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We present a formalism to describe transitions between photon modes in a photonic crystal with a tempo-
rally and spatially varying dielectric constant, in analogy to optical transitions between electronic states in
metals and semiconductors. Resonant transitions between different photonic bands are discussed, and predic-
tions of the theory are compared to electromagnetic simulations. We contrast the cases of electronic and
photonic transitions, and explore how the photonic band structure allows opportunities for phase matching and
stationary-wave generation in nonlinear optical frequency-conversion procgS6&63-18209)11503-7

The analogy between the physics of an electron in a peism. In a x> medium, for example, an optical wave may
riodic potential(a crystal and a photon in a periodic dielec- couple with another via the perturbation in the dielectric con-
tric medium (a photonic crystal has stimulated many ap- stant that it induces. The familiar requirements for such cou-
proaches to the problem of controlling light propagatioh. pling to accumulate and generate a new propagating wave
The common thread in these ideas is to employ periodi@re those of frequency and phageave vector matching
dielectric materials to alter the dispersion relation for pho-between initial and final waves. In a photonic crystal, the
tons in order to produce desirable features, such as photonivelties are that the dispersion relation for photon modes
band gaps, which have well-known electronic counterparts.can be altered drastically, and the unperturbed photonic

The purpose of this paper is to extend the analogy to thenodes can have very different spatial intensity and polariza-
case of photon transitions between bands in a photonic crysion configurations than plane waves.
tal, achieved by perturbing the dielectric constant of the un- The use of a periodicity to assist phase matching has been
derlying medium with the proper frequency and wave vectordemonstrated in one dimension with grating dispefsamd
These perturbations can be generated in a number of waywith a modulated nonlinearitfquasiphase matchiig to
One particularly simple method is the mechanical vibrationovercome phase mismatch due to material dispersion, and in
of the crystal. Since this vibration must be executed at a colloidal lattice of spheres, for efficient second-harmonic
frequency comparable to the frequencies of the photogeneratiorf. Resonant enhancement of second-harmonic gen-
modes of the crystal, this method is only feasible for theeration in a one-dimensional grating has also been discussed
microwave regime. by various author8-*? The perturbation need not be opti-

Another method of achieving the perturbation, for micro-cally induced. For example, perturbation of a fiber Bragg
waves through optical waves, is to exploit the nonlineargrating by an acousto-optic modulator has also been
properties of one of the materials composing the crystal. Inlemonstrated® and described with a time-independent
this case, the present work is a generalization of familiaformalism*
notions from nonlinear optic® cast in a different formal- The present work extends these notions to describe the
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detailed time-evolution of states in a fully two- or three- the crystal lattice. If the perturbatiode is itself a Bloch

dimensional photonic cryst&for which the dispersion rela- wave de(r)exdi(k-r — wt)], as would be the case for a per-
tion is highly modified by the high dielectric contrast of the tyrbation caused by the nonlinear interaction with another
component materialsiuring an arbitrary temporal and spa- gptical wave, then for a nonvanishing matrix element it must
tial perturbation of the dielectric function. In a photonic crys- pe the case that,,+k,— k=G, whereG is any reciprocal
tal, the index contrast is usually large and a perturbativgattice vector of the crystal. This is to be contrasted with the
treatment of the effect of index variation is not valid. In this gyal phase-matching conditiép,+ k,— k=0 in a homoge-
formalism, we begin with the exact eigenmodes of a photonegus medium. However, phase-matching alone is not a suf-
nic crystal, with the effects of temporal and spatial perturbaicient criterion for coupling between Bloch states. The sym-
tions treated in terms of interactions between these eigennetries of the Bloch states must also be compatible with that
modes. Although it is based on a formalism inspired by theyf the perturbationse, in the sense that the integral which
analogy with optically induced electronic transitions in sol- remains in Eq(5) should be nonzero even after the phase-
ids, the differences between the electronic and photonigyatched factors exii-r) cancel out.
cases are also explicated. . One major difference between this case and the case of
~ The first step in the analogy is to cast Maxwell's equa-g|ectrons in a solid is that in a solid, the bands are all occu-
tions in a Schrdinger-like form. This can be done with the pied with electronic states up to the Fermi level. In a photo-
appropriate definitions: nic crystal the bands are generally unoccupied. A single
Bloch wave can be established as the initial condition for
i % IF)=[0+V(r,1)]|F), (1) Egs.(4) by illuminating the crystal With an opt_ical wave of
the proper frequency along the desired direction.
In that case, all other modes of the problem may be ig-
0 ivVXx... nored except for ones which are coupled to the initial condi-
tion by way of the perturbation. The simplest case is one in
) 0 ’ which the perturbation is tuned to the frequency difference
between the initial Bloch state and only one other, possibly
0 0 in a different band. If the phase-matching condition is satis-
fied, resonant transitions between the stdtey, 1 and 2
oe ) ol (2)  take place under the influence of the perturbation. In analogy
22 with the corresponding two-state problem in quantum theory,
the approximate solutions to Eq4) are

|F>E[m’ 0= —iVx

&

V=| |
VX

In Eq. (2), D is the displacement field is the magnetic

field, £(r) is the background dielectric function, aad(r,t) ViVt
is the perturbation in the dielectric function. In an unper- al(t)zcos(t\/ 5 )
turbed photonic crystak is triply periodic andds=0. The

eigenvectors of are the photonic Bloch states of the crys-

tal, and the eigenvalues are their frequencies. With a suitably wy ViVay
defined inner product a,(t)= w—l sin| t — | (6)

R
<F1|F2>wad ri - Di-Ds

+(HT-Hp), (3 After the perturbation acts for timery2/N;,V,, (or,
equivalently, wq/+2V4,V,, optical cycles of the initial
the operatoi® is Hermitian. Note thaV/ is not a Hermitian  mode, the initial mode has been converted into the target
operator, which implies that the transitions it induces are nofode. As an example, for g? material such as GaA:(
norm conserying. Nevertheless, we may proceed as in quan-=3 5y the modulation strengtée/e can be expected to
tum mechanics to develop a time-dependent perturbatioppach 5¢ 1075 if the intensity of the perturbing electric field
theory. Supposing thdF,) are the Bloch states of the un- reaches 189 Win?, as it would if a one-watt laser pulse were
perturbed crystal, we may derive the following exact equasocysed onto a 1@mx 10 um region of a photonic crysta?.
tion for the amplitudesi(t) =(F|F(r,t))e'“m" For photonic modes with ~1 um andw,~2w,, an order-
d of-magnitude estimate with E@5) predicts a transition time
— — i _ of order 100 ps.
gt @t En" Virda(exi(on—wnt]. (4 Note that tﬂe amplitudes of the coefficients in E8). are
not equal—a reflection of the fact thétis not Hermitian and
In this equation, the perturbation matrix eleme¥its, are  the transitions are not norm conserving. This is to be con-

given by trasted with the norm-conserving unitary evolution of quan-
tum mechanics. Another point of contrast to electronic tran-

Vo = ~ ®“m f 3 58(2'0 D*.D. . (5) sitions is that the photonic transition may be indirect; that is,
m(2m)? & m-n between states that propagate in different directions. For this

_ _ _ the wave vector of the perturbation must be matched to the
For coupling to occur, this matrix element must be non-gifference in wave vectors of the states. In the case of elec-
vanishing. The unperturbed states can be written in Blochron bands, momentum conservation demands that optically-

form Dp(r)=D,(r)exp(k,-r), whereD,(r) is periodic on induced transitions be very nearly diredd=0).
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FIG. 1. Photonic bands for the TM-polarized modes of a square
lattice of dielectric € =11.36) rods in air. The transition§; < M,
andM < X3 Mg are marked.

Interband transitions in photonic crystals also add possi-
bilities for well-known nonlinear frequency-conversion pro-
cesses. The basic difference is th_at' ir! a photonic CrySt_aI’ the FIG. 3. Representative electric field patterns duringXhe-M,
unperturbed modes may be quite different from ordinary,ansition. white(black represents a field pointing out Gito) the
plane waves, and the underlying dispersion relatiband  page. Contours of field strength are also shown. The arrows show
structurg governing the allowed transitions may be manipu-the direction of propagation at the beginning and end of the transi-

lated by thoughtful design of the crystal geometry. tion. The timeT is the number of optical cycles of the initial mode,
As a concrete demonstration we have simulated the elegs in Fig. 2.

tromagnetic fields in a typical two-dimensional photonic

crystal, a square lattice of columns with dielectric constaniviaxwell’s equations on a 3232 spatial grid containing four
£=11.36 embedded in a medium with=1. The photonic  unit cells, with a 4.4% dielectric perturbation of the columns,
band structurécomputed by a conjugate-gradient schétne  allowed the detailed time evolution of the fields to be ob-
is shown in Fig. 1, for waves polarized with the electric field served. The use of an unnaturally large index modulation in
along the columns. The initial state was chosen t&Xpeand  the simulation is purely for the purposes of shortening the
the target stateM,, as indicated by the solid arrow. For transition time and thereby making the computation trac-
phase matching, a perturbation wkk- (7/a)J is necessary. table. The physics is independent of the magnitude of the
A finite-difference time-domain(FDTD) computation of index modulation. Also, for a weaker perturbation the ap-

proximations leading to Ed6) are even more appropriate as
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FIG. 2. The time-dependent composition of the electromagnetic
field during a resonanX,< M, transition, caused by a 4.4% non- FIG. 4. The time-dependent composition of the electromagnetic
linearity. A point was plotted every five optical cycles for each field that begins in thé/, state and is resonantly excitedXg. A
mode, as computed by a FDTD simulation. The time axis is meapoint was plotted every ten optical cycles for each mode, as com-
sured in elapsed optical cycles of the initial modg, The solid puted by a FDTD simulation. The predictions of a three-state model
lines are the predictions of the two-state coupled-mode model, Eqlerived from Eqgs(4) are plotted as solid lines. The time axis is
(6). measured in elapsed optical cycles of the initial mdde,
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the transition time becomes correspondingly lengthened. pens to be very nearly frequency- and phase-matched to the
This time evolution is shown in Figs. 2 and 3. In Fig. 2 states in the lower bands, owing to the band structure of this
the _coefficientstan(t)|2 are plotted ar_1d compared to thg pre- particular crystal. The FDTD simulations agree with the pre-
dictions of the two-state model. This model agrees with thedictions of a simple three-state coupled-mode model, derived
FDTD simulation almost exactly—the transition time, which from Egs.(4) and solved by Runge-Kutta integration.
scales inversely with the magnitude of the perturbation, A simulation of very long duration shows that eventually
agrees with the prediction of Eq). In Fig. 3, representa- the fields transfer some power to even higher modes; it is
tive field configurations during the transition have been plotyikely that there will exist such modes near resonance since
ted, as the field switches from propagating alongXdrec- o density of photonic bands increases with frequency. The
tion to the M direction. This is a demonstration of an fig|gs will climb the band structure in sequential jumps given
indirect, interband transition, one of the possibilities affordedby the frequency and wave vector of the perturbation, and

by the periodicity of the photonic crystal. with a temporal sequence determined by the matrix elements

The result of this transition is the generation of a standing,  patween states and the proximity to resonance. This
mn .

wave, sinceM, lies on the band edge and has zero groupyang-climbing behavior is another point of contrast to the
velocity. Itis evidently possible to generate stationary modeg ase of electronic transitions, where numerous mechanisms

in a photonic crystal without using counter-propagatingeyist for de-exciting the electron back to its ground state.
waves(k and —k), as would be the case in a homogeneousg,ch mechanisms are less important for photon modes in a
material. This is an example of the possibilities introducedspqionic crystal, since the nonlinear interactions between
by the drastically altered photonic band structure, in this CaSgght and dielectric media are very weak. Proceeding to se-
the flattening of photonic bands near the edge of the B”"quentially higher modes is of course possible through non-

louin zone. linear conversion processes in homogeneous matefrials

For the case of an thiF;aIIy indyced perturbatiOf}, there‘photonic crystal but is generally suppressed by the lack of
must be a Bloch state with just the right frequerfrysatisfy phase matching.

the resonance conditiprand wave vectotfor proper phase The hallmark of photonic crystals—a drastically altered
matching. This can be achieved by altering the geometry ofighersion relation for light—may provide opportunities in

the crystal until the band structure admits such a méde  ,inciple for resonant transitions and frequency conversion
example, in the present case, the stat¥ais very close 10 i, 3 time-dependent medium. Since band structures and ma-
resonance betweeX; andM,). Or, the perturbation might iy elements are easily computed, the dispersion relation can

be induced in a two-dimensional crystal by utilizing the third ;o designed to permit coupling between desired modes, and
dimension—Dby illuminating the crystal from below the Sym- e spatial distribution of intensity and polarization of the
metry plane at the proper angle. In that case the allowed,oton modes may be modified to concentrate wave energy
states form a continuum: the frequency can be tuned to resg, certain desired locations. Photonic crystals may allow un-
nance, and the angle of approach can be chosen to permjit,a|, controllable temporal sequences of electromagnetic

phase matching. o . . . fields to be realized.
As a second illustration, it is possibléor this particular

band structureto couple together three different modes. Fig- The authors would like to acknowledge helpful conversa-
ure 4 shows the time evolution of the fields which start intions with Mehran Kardar and Eli Burstein. This work was

stateM ; and are acted upon by a perturbatiagain in they
direction in resonance withX;. The field energy oscillates
between those two modes and also a thivid,, which hap-
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