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Dielectric effects have been studied as a function of bottferenceA between the one- and two-electron ground-state
the dielectric mismatch between the dot and the surroundingnergies has been calculated, showing that the dependence
medium and the dot anisotropy. It comes out that on increasan the dot anisotropy becomes stronger as the external di-
ing the dot anisotropy significant contributions to the corre-glectric constant approaches 1.
lation energy are given by the electron-electron surface in-
teraction. The distance between the two electrons increases
with respect to the case= 1. This shows that neither dielec- ACKNOWLEDGMENTS
tric effects can be neglected in the one- and two-electron
ground-state energy calculation, nor can they be treated per- G.C. has been supported by the European Social Fund.
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