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ABSTRACT: The worm model of Kratky and Porod has been extended to “locally stiff’ polyelectrolytes. Neglecting 
excluded volume effects, the electrostatic persistence length, Pel, has been obtained for a continuous, uniform charge 
distribution in which both charge rearrangements due to bending and fluctuations due to thermal motion are not al- 
lowed. Comparisons of experimentally determined dimensions of carboxymethylcellulose in aqueous NaCl with theo- 
retical results reveals good agreement between theory and experiment. In the Appendix, the relationship between 
the discrete and continuous model is examined. Furthermore we treat the continuous charge distribution with rear- 
rangements with and without fluctuations. If the polyelectrolyte is assumed to be locally stiff, the results of the latter 
two cases reduce identically to the continuous, uniform case in which the charges are frozen in place. 

(I)  Introduction 
Polyelectrolyte excluded volume theories assume that 

the unperturbed mean-square end-to-end distance (ho2) is 
independent of the supporting electrolyte concentration, CS.lp2 
The basis of this assumption comes either from the use of 
Stockmayer-Fixman, S-F, plots, which give a slight ionic 
strength dependence for the unperturbed dimensions,3 even 
though S-F plots assume ( ho2) is independent of solvent, or 
from direct measurements in relatively high salt concentration 
theta  solvent^.^^^ However, for sufficiently low C,, one would 
intuitively expect that local electrostatic forces exert a sig- 
nificant influence on (ho2). The model of Rice and Harris6 
takes account of local electrostatic interactions by considering 
an equivalent Kuhn chain with charges concentrated a t  the 
midpoints of the statistical elements; if nearest neighbor 
segment interactions are assumed, the polymer behaves as a 
random chain. Thus, in the absence of long-range interactions, 
the somewhat artificial Rice-Harris model gives unperturbed 
chain dimensions that depend in a complicated fashion on 
CS. 

In the low salt limit, the Debye screening length, K - ~ ,  is 
much larger than the distance between charges on the poly- 
electrolyte chain, so that the replacement of a discrete charge 
distribution by a continuous one should be a good approxi- 
m a t i ~ n . ~  The polyelectrolyte can therefore be viewed as a 
structureless, charged space curve, i.e., a wormlike polymer 
with a continuous charge distribution. 

In this paper, we shall calculate the electrostatic persistence 
length of a charged wormlike polymer which is sufficiently stiff 
that no excluded volume effects are present. The electrostatic 
persistence length, Pel, is approximately related to ( ho2) 
by? 

where L = contour length of the chain; Po persistence length 
in the absence of electrostatic forces (Le., C, + a); and PT = 
total persistence length; Pel is obtained for (i) a continuous, 
uniform charge distribution without charge rearrangements 
due to bending and without fluctuations due to thermal mo- 
tion. Our results are then compared with experimental data 
on carboxymethylcellulose dimensions and reasonably good 
agreement is demonstrated. Furthermore, in the Appendix 
we consider three additional calculations relating to Pel: (ii) 
the discrete model with no charge rearrangements or fluctu- 
ations; (iii) the continuous charge distribution with charge 
rearrangements, but no fluctuations; and (iv) the continuous 
charge distribution with charge rearrangements and fluctu- 
ations. The results of case (ii) reduce to the continuous charge 
distribution result (i) if KU - 0. (Here a is length of a monomer 

unit.) Finally, cases (iii) and (iv) reduce to case (i) if the 
polymer is assumed to be locally stiff; the exact definition of 
local stiffness will be presented in the body of the paper. 

(11) T h e  Charged Wormlike Polymer 

(A) General Formalism. Consider a charged space curve 
whose infinitesimal elements interact via a screened Coulomb 
potential. We wish to calculate the electrostatic persistence 
length, Pel. V ,  the increase in potential energy per unit length 
due to electrostatic repulsions relative to the reference con- 
figuration of a straight rod, is given by3 

V = ‘12 t Rc-2 (11.1) 

t = bending constant of the rod and R ,  is the radius of curva- 
ture of the element of space curve at  which V is evaluated. 

I t  then follows immediately from the worm model that 

(11.2) 
L kBT 

k g  is Boltzmann’s constant. Thus, we direct our attention to 
determining the explicit form oft  = t ( ~ )  in eq 11.1. 

Let us choose the origin at  an arbitrary point somewhere 
in the middle of the space curve, and let us parameterize the 
space curve by s, the contour length relative to the origin. If 
F(s) is the location of a point on the space curve relative to the 
origin, then 

F(s) = f(s)l’+ g ( s ) j  + h(s)/l (11.3) 

where i, j ,  h are unit vectors in the x ,  y ,  z directions, respec- 
tively. Define Fo(s) to be the location of the point in the 
straight rod reference configuration. We shall choose the 
reference configuration to lie along i so that we can write 

FO(S) = S; = fo(s)l’ (11.4) 

Now, the length of the space curve must remain invariant, 
i.e., 

2t 
2P0 = 2P,1= - (ho2) -- 

s ( b )  = J b  [ ( f ’ ( ~ ) ) ~  + (g’(s))2 + ( h ’ ( ~ ) ) ~ ] ~ / ~  ds 

= J b  [ ( f ~ ’ ( s ) ) ~ ] ~ / ~  ds (11.5) 

for any arbitrary b. The prime denotes differentiation with 
respect to s. Hence, 

( f ’ ( s ) I2  + (g’(s))2 + ( h ’ ( ~ ) ) ~  = (f0’(s)l2 = 1 (11.6) 

Settingf’(s) = 1 - 6(s), where 6(s) > 0, we find on direct sub- 
stitution into eq 11.6 and on solving the quadratic that re- 
sults 
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6(s) = 1 - [l - {(g’(s))2 + (h’(s))””2 (11.7) 

We now introduce the concept of local stiffness; Le., g;(s)2 + 
h’(s)2 << 1 (we see later this is equivalent to neglecting t e rns  
of order R,-4) 

f ’ ( s )  = 1 - 6 ( ~ )  = 1 - ‘12 ((g’(S))’ + (h‘(~))‘)  (11.8) 

Furthermore, the unit tangent vector u(s) is giver? by 

u(s) = ( f ’ ( s ) ,  g’b), h’b ) )  (11.9) 

A general property of unit tangent vectors and their de- 
rivatives follows from u(s)a(s)  = l. 

d u b  1 u(s) - = f ’ ( s ) f ” ( s )  + g’(s)g”(s) + h’(s)h”(s) = 0 
dS 

(II,10) 

From eq 11.8, it follows that 

f”’(s) = -.{g’”)g’’!s) + h’(s)h“(s)) 

and eq 11.10 becomes 

{g’(s)g”(s) + h’(s)h”(s) l ( (g’(s))2 + (h’(s))2)  = 0 (11.11) 

This implies that 

i ” ( s )  = 0 (1I.lla) 

Furthermore, the radius of curvature is related to bulds by 

(11.12) 

the last expression follows froni eq 11.1 i 
A general property of g(s), h ( s ) ,  h ( A ) ,  and g’is) is that h e y  

must vanish a t  s = 0; Le., the reference and given configura- 
tions have the same tangent vector a t  the origin By expanding 
g(s), g’ (s), h ( s ) ,  and h ” ( s )  in a Taylor series about s = 0 and 
using eq 11.12 we find 

(B) Continuous Charge  Distribution wi th  No Rear -  
rangements o r  Fluctuations. Let V* 5 potential a t  origin, 
per unit charge, due to electrostatic repulsion relative to the 
straight rod configuration. We shall neglect intermolecular 
interactions and assume the polyelectrolyte is a poiyacid. 

where “0 = charge per unit length; “0 aq/a = cur0 (TO = q /a ) ;  
a 5 degree of ionization; g E charge per monomer unit; a 2 

length of monomer unit; 1 / ~  = (1000Dk~T/4ne~N~-  
~ I C 1 Z 1 2 ) 1 / 2 ;  e = charge on a proton; C, = concentration of 
ionic species ‘5’’ in solution; 2, = valence of i th species; and 
D = solvent dielectric constant. L1 and La are the arc lengths 
of the curve from the origin to the ends. In what follows, we 
assume that the interaction is sufficiently short ranged that 
letting L1, L S  - does not affect the result. 

Now, 

(11.16) 

The last step follows from eq 11.12. 
We expand IF(s)l and e-KIF(s)l in a Taylor series about s 

= 0 to terms of order 1/RC2. (This is the local stiffness ap- 
proximation.) Hence, 

Substitution of eq 11.17 into eq 11.15 yields 

v* = CT~/~K~DR,~(O)  (11.18) 

Therefore, the potential of an element of length dl is 

V dl = ‘12 V* dq = ‘/2 V*ug dl 

or 

v = a2r02/8K2DRc2(0) (11.19) 

The factor of l/2 is introduced to avoid overcounting; i.e., we 
wish to consider the potential acting on each infinitesmal el- 
ement only once. Furthermore, we have substituted aro for 
00. 

Comparing eq 11.19 to eq 11.1, it is readily seen that 

t = (11.20) 

2P,the“ = c ~ ~ I ’ ~ * / ~ K ~ ~ B T D  (11.21) 

Substituting the value o f t  in eq 11.20 into eq 11.2 we find 

for the uniformly charged rod without charge rearrangements 
due to bending and without fluctuations. 

(111) Comparison of Theory wi th  Experiment 
In the development of the wormlike polyelectrolyte model, 

it is assumed that (1) 1 / ~  > a ;  (2a) excluded volume effects are 
negligible; and (2b) the polyelectrolyte is locally stiff. Con- 
dition (1) can be relaxed by an explicit consideration of the 
discrete charge nature of the chain (see Appendix). However, 
the region where Pel contributes significantly to PT is precisely 
that domain where (1) is valid. Furthermore, condition (1) 
puts restraints on the range of ionic strengths, I ,  where our 
treatment is appiicable. For (2a) to hold in general, we must 
examine the polyelectrolyte in low I ,  theta solvents. Unfor- 
tunately, the existing measurements are in theta solvents a t  
relatively high I; our theory predicts a very slight dependence 
on I ,  as is o b ~ e r v e d . ~ , ~  Hence, we must choose a system a t  low 
I in which the polyelectrolyte is sufficiently stiff that excluded 
vo!ume effects are negligible anyway. Finally, since light 
scattering gives an unambiguous determination of polyelec- 
trolyte dimensions, it  is the method of choice. 

On the basis of the above, we decided to compare the ex- 
perimentally determined dimensions of carboxymethylcel- 
lulose, CMC,g in aqueous NaCl solutions with those of our 
theory in the following way: Schneider and Doty determined 
bexptl  by light scattering. 

(bexpt1)2 = (h2) /N (111.1) 

Here, N is the degree of polymerization and the measurements 
were corrected for polydispersity. 

btheo is obtained from eq 1.1, 111.1, and L = Na by equat- 
ing 

~ P T  = b2/a (111.2) 

We then plot the experimentally determined b vs. I.-1 2PgexPt1 
is related to the zero intercept of bexpt’ by eq 11.1 and 111.2; 
using eq 11.1 and 11.21, we have 

The experimental and theoretical data are shown in Table I. 
Agreement between the experimentally determined and 
theoretical electrostatic persistence lengths is quite good. 
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One of the surprising results of our literature search to find 
suitable data is the lack of light-scattering measurements on 
polyelectrolytes a t  low ionic strength. Moreover, we were 
unable to find any light-scattering data on polyethylene imine 
hydrochloride, PEI(HC1): 

c1- 
(C-C=Nf), 

I 
H 

PEI(HC1) conforms perfectly to the charged worm model: it  
has no side chains, and all the charges are located on the 
backbone of the polymer. Clearly, more experimental work 
is necessary to test the validity of the proposed model. 

IV. Conclusions 
In conclusion, the theory of wormlike polymers has been 

extended to polyelectrolytes. Inherent with the limitations 
discussed in the previous section, we have been able to dem- 
onstrate that (h$ )  of a charged wormlike chain does in fact 
depend on C,. I t  consequently appears necessary that poly- 
electrolyte excluded volume theory be reexamined to incor- 
porate ( ho2) = (h&C,)). This is an important problem which 
we hope to treat in the future. 

Appendix 
The discrete model with no charge rearrangements or 

fluctuations, case (ii), is treated: Using the approximations 
employed in case (i), the potential energy, V', a t  a given charge 
site is 

Equation A1 is essentially the discrete version of eq 11.14. Here 
a single sum is employed to correct for overcounting. Consider 
the sum 

In the limit that N - m 

Furthermore, 

d2$ - a2a-2e-x;aa-1 2a2a-2e-2~aa-' 
(-44) 

Substituting the expressions of eq A3 and A4 into eq A l ,  we 
obtain 

'I3 dK2 (1 - e-xaa- ')2 (1  - e-Kaa- + -- 

' 2Ka2a-2e-2raa-1 

(1  - e-Kaa- + 1 (-45) 

To pass from the discrete to the continuum model, we must 
let ~ ~ a - 1  - 0 subject to the constraint that aq/a remains 
fixed. Since V' is the potential energy experienced by a point 
charge on a segment of length ua- l ,  the potential energy per 
unit length, V, equals V'aq0-l. Expanding the exponentials 
in eq A5, 

9 3  

and 

Table I 
Comparison of 2Pe1 with 2Peltheo a 

btheo, 2p,Atheo, A 
bexpc', ~ P T ,  2Pe1, 

I 1-1 A A A 
0.5 2 40.2 2.92 
0.05 20 43.1 360.7 27.9 29.2 43.1 
0.01 100 49.8 481.6 148.5 146.0 49.6 
0.005 200 58.1 655.4 335.6 292.1 56.7 

a For CMC, a = 5.15 A, the degree of substitution is 1.15, a = 
0.96, and M ,  = 4.4 X lo5 (Schneider and Dotyga). Rice and Har- 
risgb give 2P0 = 335 8, in agreement with our extrapolated value 
2P0 = 332.8 A. A value of 80 was used for the dielectric constant 
D. 

In exact agreement with eq 11.19. 
We now consider case (iii): the continuous charge distri- 

bution with charge rearrangements but no fluctuations. The 
change in free energy of the charged space curve relative to 
the straight rod configuration, AG, can be decomposed into 
three parts: First, there is the term arising from the excess 
electrostatic interaction due to bending between various parts 
of the polyelectrolyte. For definiteness, we shall assume the 
polymer is a polyacid. Then, there is an entropic contribution 
arising from the mixing of occupied and unoccupied sites. A 
site is said to be occupied if it  has a net negative charge and 
unoccupied if the site has no net charge. When the polymer 
is bent, the fraction of occupied sites will perhaps change; this 
gives rise to the entropy of mixing term and the third contri- 
bution to AG, the addition of hydrogen ions from the solution 
to the polyelectrolyte which acts to reduce the repulsive force 
between segments. 

Before presenting an expression for AG, we shall derive an 
expression for the entropy of mixing. Random mixing is as- 
sumed. 

For a discrete array of charges 

Asmixing = - k ~ ( N l ~  In X l f  + N z f  In X z f  
- N1i In X l i  - Nzi In X2') (AS) 

Here i and f refer to the initial and final states. N1 is the net 
number of sites occupied by a negative charge whose valence 
is determined by the nature of the individual polyacid. N z  is 
the number of sites occupied by H+ ions. 

Let 
N; 

( N i  + N z )  
x; = 

N l f  N z f  N1' 
L L L 
_-  - u, - = w - u, and - = u,,f 

(the straight rod configuration is the reference configuration) 
where w is the total number of sites per length. Thus 

X l f  = ulw, X z f  = 1 - u l w ,  ureJw = a 

The continuous version of eq A.8 becomes 

Asmixing = - k ~  [ X L  ds {u In ( u l w )  + (w - u )  In (1 - u / w )  

Here we have parameterized the arc length from one en 
of the worm. Thus, AG is given by 

AG = ro2 J L  J L  ds ds' 
2w2D 

(-47) - TASmixing + kBT J L  ds(a(s) - u,,f) In UH+ (A9) 
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where 

aH+ is the activity of the hydrogen ion in solution, i.e., a t  an 
infinite distance from the polyelectrolyte. The last term in eq 
A.9 arises from the free-energy contribution due to H+ addi- 
tion caused by the bending of the chain. 

We shall now assume that the charge distribution varies 
slowly on the scale of the range of the interaction, K - ~ .  At least 
to lowest order, u(s) and u(s’) are functionals of and change 
on the scale of the variation in Rc-2. In the local stiffness ap- 
proximation, Rc-2(s) is approximately constant, and as in the 
derivation of case ( i ) ,  we implicitly assume the distance over 
which RC-l is constant > ~ - l .  Hence, setting u(s) N u(s’) 
should be a valid approximation. Thus, 

1 e - K  IS-S’ I  

- s,” ds JLdsruref? ~ - TAS,i,i,, 
Is - S’I 

s“ denotes the arc length from an origin defined at  a points 
along the curve. Note that the lower limit of the integral in eq 
A l l  is really not zero but a ;  the real lower limit arises from 
consideration of the discrete nature of the chain. The integral 
I may be large but it is finite. Furthermore, that the lower 
limits of the other integrals in (A10) may be replaced by zero 
follows from our discussion in case (ii). 

Similarly, 

1 
~ K ~ R  c2 (s ) 

For convenience we shall write Rc-2(s) as Rc-2. Substituting 
the expressions for I and H ( s )  into eq A10 we obtain 

N 

+ ra2 LL dsZ(u2(s) - u,,?) - TAS,i,in, 
W2D 

Now, AG is a functional of u(s); it  can therefore be expanded 
about the most probable value of u, a, as follows: 

AG ( u )  = AG (TI + ‘/2 soL ds [ z] (u - (A131 
o=a 

Here 62G/6u2 is the second functional derivative of G with 
respect to u. The second term on the rhs of eq A13 is related 
to charge fluctuations; we shall consider it further under case 
(iv). Furthermore by definition, 

Thus T can be calculated from 

If we let R,-2 - 0 then F = uref, and it follows from eq A.14 
that 

Let 

where A is a constant to be determined. 

rithmic terms in F to order Rc-2, we find that 
Substituting eq A16 into eq A14 and expanding out loga- 

Note that 5 - u,,f as a - 0 and a - 1 as would be intuitively 
expected. 

Using eq A17 in eq A12 for u = 5 and taking the derivative 
of AG(F)  with respect to L ,  one finds to  order RC+ 

Substituting the explicit forms of b V / d L ,  - TdASmi,i,,/dL, 
~ B T ( T  - uref) In U H +  to order Rc-2 into d A G ( T ) / d L ,  

Thus, the result of case (iii) is identical with the result of case 
(i) to terms of order Rc-2. 

We now examine (iv): the continuous charge model with 
charge rearrangements and fluctuations. If we do not assume 
u(s )  = u(s’), eq A13 can be rewritten as 

A G ( u )  = AG(F)  + - LL ds ds‘ [ 
2 0  

X (u(s)  - F(s))(~(s’) - T(s’))  (A20) 

I t  follows directly from eq A9 that 
r02e-~I s--s’I 

w2D 

(A211 
I S  - s’I K I S  - s’I2 ~ B T ~ ( s  - s’) 

+ I +  XI-+- 1 
IS  - s’I 24RC2(s) 24RC2(s) aw(1 - a )  

So that 

AG(u) - A G ( T )  = - r02 sL LL ds dS’e-KIs-s‘I 
2 0  o 

1s - S’I K I S  - s’I 2 + XI-+-- 1 
1s - 8’1 24Rc2(s) 24Rc2(s) 

+ 2a(1 kBTw - a )  LL ds ~ 2 ( s )  (A22) 

where 

Y(S) = Ids) - T(s)l/w 

and AG(T)  is approximated by the value obtained when u(s) 
N u(s’), i.e., 
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Furthermore, we approximate 

since this term is very short ranged." Hence, 

X {Is - s'I + K I S  - s'I2) y(s)y(s') + 9 sL dsZy2(s) 
D o  

+ kBTw sL y2(s) ds (A23) 
2 4 1  - a) 0 

We now expand y(s) and +(r) = e-Kr(r + Kr2) in a truncated 
Fourier series 

L W  

y(s) = ,E c j  cos [(2.rrjs)/L] + cj' sin (2a;s/~) 
J=o  

LW 

J =  0 
4(s) = 4j cos (2.rrjs/L) 

4j = (f) J L  d s $ ( s )  cos (2.rrjslL) 

If we assume L >> range of interaction of 4(r) ,  it follows 
that12J3 

Furthermore, the excess electrostatic free energy due to 
bending, G, is given by14 

X E dc; dcj' expW (A26a) 
;=I 

Evaluating the integrals and taking the logarithm of both 
sides, we obtain 

(A26b) 
where 

T o  obtain Gnet, the net electrostatic free energy due to  
bending, we must let R,-2 - 0 and substract that result from 
eq A26b. Hence, 

a2r 'o* r o 2 d  - CU)Y(LW,K) + 
Gnet = JL ds 8K20R,2 1 2 w D { 2 . 3 0 3 p K a , , ( 1  - 0) + 1)Rc2 

(A271 
L w  3K4 - m4 - 6 K 2 m 2  Y ( L w , K )  = 

m=O ( K 2  + m2)3 

Here, the explicit expression for am has been substituted. 

it as an integral. Then, 
Furthermore, the sum can be evaluated by approximating 

dGnet a2r02 -- -- 
dL 8K20Rc2 

(A281 
cy(i - cu)r02(3K2 + 4.rr2w*) + 

12D(2.303pka,,(l - a )  + 1 ) ( ~ *  + 47r202)2Rc2 

Howewr, 1 / ~  >> a = 110 or w >> K so that 
a(1 - a ) r o 2  + dGne, 02F02 

- E -  

dL, ~ K ~ D R , *  1 2 D ( 2 . 3 0 3 p K a p p ( 1  - 2) + 1 ) 4 ~ ~ c t ) ~ R ~ ~  

(A291 

(A301 

By comparing typical experimental datal5-17 for the fluctu- 
ating term with calculated values of a 2 r 0 2 / 2 ~ ' k ~ T D ,  it is 
readily seen that the charge fluctuation contribution is neg- 
ligible. 
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