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We present a formalism to describe transitions between photon modes in a photonic crystal with a tempo-
rally and spatially varying dielectric constant, in analogy to optical transitions between electronic states in
metals and semiconductors. Resonant transitions between different photonic bands are discussed, and predic-
tions of the theory are compared to electromagnetic simulations. We contrast the cases of electronic and
photonic transitions, and explore how the photonic band structure allows opportunities for phase matching and
stationary-wave generation in nonlinear optical frequency-conversion processes.@S0163-1829~99!11503-0#
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The analogy between the physics of an electron in a
riodic potential~a crystal! and a photon in a periodic dielec
tric medium ~a photonic crystal! has stimulated many ap
proaches to the problem of controlling light propagation.1–3

The common thread in these ideas is to employ perio
dielectric materials to alter the dispersion relation for ph
tons in order to produce desirable features, such as phot
band gaps, which have well-known electronic counterpar

The purpose of this paper is to extend the analogy to
case of photon transitions between bands in a photonic c
tal, achieved by perturbing the dielectric constant of the
derlying medium with the proper frequency and wave vec
These perturbations can be generated in a number of w
One particularly simple method is the mechanical vibrat
of the crystal. Since this vibration must be executed a
frequency comparable to the frequencies of the pho
modes of the crystal, this method is only feasible for t
microwave regime.

Another method of achieving the perturbation, for micr
waves through optical waves, is to exploit the nonline
properties of one of the materials composing the crystal
this case, the present work is a generalization of fami
notions from nonlinear optics,4,5 cast in a different formal-
PRB 590163-1829/99/59~3!/1551~4!/$15.00
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ism. In a x (2) medium, for example, an optical wave ma
couple with another via the perturbation in the dielectric co
stant that it induces. The familiar requirements for such c
pling to accumulate and generate a new propagating w
are those of frequency and phase~wave vector! matching
between initial and final waves. In a photonic crystal, t
novelties are that the dispersion relation for photon mo
can be altered drastically, and the unperturbed photo
modes can have very different spatial intensity and polar
tion configurations than plane waves.

The use of a periodicity to assist phase matching has b
demonstrated in one dimension with grating dispersion6 and
with a modulated nonlinearity~quasiphase matching!7 to
overcome phase mismatch due to material dispersion, an
a colloidal lattice of spheres, for efficient second-harmo
generation.8 Resonant enhancement of second-harmonic g
eration in a one-dimensional grating has also been discu
by various authors.9–12 The perturbation need not be opt
cally induced. For example, perturbation of a fiber Bra
grating by an acousto-optic modulator has also be
demonstrated,13 and described with a time-independe
formalism.14

The present work extends these notions to describe
1551 ©1999 The American Physical Society
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detailed time-evolution of states in a fully two- or thre
dimensional photonic crystal~for which the dispersion rela
tion is highly modified by the high dielectric contrast of th
component materials! during an arbitrary temporal and sp
tial perturbation of the dielectric function. In a photonic cry
tal, the index contrast is usually large and a perturba
treatment of the effect of index variation is not valid. In th
formalism, we begin with the exact eigenmodes of a pho
nic crystal, with the effects of temporal and spatial pertur
tions treated in terms of interactions between these eig
modes. Although it is based on a formalism inspired by
analogy with optically induced electronic transitions in s
ids, the differences between the electronic and photo
cases are also explicated.

The first step in the analogy is to cast Maxwell’s equ
tions in a Schro¨dinger-like form. This can be done with th
appropriate definitions:

i
d

dt
uF&5@Q1V~r ,t !#uF&, ~1!

uF&[FD
HG , Q[F 0 i¹3...

2 i¹3S 1

«
¯ D 0 G ,

V[F 0 0

i¹3S d«

«2 ¯ D 0G . ~2!

In Eq. ~2!, D is the displacement field,H is the magnetic
field, «~r ! is the background dielectric function, andd«(r ,t)
is the perturbation in the dielectric function. In an unpe
turbed photonic crystal,« is triply periodic andd«50. The
eigenvectors ofQ are the photonic Bloch states of the cry
tal, and the eigenvalues are their frequencies. With a suit
defined inner product

^F1uF2&[
1

~2p!3 E d3r S 1

«
D1* •D2D1~H1* •H2!, ~3!

the operatorQ is Hermitian. Note thatV is not a Hermitian
operator, which implies that the transitions it induces are
norm conserving. Nevertheless, we may proceed as in q
tum mechanics to develop a time-dependent perturba
theory. Supposing thatuFn& are the Bloch states of the un
perturbed crystal, we may derive the following exact eq
tion for the amplitudesam(t)5^FmuF(r ,t)&eivmt:

i
d

dt
am~ t !5(

n
Vmnan~ t !exp@ i ~vm2vn!t#. ~4!

In this equation, the perturbation matrix elementsVmn are
given by

Vmn5
2vm

~2p!3 E d3r
d«~r ,t !

«2 Dm* •Dn . ~5!

For coupling to occur, this matrix element must be no
vanishing. The unperturbed states can be written in Bl
form Dn(r )5D̂n(r )exp(ikn•r ), whereD̂n(r ) is periodic on
e

-
-
n-
e

ic

-

-

ly

t
n-
n

-

-
h

the crystal lattice. If the perturbationd« is itself a Bloch
waved̂«(r )exp@i(k•r2vt)#, as would be the case for a pe
turbation caused by the nonlinear interaction with anot
optical wave, then for a nonvanishing matrix element it m
be the case thatkm1kn2k5G, whereG is any reciprocal
lattice vector of the crystal. This is to be contrasted with t
usual phase-matching conditionkm1kn2k50 in a homoge-
neous medium. However, phase-matching alone is not a
ficient criterion for coupling between Bloch states. The sy
metries of the Bloch states must also be compatible with
of the perturbationd«, in the sense that the integral whic
remains in Eq.~5! should be nonzero even after the phas
matched factors exp(ik•r ) cancel out.

One major difference between this case and the cas
electrons in a solid is that in a solid, the bands are all oc
pied with electronic states up to the Fermi level. In a pho
nic crystal the bands are generally unoccupied. A sin
Bloch wave can be established as the initial condition
Eqs. ~4! by illuminating the crystal with an optical wave o
the proper frequency along the desired direction.

In that case, all other modes of the problem may be
nored except for ones which are coupled to the initial con
tion by way of the perturbation. The simplest case is one
which the perturbation is tuned to the frequency differen
between the initial Bloch state and only one other, possi
in a different band. If the phase-matching condition is sa
fied, resonant transitions between the states~say, 1 and 2!
take place under the influence of the perturbation. In anal
with the corresponding two-state problem in quantum theo
the approximate solutions to Eqs.~4! are

a1~ t !5cosS tAV12V21

2 D ,

a2~ t !5Av2

v1
sinS tAV12V21

2 D . ~6!

After the perturbation acts for timepA2/V12V21 ~or,
equivalently, v1 /A2V12V21 optical cycles of the initial
mode!, the initial mode has been converted into the tar
mode. As an example, for ax (2) material such as GaAs (n
53.5), the modulation strengthd«/« can be expected to
reach 531025 if the intensity of the perturbing electric field
reaches 1010 W/m2, as it would if a one-watt laser pulse wer
focused onto a 10mm310mm region of a photonic crystal.15

For photonic modes withl'1 mm andv2'2v1 , an order-
of-magnitude estimate with Eq.~5! predicts a transition time
of order 100 ps.

Note that the amplitudes of the coefficients in Eq.~6! are
not equal—a reflection of the fact thatV is not Hermitian and
the transitions are not norm conserving. This is to be c
trasted with the norm-conserving unitary evolution of qua
tum mechanics. Another point of contrast to electronic tra
sitions is that the photonic transition may be indirect; that
between states that propagate in different directions. For
the wave vector of the perturbation must be matched to
difference in wave vectors of the states. In the case of e
tron bands, momentum conservation demands that optica
induced transitions be very nearly direct (Dk50).
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Interband transitions in photonic crystals also add po
bilities for well-known nonlinear frequency-conversion pr
cesses. The basic difference is that, in a photonic crystal
unperturbed modes may be quite different from ordin
plane waves, and the underlying dispersion relation~band
structure! governing the allowed transitions may be manip
lated by thoughtful design of the crystal geometry.

As a concrete demonstration we have simulated the e
tromagnetic fields in a typical two-dimensional photon
crystal, a square lattice of columns with dielectric const
«511.36 embedded in a medium with«51. The photonic
band structure~computed by a conjugate-gradient scheme16!
is shown in Fig. 1, for waves polarized with the electric fie
along the columns. The initial state was chosen to beX1 , and
the target stateM2 , as indicated by the solid arrow. Fo
phase matching, a perturbation withk5(p/a) ŷ is necessary.
A finite-difference time-domain~FDTD! computation of

FIG. 1. Photonic bands for the TM-polarized modes of a squ
lattice of dielectric («511.36) rods in air. The transitionsX1↔M2

andM1↔X3↔M5 are marked.

FIG. 2. The time-dependent composition of the electromagn
field during a resonantX1↔M2 transition, caused by a 4.4% non
linearity. A point was plotted every five optical cycles for ea
mode, as computed by a FDTD simulation. The time axis is m
sured in elapsed optical cycles of the initial mode,X1 . The solid
lines are the predictions of the two-state coupled-mode model,
~6!.
i-

he
y

-

c-

tMaxwell’s equations on a 32332 spatial grid containing four
unit cells, with a 4.4% dielectric perturbation of the column
allowed the detailed time evolution of the fields to be o
served. The use of an unnaturally large index modulation
the simulation is purely for the purposes of shortening
transition time and thereby making the computation tr
table. The physics is independent of the magnitude of
index modulation. Also, for a weaker perturbation the a
proximations leading to Eq.~6! are even more appropriate a

e
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-

q.

FIG. 3. Representative electric field patterns during theX1↔M2

transition. White~black! represents a field pointing out of~into! the
page. Contours of field strength are also shown. The arrows s
the direction of propagation at the beginning and end of the tra
tion. The timeT is the number of optical cycles of the initial mode
as in Fig. 2.

FIG. 4. The time-dependent composition of the electromagn
field that begins in theM1 state and is resonantly excited toX3 . A
point was plotted every ten optical cycles for each mode, as c
puted by a FDTD simulation. The predictions of a three-state mo
derived from Eqs.~4! are plotted as solid lines. The time axis
measured in elapsed optical cycles of the initial mode,M1 .
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the transition time becomes correspondingly lengthened.
This time evolution is shown in Figs. 2 and 3. In Fig.

the coefficientsuan(t)u2 are plotted and compared to the pr
dictions of the two-state model. This model agrees with
FDTD simulation almost exactly—the transition time, whic
scales inversely with the magnitude of the perturbati
agrees with the prediction of Eqs.~6!. In Fig. 3, representa
tive field configurations during the transition have been p
ted, as the field switches from propagating along theX direc-
tion to the M direction. This is a demonstration of a
indirect, interband transition, one of the possibilities afford
by the periodicity of the photonic crystal.

The result of this transition is the generation of a stand
wave, sinceM2 lies on the band edge and has zero gro
velocity. It is evidently possible to generate stationary mo
in a photonic crystal without using counter-propagati
waves~k and2k!, as would be the case in a homogeneo
material. This is an example of the possibilities introduc
by the drastically altered photonic band structure, in this c
the flattening of photonic bands near the edge of the B
louin zone.

For the case of an optically induced perturbation, th
must be a Bloch state with just the right frequency~to satisfy
the resonance condition! and wave vector~for proper phase
matching!. This can be achieved by altering the geometry
the crystal until the band structure admits such a mode~for
example, in the present case, the state atY1 is very close to
resonance betweenX1 and M2!. Or, the perturbation migh
be induced in a two-dimensional crystal by utilizing the th
dimension—by illuminating the crystal from below the sym
metry plane at the proper angle. In that case the allow
states form a continuum: the frequency can be tuned to r
nance, and the angle of approach can be chosen to pe
phase matching.

As a second illustration, it is possible~for this particular
band structure! to couple together three different modes. F
ure 4 shows the time evolution of the fields which start
stateM1 and are acted upon by a perturbation~again in they
direction! in resonance withX3 . The field energy oscillates
between those two modes and also a third,M5 , which hap-
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pens to be very nearly frequency- and phase-matched to
states in the lower bands, owing to the band structure of
particular crystal. The FDTD simulations agree with the p
dictions of a simple three-state coupled-mode model, deri
from Eqs.~4! and solved by Runge-Kutta integration.

A simulation of very long duration shows that eventua
the fields transfer some power to even higher modes; i
likely that there will exist such modes near resonance si
the density of photonic bands increases with frequency.
fields will climb the band structure in sequential jumps giv
by the frequency and wave vector of the perturbation, a
with a temporal sequence determined by the matrix elem
Vmn between states and the proximity to resonance. T
band-climbing behavior is another point of contrast to t
case of electronic transitions, where numerous mechani
exist for de-exciting the electron back to its ground sta
Such mechanisms are less important for photon modes
photonic crystal, since the nonlinear interactions betwe
light and dielectric media are very weak. Proceeding to
quentially higher modes is of course possible through n
linear conversion processes in homogeneous materials~no
photonic crystal! but is generally suppressed by the lack
phase matching.

The hallmark of photonic crystals—a drastically alter
dispersion relation for light—may provide opportunities
principle for resonant transitions and frequency convers
in a time-dependent medium. Since band structures and
trix elements are easily computed, the dispersion relation
be designed to permit coupling between desired modes,
the spatial distribution of intensity and polarization of th
photon modes may be modified to concentrate wave ene
in certain desired locations. Photonic crystals may allow
usual, controllable temporal sequences of electromagn
fields to be realized.
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