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A tunable planar narrow-band Bragg reflector based on coupling of the two propagating modes and
a cutoff mode is considered. Coupled-wave analysis together with direct numerical simulations
demonstrate operation of the proposed scheme up to the terahertz frequency band. Compatibility
with the transportation of an intense electron beam encourages the use of a novel Bragg reflector in
powerful long-pulse free electron lasers. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3184592�

Reflectors �filters� based on Bragg coupling of counter-
propagating waves on the periodic structures are widely used
both in quantum1,2 and classical3 electronics. In the millime-
ter wavelength band Bragg structures formed by hollow cor-
rugated waveguides enables selectivity of the system to be
combined with effective electron beam transportation. How-
ever, their scaling to shorter wavelength bands is limited by
the fact that at large values of the transverse oversize param-
eter the overlapping of different Bragg zones, which corre-
sponds to the coupling of numerous pairs of propagating
modes, occurs. As a result, the radiation generated by an
electron beam would represent an uncontrollable mixture of
the waveguide modes.4 Moreover, the absolute values of the
reflection coefficients decrease with increase in the oversize
parameter.

These problems can be partially solved by using the cou-
pling between the propagating and the cutoff modes in an
advanced Bragg structure. In the case of a planar geometry
�Fig. 1� such a reflector is formed by two parallel plates with
shallow periodic corrugation of the inner walls given by

b�z� = b1 cos�h̄z� , �1�

where h̄=2� /d, d is period of the structure, and 2b1 is the
corrugation depth. The electromagnetic field inside the struc-
ture can be presented as a sum of two counterpropagating
TEM waves, which are defined by the vector potential

A� = y�0 Re��Â+�z�e−ihz + Â−�z�eihz�ei�t� , �2�

h=� /c is the wavenumber and the quasicutoff TMn wave

A� = z�0 Re�B̂�z�cos�n�y

b0
�ei�t� . �3�

We assume that �	�c, where �c=n�c /b0 is the cutoff fre-
quency, b0 is the mean distance between plates, and n is an
integer. Coupling between the propagating and cutoff waves
is efficient under the Bragg resonance condition

h 	 h̄ , �4�

which is satisfied when the mean distance between the plates
b0	nd /2. It should be noted that for an advanced Bragg
reflector the period of structure d is approximately two times

larger than in the case of a conventional Bragg reflector of
the same frequency based on direct coupling of forward and
backward propagating waves.1–3

The process of reflection of the waves Eq. �2� via the
excitation of the cutoff mode Eq. �3� can be described by the
equations

dA+

dZ
+ i�A+ = i�B,

dA−

dZ
− i�A− = − i�B , �5a�

1

2

d2B

dZ2 + �� − i��B + �B = ��A+ + A−� , �5b�

with the boundary conditions

A+
Z=0 = A0, A−
Z=L = 0, �6a�

��dB

dZ
+ i�2�� + � − i��B��

Z=0
= 0,

��dB

dZ
− i�2�� + � − i��B��

Z=L
= 0, �6b�

where A0 is the amplitude of the incident wave. Here Z= h̄z,
�= ��− �̄� / �̄ is the detuning between the Bragg frequency

�̄= h̄c and that of the incident wave, �= ��̄−�c� / �̄ is the
mismatch between the cutoff frequency �c and the Bragg
frequency, �=b1 /�2b0 is the coupling coefficient, L=hl, l is
the length of the structure, �=� /b0 is the Ohmic losses pa-
rameter for the cutoff mode, and � is the skin depth. In Eqs.

�5� and �6� the amplitudes A�= Â� /�NA, B= B̂ /�NB are nor-
malized over the wave norms: NA=ch2b0 /2�, NB
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FIG. 1. Scheme of terahertz band Bragg reflector of planar geometry.

APPLIED PHYSICS LETTERS 95, 043504 �2009�

0003-6951/2009/95�4�/043504/3/$25.00 © 2009 American Institute of Physics95, 043504-1

Downloaded 16 Dec 2009 to 129.8.242.67. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp

http://dx.doi.org/10.1063/1.3184592
http://dx.doi.org/10.1063/1.3184592


=ch2b0 /4�. It should be noted that under the assumption that
the reflections for the partial cutoff mode B from the edges of
the corrugation are negligibly small, similarly to5 the radia-
tion boundary conditions Eq. �6b� can be used.

Neglecting the diffraction of the cutoff mode one can
obtain the amplitude profiles of the reflected and transmitted
waves from Eqs. �5� and �6�

A− = A0
2i��2 − K2�sin K�L − Z�

�� + K�2eiKL − �� − K�2e−iKL , �7a�

A+ = A0
�� + K�2eiK�L−Z� − �� − K�2e−iK�L−Z�

�� + K�2eiKL − �� − K�2e−iKL , �7b�

where K= ��2−2�2� / ��+�− i���1/2. For the cutoff mode
we have

B =
��A+ + A−�
� + � − i�

. �8�

The reflection coefficient is

R =
A−�Z = 0�
A+�Z = 0�

=
2i��2 − K2�sin KL

�� + K�2eiKL − �� − K�2e−iKL . �9�

At �=0 maximum of the reflection coefficient

Rmax =
�2L

�2L + �
, �10�

corresponds to the exact Bragg resonance �=0. The longi-
tudinal profiles of the partial wave amplitudes in this case are
given by

A+ = A0
L − Z

L
, A− = A0

Z − L

L
, B =

iA0

�L
. �11�

The width of the reflection band in the absence of Ohmic
losses can be estimated as ��	2��2 /L2+2�2. Figure 2

shows the frequency dependence of the reflection coefficient
R at �=0, which demonstrate that the advanced Bragg struc-
ture can be used as an effective narrow-band reflector. Unlike
the case of traditional Bragg structures1–3 the decrease in
waves coupling coefficient � in this scheme sharpens the
reflection peak while the maximum value of reflection coef-
ficient does not depend on � being close to unity. As follows
from Eq. �10� only nonzero Ohmic losses lead to a decrease
in Rmax. In the same figures the doted line shows the fre-
quency dependence calculated from full Eqs. �5� and �6�
which include diffraction of the cutoff mode B. Obviously
simplified formula �9� gives a reliable expression for the re-
flection coefficient.

Another advantage is the tunability of the reflector by
varying the distance between the plates b0. The shift in the
reflection zone with variation in the mismatch parameter � is
shown in Fig. 3. Actually, the reflection zone is shifted to-
gether with the cutoff frequency �maximum of reflection co-
efficient corresponds to the cutoff frequency�. For positive
values of mismatch the maximum reflectivity is close to
unity over a fairly broad frequency band.

Thus, the coupled-wave approach demonstrates that a
narrow-band reflector is effective at large oversize values
and can be realized by the coupling between the propagating
and cutoff modes. This conclusion is confirmed by the results
of the direct simulation of advanced Bragg reflectors in the
terahertz frequency band by the use of a 3D electromagnetic
numerical code. The parameters of the structure were: period
d=0.03 cm, distance between plates b0=0.6 cm, and length
l=1.5 cm. At n=40 the expected resonance frequency is f
=1 THz. In Fig. 4 the frequency dependencies of the reflec-
tion and transmission coefficients are shown for the incident
TEM wave. One can see that for an oversized factor b0 /	

20 several reflection bands are present. These bands corre-
spond to the excitation of cutoff modes with a different num-
ber of the field variations n. Nevertheless, the reflection near

FIG. 2. Reflection coefficient vs frequency detuning calculated from sim-
plified formula �9� �solid lines� and from full Eqs. �5� and �6� �dashed lines�
at L=520 �l=1.5 cm�. �a� �=0.0025 and �b� �=0.01.
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FIG. 3. The shift in the reflection zone when varying the mismatch param-
eter �, which depends on distance between plates b0 at L=520 and �
=0.0025.
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the frequency of 1 THz corresponding to the excitation of the
TM40 wave dominates.

Compatibility with intense electron beam transportation
encourages the use of a novel Bragg reflector in terahertz
band free electron lasers �FELs�.6–8 Note that for effective
single-mode operation, it is sufficient to provide conditions
when the distance between the reflection zones related with
excitation of the cutoff modes with different transverse indi-
ces n exceeds the FEL amplification band

c�/b0 
 �/N , �12�

which is defined by the number N= lw /dw of the wiggler
periods dw over the interaction space lw. Taking into account
the FEL operation wavelength: 		dw /2�2 we get a restric-
tion for the cavity width

b0 � lw�−2, �13�

where � is the relativistic mass-factor. For example, for 	
=0.03 cm, �=10, dw=3 cm, and lw=100 cm the distance
between plates admissible for mode selection is b0
1 cm.

It should be noted in conclusion that it is reasonable to
use advanced Bragg reflector in a two-mirror resonator
scheme as an upstream reflector. To avoid large Ohmic losses
associated with excitation of the cutoff mode it is sufficient
to use a conventional Bragg reflector as a downstream mirror
with a fairly small reflectivity.9 We should also emphasize
that the advanced Bragg reflector can be considered as an
example of a more general principle of making narrow-band
reflectors which exploit the coupling between propagating
waves and the modes trapped in the resonator.10 Another
important version of such reflectors is a 2D Bragg structure
of coaxial geometry,11,12 which allows separation of reflec-
tion zones for the modes with different azimuthal indices in
the large oversized waveguide.
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FIG. 4. Reflection �solid line� and transmission �dashed line� coefficients vs
frequency found in 3D simulations at b0=0.6 cm, d=0.03 cm, b1

=0.003 cm, and l=1.5 cm.
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