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The physical optics surface integral is asymptotically reduced to a line integral along the contour of the
diffracting edge. It is shown that the resultant integral can be separated into two sub-integrals which rep-
resent the reflected and transmitted diffracted fields. The integrands are transformed into the same forms
with the potential function of the boundary diffraction wave theory.
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1. Introduction

Diffraction is an important aspect of light besides reflection and
refraction. This feature has been observed and investigated for
nearly 350 years. In spite of the rigorous solutions and asymptotic
methods that deal with diffraction, there have been efforts that try
to enlighten the true nature of the phenomena [1,2]. An interfer-
ence scheme is observed theoretically and experimentally, but
there does not appear to be a consensus on the structure of the
interfering fields. According to the decomposition of the Fresnel
function, there seems to be three different possibilities for the
fields that interfere on the observation plane. This subject has
important applications in electromagnetics [3], optics [4] and also
quantum mechanics [5].

The first qualitative explanation of diffraction was suggested by
Young [6,7], who thought that the scattered field by an edge dis-
continuity was composed of two sub-fields. The first field is the
geometrical optics (GO) wave that passes through the aperture
without obstruction. The second field is the edge diffracted wave
which originates from the edge discontinuity. The total field is
the interference of these two sub-fields. Fresnel’s quantitative the-
ory, which was the mathematical application of the Huygen’s prin-
ciple, dominated Young’s ideas [8] in the community of science. It
was the work of Rubinowicz [9] that supplied the theoretical basis
to the proposal of Young. He rigorously managed to reduce the dif-
ll rights reserved.
fraction integral of Kirchhoff into a line integral along the edge
contour of the scatterer. Although Maggi [10] had performed a sim-
ilar reduction, his resultant line integral was not in a form that can
provide a physical interpretation. Since Rubinowicz’s method was
valid for spherical and plane waves, the following endeavors were
focused on the generalization of the boundary diffraction wave
(BDW) theory. Miyamoto and Wolf [11,12] managed to show that
a potential function can always be found for more general rays. The
final development of the BDW theory was completed by
Rubinowicz [13]. The method was widely used by the community
of optics especially for the diffraction of Gaussian beams by aper-
tures and half-planes [14–16]. The theory of BDW was applied to
the problem of diffraction by a half-plane, the rigorous solution
[17] of which was well known in the literature, by Ganci [18,19].
This study showed that the method of BDW was only leading to
approximate results that were not equal to the rigorous field
expressions. The potential functions which were leading to the ex-
act diffracted waves was recently developed by Umul [20] based on
the modified theory of physical optics (MTPO) [21].

The method of physical optics (PO) is an important tool in the
analysis of high frequency electromagnetic scattering [22]. Besides
its advantages, the defect of PO is the incorrect diffracted waves
that are evaluated asymptotically from the PO integrals. The phys-
ical theory of diffraction (PTD) [23,24] was developed by Ufimtsev
in order to obtain integrals that will yield to the exact field expres-
sions. With this aim he introduced the fringe currents which are
evaluated from the difference of the PO and rigorous fields that
are found by the solution of the canonical diffraction problems.
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Fig. 1. Geometry of the half-plane.
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But PTD needed the exact solutions of some fundamental problems
in order to construct the fringe currents. Umul [21] developed a
consistent method which was leading to the exact diffracted waves
for conducting geometries. This method, which is named as MTPO,
removes the defect of PO by defining three axioms which does not
require the knowledge of the solutions of canonical problems.

It is the aim of this paper is to investigate the connection be-
tween the BDW theory and PO. The fundamental problem of dif-
fraction of plane waves by a conducting half-plane will be taken
into account. The PO scattering integral will be constructed by
using the diffraction theory of Kirchhoff for Dirichlet and Neumann
boundary conditions. The surface integral will be reduced to a line
integral by using the method of asymptotic reduction [25,26]. The
resultant integrand will be transformed into the potential function
of BDW by using trigonometric identities. Such an investigation is
important in order to put forward the reason of the defects of BDW
and PO theories by showing that the two methods have the same
nature. There are also papers which use the methods of PO [27]
and BDW [28] in literature and these studies can be improved by
considering the mathematical and physical insights of these theo-
ries. Another originality of this paper is the evaluation of the po-
tential function for the reflected diffracted waves which does not
exist in the literature to our knowledge.

A time factor of exp(jwt) will be considered and suppressed
throughout the paper.

2. Theory

The diffraction theory of Kirchhoff [4] relies on the surface inte-
gration of the fields in an aperture. The integral can be given by

us ¼
1

4p

Z Z
S

urG� Gruð Þ �~ndS ð1Þ

where u is the total field on the surface. G expresses the Green’s
function. ~n is the unit normal vector of the surface. Eq. (1) can be
rewritten as

us ¼
1

4p

Z Z
S

u
oG
on
� G

ou
on

� �
dS ð2Þ

by multiplying the normal vector with the gradients. Eq. (2) will be
considered for two boundary conditions. These are the Dirichlet
(soft surface)

u ¼ 0 ð3Þ

and Neumann (hard surface)

ou
on
¼ 0 ð4Þ

conditions. The scattered field can be expressed as

us1 ¼ �
1

4p

Z Z
S

G
ou
on

dS ð5Þ

and

us2 ¼
1

4p

Z Z
S

u
oG
on

dS ð6Þ

for soft and hard surfaces, respectively. The surface integrals, in Eqs.
(5) and (6), will be reduced to line integrals along the contour of the
diffracting edge by using the method of asymptotic reduction. The
scattering surface will be considered to be a half-plane, placed at
S = {(x,y,x); x 2 (0,1), y = 0, z 2 (�1,1)}. A plane wave of

ui ¼ u0 exp½jkq cosð/� /0Þ� ð7Þ

is illuminating the surface. The geometry of the problem is given in
Fig. 1. b and g are the modified angles of scattering [21]. C is the edge
contour of the half-plane. z and z0 are the projection of the observa-
tion and integration points on the edge, respectively. (q, /), in Eq.
(7), are the polar coordinates. /0 is the angle of incidence. Q and P
are the integration and observation points.

2.1. Soft surface

The integral, in Eq. (5) is taken into account. The PO [24]
approximation can be defined as

ou
on
� 2

oui

on
: ð8Þ

The unit normal vector is equal to ~ey. Eq. (8) reads

ou
on
� 2jku0 sin /0 expðjkx0 cos /0Þ ð9Þ

according to the PO approximation. x0 is used instead of x since the
integral is written on the surface of the half-plane (y0 = 0). The PO
integral can be written as

us1 ¼ �
jku0 sin /0

2p

Z 1

x0¼0

Z
C

ejkx0 cos /0
e�jkR

R
dx0 dl ð10Þ

for C represents the edge contour of z0 2 (�1,1). The x0 part of the
surface integral, in Eq. (10), can be reduced to a line integral by
using the technique of asymptotic reduction [20]. The edge point
contribution of an integral givesZ 1

ae

f ðaÞejkgðaÞda � 1
jk

f ðaeÞ
g0ðaeÞ

ejkgðaeÞ ð11Þ

for sufficiently large value of k. f(a) and g(a) are the amplitude and
phase functions of the integral, respectively. ae is the edge point of
the integral. The phase function of the integral, in Eq. (10), is

gðx0; z0Þ ¼ x0 cos /0 � R ð12Þ

where R is equal to

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ y2 þ ðz� z0Þ2

q
: ð13Þ

The first derivative of the phase function gives

og
ox0
¼ cos /0 þ

x� x0

R
ð14Þ

which is equal to

og
ox0
¼ cos /0 � cos b ð15Þ

according to the geometry, in Fig. 1. As a result one obtains

ud1 ¼ �
u0

2p

Z
C

sin /0

cos /0 � cos be

e�jkRe

Re
dl ð16Þ
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Fig. 3. Edge diffraction of the reflected wave.
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by applying Eq. (11) to Eq. (10). ud1 is the diffracted wave on the
edge contour of C whereas us1 is the scattered wave, which contains
both of the diffracted and GO waves as ud1 + uG01. be is the value of b
at x0 = 0. Re is equal to

Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðz� z0Þ2

q
ð17Þ

for q is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Re is the value of R on the edge contour of C. We

will consider the term of

I ¼ sin /0

cos /0 � cos be
ð18Þ

and show that it directly gives the potential function of the BDW
theory as a sum of the transmitted and incident diffracted waves.
Eq. (18) can be rewritten as

I ¼
sin /0 sin be�/0

2

� �
sin beþ/0

2

� �
2 sin2 be�/0

2

� �
sin2 beþ/0

2

� � ð19Þ

which also yields the equation of

I ¼ 2
sin /0 sin be�/0

2

� �
sin beþ/0

2

� �
½1� cosðbe � /0Þ�½1� cosðbe þ /0Þ�

: ð20Þ

Eq. (20) gives

I ¼ � sin /0ðcos be � cos /0Þ
½1� cosðbe � /0Þ�½1� cosðbe þ /0Þ�

: ð21Þ

Eq. (21) can be arranged as

I ¼ � 2 sin /0 cos be � 2 sin /0 cos /0

2½1� cosðbe � /0Þ�½1� cosðbe þ /0Þ�
ð22Þ

which leads to the equation of

I ¼ � sinð/0 þ beÞ � sinðbe � /0Þ � sin 2/0

2½1� cosðbe � /0Þ�½1� cosðbe þ /0Þ�
: ð23Þ

The term of sin2/0 can be expressed as

sin 2/0 ¼ � sinðbe � /0 � be � /0Þ: ð24Þ

Eq. (23) can be rewritten as

I ¼ � sinðbe þ /0Þ½1� cosðbe � /0Þ� � sinðbe � /0Þ½1� cosðbe þ /0Þ�
2½1� cosðbe � /0Þ�½1� cosðbe þ /0Þ�

ð25Þ

when Eq. (24) is taken into account. As a result one obtains

I ¼ 1
2

sinðbe � /0Þ
1� cosðbe � /0Þ

� sinðbe þ /0Þ
1� cosðbe þ /0Þ

� �
: ð26Þ

The line integral of edge diffraction can be found as

ud1 ¼ �
u0

4p

Z
C

sinðbe � /0Þ
1� cosðbe � /0Þ

e�jkRe

Re
dl

þ u0

4p

Z
C

sinðbe þ /0Þ
1� cosðbe þ /0Þ

e�jkRe

Re
dl ð27Þ

when Eq. (26) is used in Eq. (16). The first integral represents the
reflected diffracted waves whereas the second integral gives the
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Fig. 2. Edge diffraction of the incident wave.
transmitted diffracted fields. In order to show that Eq. (27) ex-
presses the BDW theory, we will consider Figs. 2 and 3.

Fig. 2 shows the incident wave and the transmitted diffracted
field. Fig. 3 represents a similar geometry for the reflected GO
and reflected diffracted waves. The unit vectors of

~si ¼ � cos /0~ex � sin /0~ey ð28Þ

and

~std ¼ � cos be~ex þ sin be~ey ð29Þ

can be defined for the incident and diffracted waves. The vector and
scalar products of these vectors give

~si �~std ¼ � sinðbe þ /0Þ~ez ð30Þ

and

~si �~std ¼ cosðbe þ /0Þ; ð31Þ

respectively. Similar unit vectors can be defined as

~sr ¼ � cos /0~ex þ sin /0~ey ð32Þ

and

~srd ¼ � cos be~ex þ sin be~ey ð33Þ

for the reflected GO and reflected diffracted waves. The vector and
scalar products of the vectors, in Eqs. (32) and (33), give

~sr �~srd ¼ � sinðbe � /0Þ~ez ð34Þ

and

~sr �~srd ¼ cosðbe � /0Þ: ð35Þ

Eq. (27) can be rewritten as

ud1 ¼
u0

4p

Z
C

~sr �~srd

1�~sr �~srd

e�jkRe

Re
dl� u0

4p

Z
C

~si �~std

1�~si �~std

e�jkRe

Re
dl ð36Þ

when Eqs.(30), (31), (34) and (35) are used in Eq. (27). It is apparent
that the integral are the same with the ones which are defined with
the vector potential of the BDW theory [11–13]. This result also
shows that the PO integral [29] contains the two edge diffracted
fields (reflected diffracted and transmitted diffracted).

2.2. Hard surface

The integral, in Eq. (6), is valid for this case. The PO [24] approx-
imation can be applied as

u � 2ui ð37Þ

for a hard surface. The normal derivative of the Green’s function
gives

oG
on
� �jk sin b

e�jkR

R
: ð38Þ

The scattering integral can be written as
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us2 ¼ �
jku0

2p

Z 1

x0¼0

Z
C

sin bejkx0 cos /0
e�jkR

R
dx0 dl ð39Þ

by considering Eqs. (6), (37) and (38). The line integral of diffraction
can be obtained as

ud1 ¼ �
u0

2p

Z
C

sin be

cos /0 � cos be

e�jkRe

Re
dl ð40Þ

when Eq. (11) is taken into account. We will work on the term of

M ¼ sin be

cos /0 � cos be
: ð41Þ

M can be rewritten as

M ¼
sin be sin be�/0

2

� �
sin beþ/0

2

� �
2 sin2 be�/0

2

� �
sin2 beþ/0

2

� � ð42Þ

which can be reduced to

M ¼ � sin beðcos be � cos /0

½1� cosðbe � /0Þ�½1� cosðbe þ /0Þ�
: ð43Þ

Eq. (43) can be arranged as

M ¼ � sin 2be � sinðbe þ /0Þ � sinðbe � /0Þ
2½1� cosðbe � /0Þ�½1� cosðbe þ /0Þ�

ð44Þ

which yields the equation of

M ¼ 1
2

sinðbe � /0Þ
1� cosðbe � /0Þ

þ sinðbe þ /0Þ
1� cosðbe þ /0Þ

� �
: ð45Þ

The line integral of diffracted fields can be written as

ud2 ¼ �
u0

4p

Z
C

sinðbe � /0Þ
1� cosðbe � /0Þ

e�jkRe

Re
dl

� u0

4p

Z
C

sinðbe þ /0Þ
1� cosðbe þ /0Þ

e�jkRe

Re
dl ð46Þ

which can also be expressed by

ud2 ¼
u0

4p

Z
C

~sr �~srd

1�~sr �~srd

e�jkRe

Re
dlþ u0

4p

Z
C

~si �~std

1�~si �~std

e�jkRe

Re
dl ð47Þ

in terms of the BDW theory. This result is also in harmony with the
one, found for the soft surface. This analysis also gives mathemati-
cal insight about the error of the BDW theory. These points will be
discussed in the conclusion.

3. Evaluation of the diffraction integrals

In this section, we will evaluate the integrals, given by Eqs. (27)
and (46), asymptotically. Since the z0 part of the integrals change in
the interval of z

0 2 (�1,1), the integrals can be evaluated directly
by using the method of the stationary phase for k� 1. A general
formula can be given byZ 1

�1
f ðaÞejkgðaÞda � ejsign½g00 ðasÞ�p4

ffiffiffiffiffiffi
2p
p f ðasÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kjg00ðasÞj
p ejkgðasÞ ð48Þ

for the method of stationary phase. as is the stationary phase point
which is found by equating the first derivative of the phase function
to zero. The phase function of the related integrals is

gðz0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðz� z0Þ2

q
: ð49Þ

The stationary phase point can be found to be zs = z. be is equal to
p � / at the stationary phase point. As a result the diffracted fields
can be evaluated as

ud1 ¼
u0e�jp4

2
ffiffiffiffiffiffi
2p
p sinð/� /0Þ

1þ cosð/� /0Þ
� sinð/þ /0Þ

1þ cosð/þ /0Þ

� �
ð50Þ
and

ud2 ¼
u0e�jp4

2
ffiffiffiffiffiffi
2p
p sinð/� /0Þ

1þ cosð/� /0Þ
þ sinð/þ /0Þ

1þ cosð/þ /0Þ

� �
ð51Þ

for the soft and hard surfaces, respectively. It is apparent that the
diffracted fields approach to infinity at the transition regions. There
are two transition regions for this problem. The first one is the
reflection boundary which can be found from the equation of
1 + cos (/ + /0) = 0. This equation gives the pole of the reflected dif-
fracted field, which has the expression of

urd ¼
u0e�jp4

2
ffiffiffiffiffiffi
2p
p sinð/þ /0Þ

1þ cosð/þ /0Þ
: ð52Þ

The geometrical place of the reflection boundary is at / = p � /0.
The reflected GO field is discontinuous at this point and the edge
diffracted wave compensates this discontinuity.

The second transition region is the shadow boundary where the
incident GO field has a discontinuity. The placement of the shadow
boundary can be evaluated from the equation of 1 + cos(/ � /0) = 0.
This equation gives the pole of the transmitted diffracted wave
which has the representation of

utd ¼
u0e�jp4

2
ffiffiffiffiffiffi
2p
p sinð/� /0Þ

1þ cosð/� /0Þ
: ð53Þ

The infinities of the diffracted waves can be compensated by using
the uniform theories of diffraction [30,31]. In this paper we will pre-
fer the method, given in Ref. 31, because of its simplicity. The uni-
form diffracted fields can be defined by

urd ¼
u0e�jp4

2
ffiffiffiffiffiffi
2p
p fþ sinð/þ /0Þ

1þ cosð/þ /0Þ
ð54Þ

and

utd ¼
u0e�jp4

2
ffiffiffiffiffiffi
2p
p f� sinð/� /0Þ

1þ cosð/� /0Þ
ð55Þ

where f� is equal to

f� ¼ p	 1� e�
ffiffiffiffiffiffiffiffi
2pkq
p

cos
/�/0

2

		 		� �
: ð56Þ

p± can be defined by

p	 ¼ expfjðp=4Þ exp½ð�j/� ðp	 /0ÞjÞ�g: ð57Þ

Although the field expressions, in Eqs. (54) and (55), are uniform,
they do not represent the exact diffracted waves as in PO.

4. Numerical analysis

In this section, the diffracted waves, given by Eqs. (54) and (55),
will be plotted numerically in order to investigate the behavior of
the fields. The comparison of the BDW fields with the exact waves
that are found from MTPO can be found in Ref. [20]. The angle of
incidence is taken as 60�. q is equal to 6k for k is the wave-length.

Fig. 4 plots the variation of the reflected diffracted wave versus
the observation angle. There are two important points to be men-
tioned on the graphic. The first one is the place of the reflection
boundary. It gives the correct value of 120� and the diffracted field
is equal to 0,5 at this point. This is an expected value since the dif-
fracted wave compensates the GO wave at the reflection boundary.
The second important point is at / = 300�. The value of the dif-
fracted wave is equal to zero since the image of the incident wave
hits the edge at this point. Fig. 5 presents similar values for the
incident diffracted field. The shadow boundary is placed at /
= 240� and the field is equal to zero at / = 60� where the incident
wave hits the edge.



Fig. 4. Reflected diffracted field.

Fig. 5. Transmitted diffracted field.

Fig. 6. Total diffracted field (soft surface).

Fig. 7. Total diffracted field (hard surface).
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Figs. 6 and 7 show the variation of the total diffracted fields
with respect to the observation angle for soft and hard surfaces.
It can be observed that the total diffracted waves do not satisfy
the boundary conditions on the surfaces of the half-plane. These
plots are well known in the literature [32].
5. Conclusion

In this paper we obtained the line integrals of the BDW theory
by using the asymptotic reduction of the PO surface integrals. This
analysis puts forward two important points. The first point is the
equivalence of the PO and BDW methods. The second one is that
the asymptotic reduction of surface integrals gives the same result
with the Rubinowicz’s method [9,21]. As mentioned earlier, the
methods of PO and BDW yields incorrect diffraction coefficients,
but the analysis, performed in this paper, is unique gives insights
for the in depth investigation of the MTPO method, which gives
the exact diffracted fields for conducting bodies.
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