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The band structure of a quantum wire with the Rashba spin-orbit coupling develops a pseudogap in the
presence of a magnetic field along the wire. In such a system spin mixing at the Fermi wave vectors −kF and
kF can be different. We have investigated, using bosonization techniques, the collective mode of this system,
and found that the velocity of this collective excitation depends sensitively on the strength of the Rashba
spin-orbit interaction and magnetic field. Our result suggests that the strength of the spin-orbit interaction can
be determined from the measurement of the velocity.
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I. INTRODUCTION

Recently active research is taking place on how to ma-
nipulate spin properties of single electrons, and several semi-
conductor spin devices based on spin-orbit coupling have
been proposed.1,2 Among these we focus on a spin filter3

proposed by Středa and Šeba.4 They proposed a spin filter
combining strong Rashba spin-orbit interaction �SOI� and the
magnetic field parallel to a quantum wire �see Fig. 1�. This
system has an interesting one-dimensional band structure
�see Fig. 2�: a pseudogap is present at zero wave number and
the orientation of electron spin depends on the wave vector.4

For the lower band the electron with sufficiently negative k is
mostly polarized in the +z direction while that of sufficiently
positive k is mostly polarized in the −z direction. When the
Fermi energy lies in the pseudogap substantial spin-mixing
exists for moderate value of the Fermi energy. The
transmission/reflection coefficients of such a wire in the pres-
ence of a step potential has been calculated in the presence of
electron-electron interaction using poor man’s renormaliza-
tion group approach.5 Optical and superconductor junction
properties have been also investigated in the presence of the
Rashba term.5

The dispersion of the collective mode of quantum wires in
the presence of a magnetic field perpendicular to the wire has
been investigated for many years.6 Recently the interplay of
Rashba SOI and electron-electron interaction in quantum
wires have been studied by several groups.7,8 However, none
of these studies have dealt with the case where the applied
magnetic field is parallel to quantum wire in the presence of
spin orbit interaction. In this paper we investigate how the
collective electronic properties may be manipulated by spin-
orbit coupling. In II-VI semiconductors the Rashba term is
expected to be larger than the the Dresselhaus coupling. In
III-V semiconductors, such as GaAs, the opposite is true.1

However, in these quantum wires the Dresselhaus term can
be rather small under certain conditions as we argue below.
The band structure of such quantum wires in the presence of

a parallel magnetic field is as displayed in Fig. 2. The nature
of the collective mode is unclear when the spin mixing at the
Fermi wavevectors −kF and kF are different. We have ob-
tained, employing bosonization methods,9,10 the exact disper-
sion relation of the collective mode of the lower band when
the Fermi energy lies in the pseudogap. The dispersion rela-
tion of this mode is

� = �v��q�v��q��1/2q � v0q . �1�

v��q� and v��q� are defined as follows:

v��q� = vF�1 +
Vq

�vF
−

gV2kF

2�vF
� ,

v��q� = vF�1 +
gV2kF

2�vF
� , �2�

where vF is the Fermi velocity and the renormalization factor
of the strength of backscattering is

g =
�Z

2

�Z
2 + ��RkF�2 . �3�

� and � are the phase fields which are basically linear com-
binations of density operators �R/L and they are defined in

FIG. 1. The geometry of a quantum wire with a magnetic field
along the wire.
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Eq. �33�. Vq is the interaction matrix element, �Z is the mag-
nitude of Zeeman coupling, and �R is a parameter character-
izing Rashba SOI �see below�. From the expression of g �Eq.
�3�� we see that the velocity of this collective excitation de-
pends sensitively on the Rashba SOI and magnetic field. This
result differs from the that of an ordinary Luttinger liquid in
that the back scattering term V2kF

is renormalized by a factor
g. The physical origin of this factor reflects the different spin
mixing of single particle states near the Fermi wave vectors,
which are coupled by backscattering.

The presence of the renormalization factor g may be ex-
ploited to determine the constant �R. There is no simple way
to calculate �R because it depends both on the electric field
inside the semiconductor heterostructure and on the detailed
boundary conditions at the interface. Instead these spin-orbit
coupling constants were measured by electric, optical, and
photoelectrical means.11–14 We suggest that the measurement
of the velocity of the collective excitation v0 may provide
another way to determine the value of �R. This measurement
can be carried out using tunneling between two parallel wires
in the presence of an additional magnetic field Bt=�	At
along the y axis.15,16 This method allows one to determine
the spectrum of elementary excitations17,18 momenta much
larger than 2kF.19

This paper is organized as follows. In Sec. II we introduce
our model and review the results obtained by Středa and
Šeba for the noninteracting case. In Sec. III we incorporate
the electron-electron interaction and obtain an effective
Hamiltonian for the system. In Sec. IV the dispersion of
collective excitation is computed based on the effective ac-
tion obtained in Sec. III. Section V we discuss how our result
for the velocity differs from the results of ordinary Luttinger
liquids. An experiment is proposed to measure �R.

II. MODEL FOR SINGLE PARTICLE HAMILTONIAN

In our model confinement potentials are present along the
y and z axes and quasi-one-dimensional motion of electrons
is possible along the x axis. The widths of the wave function
along both the y and z axes are assumed to be negligible. The
lowest subband energies along the y and z axes are denoted
by Ey and Ez. A magnetic field parallel to the quantum wire
along the x axis is present B=−Bx̂. The corresponding vector
potential can be chosen to be A=−Byẑ, B
0. In our model
Rashba electric field is applied along the y axis �see Fig. 1�,
and is given by E= +E0ŷ �E0
0�. The Rashba spin-orbit
interaction20,21 then takes the form

HR = �R�kx�z − kz�x� , �4�

where �R= �e��2E0 /4me
2c2
0. The strength of Rashba SOI

can be controlled by changing electric field.22,23 Note that in
quantum wires with electron propagating along the x axis ky
and kz must be replaced by dynamical momentum operators.
The expectation value of ky, kz+eAz /�c with respect to the
lowest subband state wave function of transverse degrees of
freedom �y ,z� vanish by symmetry considerations3

HR = �Rkx�z. �5�

The bulk Hamiltonian of Dresselhaus SOI is given by1

Hbulk,D = 
c��xkx�ky
2 − kz

2� + �yky�kz
2 − kx

2� + �zkz�kx
2 − ky

2�� .

�6�

To obtain the effective Hamiltonian of quantum wire we
have to take the average of the above bulk Hamiltonian with
respect to the ground state wave function of transverse �y ,z�
degrees of freedom. In our geometry the Rashba electric field
is applied in the y direction, and the lateral confining poten-
tial enforcing quasi one-dimensional motion is applied in the
z direction. Clearly 	kz
=0 since the subband wave function
along the z axis has even parity. The subband wave function
along the y axis is a real function and therefore the expecta-
tion value 	ky
=0, too. But we have to note that 	y
�0 since
the inversion symmetry is lacking in the y direction. The
effective Hamiltonian for quantum wire is then

HD = 
c�xkx�	ky
2
 − 	kz

2
� = �D�xkx, �7�

where �D=
c�	ky
2
− 	kz

2
�.
Now the one-particle Hamiltonian becomes

H1 = Ey + Ez +
�2k2

2m* + �Rk�z + �Dk�x − EZ�x. �8�

The Dresselhaus term can be absorbed into the Zeeman term
EZ=g0�BB /2 �g0�15 for InAs� in the following way:

FIG. 2. Upper figure: Solid lines represent the lowest energy
subband structure of the quantum wire in the absence of the
Dresselhaus term. �Dashed lines are for zero magnetic field.� Note
that the Fermi energy lies in the pseudogap. When a finite value of
magnetic field is present bands do anticross �in the figure B=3 T�.
The input parameters are �R=2	10−9 eV cm, m*=0.024me. In this
case the numerical value of g is approximately 0.7. Lower figure:
The spin-up �solid line� and -down �dashed line� components �uk

−�2

and �vk
−�2 for the lower E−�k� band. The input parameters are iden-

tical with the above figure. Note that �vk
−�2=1− �uk

−�2.
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�Z � EZ − �Dk . �9�

For the sake of completeness we include the Dresselhaus
term in the calculation of the band structure. Later we will
ignore it in the bosonization procedure. By the diagonaliza-
tion of the Hamiltonian �8� the energy eigenvalues and the
corresponding normalized eigenvectors are obtained as fol-
lows: For the lower band the eigenvalue is �Ey ,Ez put to
zero�

E−�k� =
�2k2

2m* − ��Z
2 + �R

2k2 �10�

and the eigenvector is

�− = �uk
−

vk
− � , �11�

where

uk
− =

�Z

���Rk + D�2 + �Z
2

, �12�

vk
− =

�Rk + D

���Rk + D�2 + �Z
2

. �13�

�14�
Here

D � ���Rk�2 + �Z
2 . �15�

uk
− and vk

− represents the amplitudes for the spin to point in
the +z and −z directions, respectively. For the upper band the
results are given in Ref. 24.

Quantum wires can be tailor made so that the quantities
	ky

2
 and 	kz
2
 are almost equal. If we assume the harmonic

confining potential m*�0
2z2 /2 along the z axis we have 	kz

2

=m*�0 /2�. For the y direction the constant Rashba electric
field is acting so that the potential is linearly rising. In this
case25 	ky

2

0.8�2m*�e�E0 /�2�2/3. The condition 	ky
2
= 	kz

2
 is
satisfied when the value of the electric field is given by
eE0z0=0.49��2 /2m*��1/z0

2�, where z0=�� /m*�0. For this
particular value of the electric field the Dresselhaus term is
negligible compared to the Zeeman energy and the Rashba
coupling. Note that E−�k� becomes an even function of k in
this case. Hereafter we assume this. If the Rashba coupling
becomes sufficiently strong such that

�R
2 � �Z�2/m* �16�

then the energy spectrum develops a double minium at

k = ±
1

�R
��m*�R

2

�2 �2

− �Z
2�1/2

. �17�

The energy at the minimum is given by

Emin = −
m*�R

2

2�2 −
�2�Z

2

2m*�R
2 . �18�

In such a case E−�0�
Emin. In our work we assume that
E−�0�−Emin=−�Z−Emin is less than the Fermi energy so that
there are only two Fermi wave vectors.

III. MODEL FOR MANY-BODY HAMILTONIAN

Let ak and bk be the quasiparticle operators corresponding
to E−�k� and E+�k�, respectively. They can be explicitly ex-
pressed in terms of electron operators as follows:

bk
† = ck↑

† uk
+ + ck↓

† vk
+, ak

† = ck↑
† uk

− + ck↓
† vk

−,

ck↑
† = bk

†uk
+ + ak

†uk
−, ck↓

† = bk
†vk

+ + ak
†vk

−. �19�

When electrons are filled such that the Fermi energy is lo-
cated in the energy gap between a and b bands at k=0, we
can safely neglect the b-type quasiparticles in the low-energy
regime. Then the Eq. �19� can be simplified.

ak
† = ck↑

† uk
− + ck↓

† vk
−,

ck↑
† 
 ak

†uk
−, ck↓

† 
 ak
†vk

−. �20�

A general electron-electron interaction in a quantum wire is
given by

Hint =
1

2 �
k1,k2,q,�,��

Vqck1�
† ck2��

† ck2+q��ck1−q�, �21�

where Vq is the interaction matrix element. Note that this
interaction is spin conserving. For the long-range Coulomb
interaction the interaction matrix element is

Vq =
2e2

�
K0��q�w� →

2e2

�
ln

1

�q�w
for �q�w � 1. �22�

K0 is the modified Bessel function and w is the cutoff length
scale which is the order of the width of the quantum wire. �
is the bulk dielectric constant. For the short-range interaction
such as screened Coulomb interaction the matrix element Vq
can be taken to be independent of the momentum transfer q.
Projecting the Hamiltonian �21� to the a band with the use of
Eq. �20�, we obtain

Hint =
1

2 �
k1,k2,q

	k1,k2�V̂�k1 − q,k2 + q
ak1

† ak2

† ak2+qak1−p,

�23�

where

	k1,k2�V̂�k1 − q,k2 + q
 = Vp��−
†�k1��−�k1 − q��

	��−
†�k2��−�k2 + q�� �24�

is the projected interaction matrix element in the low-energy
Hilbert space. The explicit expression of eigenvector �− is
given by Eqs. �11� and �12�.

At low energy, only the electron states near −kF and kF
Fermi points need to be considered. Following the usual pro-
cedures of g-ology and bosonization method9 we can express
the interaction Hamiltonian �23� within g-ology scheme. For-
ward scattering g2 and g4 process. Backscattering g1 process
We note further that for fermions of a single species �such as
the a quasiparticle here� g1 process is identical with g2
process.9 In this paper a commensurate filling is not consid-
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ered, so that the Umklapp processes �g3� can be neglected.
From now on we will call electrons with k�0 �k
0� left
�right� movers.

g4 process. For instance let us assume that all four mo-
menta k1 ,k2 ,k2+q ,k1−q are located near the right Fermi
point in the following �see Fig. 3�. Then one can write
ki= +kF+ pi with a condition �pi����kF. � is the momen-
tum cutoff scale, within which the linearization of the a-band
dispersion is valid. It is convenient to introduce the right
moving Dirac fermion operator �R: �R�pi��aki

for ki= +kF

+ pi. We can make following approximation if we neglect
subleading contributions proportional to �k−kF� which are
irrelevant at low energy: ��−

†�k1��−�k1−q�����−
†�kF��−�kF��

=1. Thus the effect of spin mixing reflected in the matrix
elements �� does not play any role for g4 process.

The contributions from the neighborhood of left Fermi
point can be treated in the same way. The left moving Dirac
fermion operator �L can be introduced similarly. �L�pi�
�aki

for ki=−kF− pi. The low energy effective Hamiltonian
describing g4 process can be read off from the original
Hamiltonian �23�:

Hg4
=

1

2N
�

�q���

Vq��R�q��R�− q� + �L�− q��L�q�� , �25�

where �R/L�q�=�p�R/L
† �p+q��R/L�p� are the density operators

of right- and left-moving Dirac fermions. N is the number of
lattice sites of quantum wire. In the above expression the
low-momentum asymptotics of Vq must be used.

g2 processes. According to the same reason as g4 interac-
tion one can make the approximations in Fig. 4,

��−
†�k1��−�k1 − q�� � ��−

†�kF��−�kF�� = 1,

��−
†�k2��−�k2 + q�� � ��−

†�− kF��−�− kF�� = 1.

Again the spin-mixing effect represented by the matrix ele-
ments does not modify the interaction. Due to this one can
easily read off the low-energy effective Hamiltonian describ-
ing g2 process from the original Hamiltonian �23� using the
definition of density operators �R/L�q�:

Hg2
=

1

N
�

�q���

Vq�R�q��L�− q� . �26�

g1,� processes. In this case the matrix elements play cru-
cial role as can be seen in �see Fig. 5�

��−
†�k1��−�k1 − q����−

†�k2��−�k2 + q��

� ��−
†�− kF��−�+ kF����−

†�+ kF��−�− kF�� . �27�

Evidently the dominant momentum transfer q must be 2kF.
By changing the order of operators �thereby changing overall
sign of interaction� and by summing over momenta one ar-
rives at

Hg1
= − gV2kF� dx�R�x��L�x� , �28�

where

g = ��−
†�− kF��−�+ kF����−

†�+ kF��−�− kF�� =
�Z

2

�Z
2 + ��RkF�2 .

�29�

As can be seen from Eq. �29� the coupling constant g depend
on the applied magnetic field and the Rashba SOI as well as
Fermi momentum.

We observe that g2 Hamiltonian �26� and g1 Hamiltonian
�28� can be combined completely. This is a special feature of
fermions of single species. In the presence of other degrees
of freedom such as spin a backscattering term �g1,�� appears
which is not of the Luttinger interaction form.

IV. BOSONIZATION AND COLLECTIVE EXCITATIONS

The total effective Hamiltonian incorporating interaction
is given by

H = H�0� + Hg4
+ Hg2

+ Hg1
. �30�

The linearized noninteracting Hamiltonian H0 is

FIG. 3. A Feynman diagram of the g4 process. All four momenta
k1 ,k2 ,k2+q ,k1−q are located near the right Fermi point. The dotted
line indicates the matrix element Vq. See text for details.

FIG. 4. A Feynman diagrams of the g2 process. See text for
details. There is another g2 Feynman diagram in which R↔L.

FIG. 5. A Feynman diagram of the g1,� processes. There exists
one more diagram where R↔L. See text.

H. C. LEE AND S.-R. ERIC YANG PHYSICAL REVIEW B 72, 245338 �2005�

245338-4



H�0� = �
p

�vFp�R
†�p��R�p� − vFp�L

†�p��L�p�� . �31�

The Hamiltonian �30� can be bosonized straightforwardly:9

H = �vF� dx�:�R
2�x�: + :�L

2�x�:� +
1

2N
�

q

Vq��R�q��R�− q�

+ �L�− q��L�q�� +
1

N
�

q

�Vq − gV2kF
��R�q��L�− q� . �32�

The colons denotes normal ordering of operators. It is con-
venient to introduce phase fields as follows:

��x� =
1

2
��R�x� + �L�x�� ,

��x� =
1

2
��R�x� − �L�x�� , �33�

where �R/L�x�= �1/2���x�R/L�x�. In terms of phase fields

H =
vF

2�
� dx���x��2 + ��x��2�

+
1

N
�

p

Vqq2

�2��2 ���q���− q� + ��q���− q��

+ � 1

2�
�2 1

N
�

p

�Vq − gV2kF
�q2���q���− q� − ��q���− q��

=
vF

2�
� dx���x��2 + ��x��2� +

1

�2��2N
�

q

�2�Vq

− gV2kF
/2�q2��q���− q� + gV2kF

q2��q���− q�� . �34�

The Euclidean action is given by

S��,�� =� d��� dx
i

�
�x���� + H� . �35�

In matrix form the above can be written as

S =
1

2�
� d�dq

�2��2 ���− q,− �� ��− q,− ���

	 �v��q�q2 iq�

iq� v��q�q2����q,��
��q,�� � ,

where

v� = v��q� = vF�1 +
Vq

�vF
− g

V2kF

2�vF
� ,

v� = v��q� = vF�1 +
gV2kF

2�vF
� . �36�

� and � are the phase fields which are basically linear com-
bination of density operators �R/L and they are defined in Eq.
�33�.

The dispersion relation of the collective excitation can be
obtained from the kernel of action Eq. �36�.

det�v��q�q2 iq�

iq� v��q�q2� = 0. �37�

After analytic continuation i�→� we find

� = �v��q�v��q��1/2q � v0q . �38�

v0 is the velocity of collective excitation. From Eq. �36� one
can write

v0 = vF�1 +
Vq

�vF
+

�Vq − gV2kF
/2��gV2kF

/2�

��vF�2 �1/2

. �39�

The quantity in the bracket of Eq. �39� represents the renor-
malization effect due to electron-electron interaction. The ve-
locity of collective excitation can be controlled by band fill-
ing, Rashba SOI, and magnetic field through dependence on
vF and g. Let us estimate the magnitude of the correction
terms. In v��q� the backscattering term g�V2kF

/2�vF� is a
factor g /2 smaller than the forward term Vq /�vF. In v��q�
the correction term gV2kF

/2�vF
0.1g for the width of the
quantum wire w
100 Å and 2kF�1	106 cm−1. We also
note that for the screened short range Coulomb interaction
the interaction matrix element Vq is almost independent of
momentum transfer q, and the backscattering term plays an
equally important role as forward the scattering.

V. DISCUSSIONS AND SUMMARY

It is instructive to compare our result with the velocities
of phase fields of collective excitation of ordinary Luttinger
liquids. For spinless fermions it is given by

v��q� = vF�1 +
Vq

�vF
−

V2kF

2�vF
� ,

v��q� = vF�1 +
V2kF

2�vF
� . �40�

In Eq. �2� this corresponds to g=1, which implies absence
of spin-orbit coupling and one type of spin, either up or
down. For the Luttinger liquids of spinful fermions the ve-
locity of charge mode is given by

v��
�q� = vF�1 +

2Vq

�vF
−

V2kF

2�vF
� ,

v��
�q� = vF�1 +

V2kF

2�vF
� . �41�

�� and �� are the phase fields in the charge sector. The
spinful velocity is recovered with the replacement Vq→2Vq
and g=1 in Eq. �2�. The velocity of the spin mode is

v�s
�q� = vF�1 −

V2kF

2�vF
� ,
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v�s
�q� = vF�1 +

V2kF

2�vF
� . �42�

�s and �s are the phase fields in the spin sector. This corre-
sponds to Vq=0 and g=1 in Eq. �2�.

The dispersion relation of the collective mode may be
measured by adding another quantum wire parallel to the

original wire in the presence of a second magnetic field B� t
along the y axis. When the first wire is located at z=0 and the
second wire at z=z0 the single particle energy dispersion of
the second wire is E�k�=�2�k−k0�2 /2m, where k0

=eBtz0 /�c, m is the electron mass in the second wire, and the
Landau gauge At= �zBt ,0 ,0� is used. Wave-number selectiv-

ity due to momentum-resolved tunneling between them,
E−�k�=E�k�, allows a mapping of the dispersion.15,16,19 Even
in the presence of electron interactions this technique allows
direct measurement of the collective excitation spectrum.17,18
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