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The authors investigate the possible phase-sensitive behavior of �multiphoton� stimulated Raman
adiabatic passage population transfer in extended lambda systems, if more than one state of an
anharmonic progression of target levels is accessible in transitions of different photonicities. They
use a minimal model four-level system �4LS� with one initial state separated from two target states
by an apex state. The parameters of the 4LS are adapted from the bend states of the HCN-HNC
system. Using a dressed-state analysis within the rotating wave approximation �RWA�, the authors
identify phase-dependent diabatic transitions between the two dressed states contributing to the state
vector as the mechanism leading to phase-sensitive target populations. The essential features giving
rise to the phase dependence are found to be different �non-zero-� diagonal elements of the dipole
matrix, i.e., permanent dipole moments, and the presence of a direct two-photon overtone coupling
between the apex state and the lower target state which formally enters the RWA Hamiltonian upon
inclusion of permanent dipole moments. Among the parameters controlling the extent of the effect
are the anharmonic properties of the target progression and the absolute values of the field
frequencies, so that in view of the requirement to tune the driving fields into the vicinity of
resonance, details of the level structure are of importance. A comparative numerical study executed
without invoking RWA shows that qualitatively there are similar trends in the appearance of phase
sensitivity, although the effects are considerably more pronounced in the full treatment. In the full
treatment the authors also explore off-resonance conditions and discuss the signatures of phase
sensitivity in the target populations. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2403880�

I. INTRODUCTION

Following its development in the early 1990s, the tech-
nique of stimulated Raman adiabatic passage1,2 �STIRAP�
has been widely used in various branches of physical science
such as atom and quantum optics, cavity quantum electrody-
namics, and chemical reaction dynamics. Originally de-
signed as a two-pulse strategy for three-level � systems
making use of the counterintuitively overlapping pump and
Stokes pulse,3 its extension to more complex systems and to
applications using several pulses has been pushed forward
over the last decade.4–6 It has also been popular with experi-
mentalists, because of its simple practical implementation
when compared to more traditional transport schemes such
as stimulated emission pumping.7 This relates to the fact that
with STIRAP the necessity of thoroughly controlling the de-
tails of the pulses, in particular, of their area, can be over-
come.

In this connection it has been widely accepted that most
coherent control processes using STIRAP-like dynamics are
independent of the relative phase among the control fields.8

Although a few exceptions have been found, where phase
dependencies become of importance,8,9 these systems are
rather special and complex in structure.

Interestingly thus, when studying the application of a

multiphoton extension of STIRAP to the isomerization pro-
cess of HCN→HNC,10 it was noted that there exists phase-
sensitive behavior with respect to the final population of the
target states. This effect was detected in a specific region in
frequency space, spanned by the pump ��P� and Stokes ��S�
frequencies, which was centered along a line corresponding
to simple commensurable frequencies of the form �P :�S

=3:2.
We take this observation as a starting point for our work

and examine the conditions that lead to this interesting phe-
nomenon. As a model system for these investigations we use
the most simple suitable subsystem of the HCN/HNC sys-
tem reported in Ref. 10, consisting of only four levels. It
comprises an initial state being separated from two target
states by an intermediate state, the apex state of the extended
� system. Near its respective resonance conditions, this sys-
tem permits population transfer from the initial state either to
the upper target state in a �1+1�-STIRAP process �one-
photon-pump+one-photon Stokes transition� or to the lower
target state in a �1+2�-STIRAP process �one-photon-pump
+two-photon Stokes transition�. If these transfer processes
occur in parallel, phase-sensitive behavior may appear.
Based on an analytical analysis of the dynamics, we try to
explore the conditions for this phase dependence. In particu-
lar, the role of simple commensurable frequencies, as sug-
gested previously,10 is examined.

We organize the paper as follows: After a short introduc-
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tion to the problem in Sec. II, we turn to its discussion within
the rotating wave approximation �RWA� in Sec. III. This dis-
cussion is divided into first analyzing the dynamics of the
system in Sec. III A, and subsequently applying these in-
sights to the question of the influence of the relative phase on
the outcome of the transport process in Sec. III B. Aiming at
analytical results, we constrain these investigations to on-
resonance conditions for the �1+1� process. In Sec. IV the
implications drawn from this treatment within the framework
of the RWA are compared with the results from a full nu-
merical study of the problem. The direct comparison for the
�1+1�-on-resonance conditions is given in Sec. IV A, while
in Sec. IV B we look separately at the previously detected
elements of phase sensitivity. Furthermore in Sec. IV C, ex-
tending the investigations to off-resonant frequencies, we ex-
plore the signatures of phase sensitivity in a wider context
and address the question of the influence of phase-sensitive
behavior on the robustness of STIRAP. Finally, Sec. V pro-
vides a summary of the results and of our conclusions.

We note that in our presentation we make extensive use
of a.u. This implies �=1, which we omit from all equations,
as well as the numerical equivalence of circular frequency
and energy, which we use interchangeably. The relevant
conversion factors are11 1 a.u. of field strength
=514.225 GV m−1, 1 a.u. of dipole moment=2.541 76 D
=8.478 41�10−30 C m, 1 a.u. of energy=1 hartree
=27.2116 eV=4.359 81�10−18 J, and 1 a.u. of circular
frequency=6.579 68�1015 Hz, corresponding to a wave
number of 219 474 cm−1.

II. DEFINITION OF THE PROBLEM

A. Basic definitions and equations

We consider a four-level system �4LS� in an extended �
configuration, interacting with two temporally overlapping
laser pulses: the pump �P� and Stokes �S� pulses, which are
adjusted to the frequencies of the underlying � system. This
interaction is treated semiclassically and we assume the di-
pole approximation to be valid. The dynamics of the system
are governed by the time-dependent Schrödinger equation

i��̇� = Ĥ�t���� ,

�1�
���t0�� ¬ ��0� ,

with a Hamiltonian given by

Ĥ�t� = Ĥ0 + V̂�t� ,

�2�
V̂�t� = − �̂ · E�t� .

Here Ĥ0 is the Hamiltonian of the bare system and V̂�t� ac-
counts for the interaction with the laser fields within the
dipole approximation.

The component of the field acting in the direction of the
dipole moment is assumed to be of the form

E�t� ª EP cos��Pt + �� + ES cos��St� , �3�

where � refers to the relative phase among the two pulses at
time zero. Without loss of generality we have incorporated

this phase in the term of the pump pulse. We consider the
limiting case t0→−� in Eq. �1�. Consequently, the “end” of
the interaction then corresponds to t→ +�.

As common in the description of spectroscopic pro-

cesses, we use the eigenstates of Ĥ0, ��j0� :1	 j	4�, as a
basis of the Hilbert space, and solve for the solutions of the
initial value problem Eq. �1� in an equivalent matrix repre-
sentation with respect to the chosen basis set,

iċ = H�t�c ,

�4�
c�t0� ¬ c0.

We refer to this basis as the spectroscopic basis, and we
indicate its elements by the index “0.” The corresponding
energy eigenvalues are denoted by � j, 1	 j	4.

STIRAP being an adiabatic technique,1,12,13 it is favor-
able to work in the interaction representation �IR� and to
subsequently apply the RWA.14,15 Following the adiabatic
theorem,16 the dynamics of the system is then most naturally
displayed by expanding the state vector in the elements
of the adiabatic basis �or basis of dressed states�, ��j�t�� :1
	 j	4�.

Within the adiabatic approximation,16 searching for the
solution of the initial value problem Eq. �4� is replaced by an
eigenvalue problem for the time-dependent RWA-
Hamiltonian matrix. For the special case of a nondegenerate
system, the following necessary local condition for the va-
lidity of the adiabatic approximation may be established:2,16

	
k̇�t��l�t��	 
 ��k�t� − �l�t��, k � l � �1,4� , �5�

which leads to a pictorial way of obtaining insight into pos-
sible diabatic transitions during the evolution of the state
vector. In the inequality Eq. �5�, �� j�t� :1	 j	4� refers to the

set of nondegenerate eigenvalues of Ĥ�t�, which in analogy
to the corresponding basis of eigenstates are termed dressed
energies.

As we are interested in the dynamics of our 4LS as a
basis for understanding phase dependences with respect to
the final populations, we look for the existence of a transport
state6 �or transfer state�, ��T�, generally defined as

��T� ——→
t→−�

�i� , �6�

��T� ——→
t→+�

�f� , �7�

with �i� and �f� referring to the initial and final states, respec-
tively.

B. Description of the system

A sketch of the extended-lambda 4LS is given in Fig. 1.
As pointed out in Sec. I, it is derived from the HCN/HNC
system used in a previous study of the application of STI-
RAP to molecular isomerization.10 It consists of the two
states �30� and �40�, separated from the initial state �10� by an
intermediate state �20�. Since the objective is to understand
phase-dependent final populations of the spectroscopic states
�30� and �40�, both are considered as target states.
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The levels are assumed to be sequentially coupled; how-
ever, there exists an additional two-photon coupling
�20�↔ �40�, which will turn out to be crucial for phase-
dependent dynamics. In addition, the spectroscopic states
also have nonzero permanent dipole moments � j j, whose
effects on the system’s temporal evolution will have to be
considered in deeper detail.

For establishing STIRAP-like population transport, we
neglect all tunneling couplings, so that

�13 = �14 ª 0. �8�

Furthermore, in order to implement the common as-
sumption of level pairs coupled by only one of the two laser
fields when invoking the RWA, which we refer to as the
coupling approximation, the system is considered to be de-
rived from one with harmonic energy level progression on
the target side ��20� , �30� , �40��. The couplings among these
states are associated solely with the Stokes pulse. For later
use, we define the detuning �h,

�h ª �3 − �4 − �S, �9�

which for �1+1�-on-resonance conditions can be rewritten as

�h ª ��3 − �4� − ��2 − �3� . �10�

In view of Eq. �10�, we denote �h the “anharmonicity.” For
the characterization of the anharmonic effects it is appropri-
ate to use a system-independent relative measure, for which
we introduce the anharmonicity ratio fh, defined as

fh ª 1 +
�h

�2 − �3
= 1 +

�h

�S
. �11�

Accordingly, a harmonic target progression has fh=1.
As for our objective to find analytical expressions within

the RWA for the conditions under which phase-dependent

behavior occurs, we concentrate on the �1+1�-on-resonance
case so that �P=�2−�1 and �S=�2−�3. In order to exam-
ine the role of commensurable frequencies, we will vary the
pump:Stokes ratio fPS,

fPS ª
�P

�S
=

�2 − �3

�2 − �1
, �12�

where the second equality again holds for
�1+1�-on-resonance conditions. Since phase-sensitive be-
havior was first detected for fPS�1.5, we will use this spe-
cial case �the “3:2-4LS”� as an example for illustrating the
conclusions drawn within the RWA treatment and as a start-
ing point for practical calculations. Keeping now levels �20�
and �30� fixed, we are able to independently vary the param-
eters fh and fPS by adjusting, respectively, �4 and �1.

The elements of the dipole matrix are also adapted from
Ref. 10. Tables I and II summarize the energies �referring to
the 3:2-4LS� and elements of the dipole matrix that are used
in the present paper. If not specified explicitly, the param-
eters are assumed to be chosen as indicated here.

In our numerical calculations with the full Hamiltonian,
we use a pair of Gaussian pulses with equal envelope. The
parameters characterizing these pulses,

E�t� = E0, exp�−
ln 2�t − t�2

�H,
 , �13�

are summarized in Table III. If not explicitly indicated, we
take this as our standard pulse setting, which we have also
used in the calculations illustrating the developments of the
RWA treatment. The corresponding carrier frequencies, �,
are adjusted to meet the �1+1�-on-resonance conditions
given in Eq. �17�. To numerically deal with the temporally

FIG. 1. Schematic representation of the model four-level system with states
�10�– �40�. The associated energy levels are denoted �1–�4. By �P and �S

we denote, respectively, the carrier frequencies of the pump pulse, which
couples the initial state �10� to the intermediate �apex� state �20�, and the
Stokes pulse, which couples the states of the progression �20�, �30�, �40�.
States �30� and �40� are the target states of possibly competing �1+1�- and
�1+2�-STIRAP transport processes. For simplicity, in the RWA treatment
we consider only the �1+1�-on-resonance case where �P and �S are in turn
tuned to the zero-order transition frequencies of �10�↔ �20� and �20�↔ �30�.
In the RWA treatment, the direct overtone coupling between �20� and �40�
becomes relevant only upon inclusion of permanent dipole moments. Varia-
tion of the pump:Stokes frequency ratio and the anharmonicity are achieved
independently by adjusting, respectively, �1 and �4 while leaving the re-
maining levels unchanged.

TABLE I. Energy spectrum of the 3: 2-4LS.

State Energy �a.u.�a

�40� −0.006 983 47
�10� −0.005 087 60
�30� −0.003 391 73
�20� 0.0

aAdapted from Ref. 21.

TABLE II. Dipole matrix elements for the model 4-LS.

�j ,k� � jk �a.u.�a

�1,1� −0.713 134
�2,1� −0.200 000
�2,2� −0.133 002
�3,1� 0.0
�3,2� −0.200 000
�3,3� 0.440 670
�4,1� 0.0
�4,2� −0.066 6667
�4,3� 0.300 000
�4,4� 0.471 846

aFrom Ref. 22.
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infinitely extended field, we cut it off when there occur no
changes in the populations for the chosen numerical preci-
sion. Applied to the pulse parameters of Table III, this gives
rise to an overall intergration time of 30 ps.

III. TREATMENT WITHIN THE ROTATING WAVE
APPROXIMATION „RWA…

A. Dynamics in the extended � system

Before being able to discuss the role of the relative phase
on the final populations of the target states, a thorough un-
derstanding of the underlying dynamics is required. We thus
start our investigation with analyzing the system’s “pure”
dynamics, i.e., without making reference to �. Since perma-
nent dipole moments � j j will turn out to play a central role
for phase-sensitive dynamics, we additionally split this dis-
cussion into two parts: without and with incorporating the
effects of nonvanishing � j j. We start off with the former
case.

1. Dressed states: The role of the anharmonicity

Defining the quantities

�P ª �2 − �1 − �P �14�

and

�S ª �2 − �3 − �S, �15�

which measure the frequency detunings with respect to the
one-photon couplings �10�↔ �20� and �20�↔ �30�, respec-
tively, and setting −�S as the zero of the energy scale, the
RWA-Hamiltonian matrix of the system reads

1

2�
− 2��P − �S� − �12EP 0 0

− �12EP 2�S − �23ES 0

0 − �23ES 0 − �34ES

0 0 − �34ES − 2�h

� . �16�

Inserting the resonance conditions, introduced in Sec.
II B, for these one-photon detunings,

�P = �S = 0, �17�

the characteristic equation with respect to the RWA-
Hamiltonian matrix becomes

0 = 16�4 + 16�h�3 + 4�2�− ES
2��23

2 + �34
2 � − �12

2 EP
2 �

+ 4�h��− �23
2 ES

2 − �12
2 EP

2 � + �12
2 �34

2 EP
2 ES

2. �18�

At this point we note that within the standard RWA, i.e.,
without including effects of permanent dipole moments, di-
rect two-photon couplings �or n-photon couplings, in gen-

eral� are excluded in principle at this level of theory.14,17 This
follows readily from the neglect of off-resonant terms when
invoking the RWA.

Following Eq. �18�, although considering the on-
resonance case with respect to �P and �S, the characteristic
polynomial still depends on one detuning, namely, �h.
We will thus have to distinguish among the two situations,
�h�0 and �h=0. The former will be referred to as the an-
harmonic, the latter as the harmonic case.

In general, searching for the roots of the characteristic
polynomial Eq. �18�, which is of fourth order, will be a te-
dious process. In principle, closed form solutions to this par-
ticular eigenvalue problem are available,18 but are rather un-
wieldy for further manipulation. However, as we are
interested in the existence of a transport state, where the final
state �f� in Eq. �6� can either be �30� or �40�, it is sufficient to
consider the beginning and the end of the process, respec-
tively. This corresponds to the following two time intervals.

Initial period (IP): “Early times.” Only the Stokes field
interacts with the system, thus

ES�t� � 0 and EP�t� = 0. �19�

Final period (FP): “Late times.” Only the pump field
interacts with the system, thus

ES�t� = 0 and EP�t� � 0. �20�

Turning first to IP, the constant term in the characteristic
polynomial vanishes, thus there exists an eigenvalue �1 with

�1�t� = 0. �21�

The roots of the remaining third-order polynomial

p��� ª 16�3 + 16�h�2 − 4�ES
2��23

2 + �34
2 � − 4�h�23

2 ES
2

�22�

depend on the choice of �h in a crucial way. In the more
general case of a nonvanishing constant term in Eq. �22�,
corresponding to �h�0, there exists no other zero eigen-
value. Thus in this case the only eigenspace that could be
related to a transport state is one dimensional,

V1 = span��1 0 0 0�T� . �23�

For the special case where �h=0, the eigenvalues can
easily be calculated giving

��1�t� = �2�t� = 0

�3�t� = 1
2ES

��23
2 + �34

2

�4�t� = − �3�t�
� for �h = 0. �24�

Thus the harmonic system bears a two dimensional eigens-
pace V1,2 corresponding to a zero-valued dressed energy. V1,2

is given by

V1,2 = span��1 0 0 0�T;
1

N
�0 − �34 0 �23�T� ,

�25�
N ª

��34
2 + �23

2 .

For FP the characteristic equation may be rewritten in
the form

TABLE III. Standard pulse parameters.

E0, �a.u.� t �ps�a,b �H, �ps�

Stokes �S� 0.0045 11.0 4.0
Pump �P� 0.0045 18.3 4.0

aThe entries relate to the total integration time of 30 ps.
bDelay adjusted to optimize population transfer in the underlying three-level
� system, ��10� , �20� , �30��.
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0 = �2�h + 2�� · 2� · �4�2 − �12
2 EP

2 � . �26�

The eigensystem for �h�0 is then

�1�t� = 0, V1 = span��0 0 1 0�T� ,

�2�t� = − �h, V2 = span��0 0 0 1�T� ,

�27�

�3�t� =
1

2
�12EP, V3 = span� 1

�2
�1 − 1 0 0�T� ,

�4�t� = − �3�t�, V4 = span� 1
�2

�1 1 0 0�T� .

Again for vanishing �h, the eigenspace corresponding to a
zero-valued dressed energy is two dimensional.

Thus, for the anharmonic system it is likely that a trans-
port state exists, which links the initial state �10� with the
target state �30�. Strictly speaking, one would still have to
show that the eigenspaces corresponding to zero eigenvalues
on IP and FP are continuously connected. Instead of giving a
rigorous proof, we will consider a numerical solution to the
problem, which strongly suggests that such a continuous
connection indeed exists. Figure 2 depicts the temporal be-
havior of the dressed energies for increasing �h, starting with
an almost harmonic system in �a�, leading, via an intermedi-
ate case in �c�, to a strongly anharmonic system in �e�.

From the plots it can be inferred that the assumption of a
dressed state with energy zero on both IP and FP is correct.

Increasing fh gradually lifts the quasidegeneracy. Recalling
the necessary condition for adiabatic following in a system
with distinct eigenvalues �Eq. �5��, one may also expect di-
abatic transitions to occur between the dressed states corre-
sponding to �1 and �2, if �h is sufficiently small. These tran-
sitions will become less pronounced as �h increases. This
behavior is displayed in panels �b�, �d�, and �f� of Fig. 2,
where the RWA-state vector is projected onto the elements of
a basis of instantenous eigenstates of the Hamiltonian matrix.
The corresponding absolute squared value is equivalent to
the statistical weight of the respective dressed state. The sys-
tems employed in panels �e� and �f� show no transitions any-
more, hence they are completely described by state �1�. Ac-
cording to RWA dynamics, it thus ends up completely in the
spectroscopic state �30�, with no contribution of �40�.

From Fig. 2 it can also be concluded that diabatic tran-
sitions should occur when the dressed states “drift apart,”
which corresponds to the times when the system leaves IP
and when it enters FP. On IP and FP themselves, as a conse-

quence of zero couplings 
k̇�t� � l�t��, k� l, no transitions oc-
cur.

If there is a contribution of the dressed state �2�, the
system will end in a superposition of the spectroscopic states
�30� �corresponding to �1�� and �40� �corresponding to �2��,
see Eq. �27�. For the anharmonic system, we may thus iden-
tify the mechanism for obtaining a superposition of the two
target states �30� and �40� in the limiting case t→ +�, with
diabatic transitions occurring among the transport state �1�t��
and the dressed state �2�t��.

So far, we have been mainly discussing the properties of
the dynamics in the anharmonic case. This is for two reasons.
First, since the harmonic case assumes �h=0, it is a special
case. In addition, there is still the subtlety of the twofold
degeneracy of the zero eigenvalue �1,2 on both IP and FP,
which leads to certain difficulties with the correct choice of
the elements of the adiabatic basis. In this respect it is essen-
tial to recall that whereas the eigenstates given in Eq. �25�
are a possible basis for the invariant subspace V1,2 on IP, the
adiabatic theorem demands a set of eigenvectors of the time-
dependent Hamiltonian, which evolves continuously on the
entire time interval the system interacts with the laser
fields.16 Only such eigenstates of H�t� are the correct choice
for the adiabatic basis and hence enter the expression for the
time-evolution operator as given by the adiabatic theorem.16

The properties of the adiabatic basis for a harmonic 4LS
can be inferred from Ref. 6. Applied to the system discussed
here, it is shown that the initial state �10� is not an element of
the adiabatic basis at the beginning of the interaction
t→−�, but rather a superposition of the dressed states �1�
and �2� with equal statistical weights,

�1�−��� = 1
�2

�1 − sin �S
�−��0 cos �S

�−���T, �28�

�2�−��� = 1
�2

�1 sin �S
�−��0 − cos �S

�−���T, �29�

where tan �S
�−�� =

�23

�34
, �30�

FIG. 2. Effects of the anharmonicity in the 3:2-4LS at �1+1�-on-resonance
conditions. Panels �a�, �c�, and �e� show in turn the temporal behavior of the
RWA dressed energies � j �as indicated� for the anharmonicity ratios fh

=1.0042, 1.0195, and 1.0834. Panels �b�, �d�, and �f� show the correspond-
ing statistical weights �cj�2 of the dressed states �j� in the state vector ���
while the system evolves under a pulse pair in standard setting �Table III�.
Whereas in the quasiharmonic system �b� the dressed state �2� contributes
strongly to the dynamics of the system, its contribution diminishes for in-
creasing anharmonicity. In �f�, the system evolution is completely described
by the dressed state �1�. The contributions of states �3� and �4� remain neg-
ligibly small in all cases.
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thus ���−��� = �10� = 1
�2

��1�−��� + �2�−���� . �31�

Hence, there exists no transport state in accordance with
the definition introduced in Eq. �6� for the harmonic system.
Assuming the system evolves adiabatically, the state vector
for t→ +� reads

���+��� =
1
�2

�e−i�1�1�−��� + e−i�2�2�+���� ,

�32�

� j ª �
−�

+�

� j�t�dt, j � 1,2,

which by insertion of the expressions for the respective ele-
ments of the adiabatic basis on FP given in Ref. 6,

�1�+��� =
1
�2

�0 0 − 1 1�T, �2�+��� =
1
�2

�0 0 1 1�T �33�

leads to the final populations �cj
�+���2 of the spectroscopic

states �j0�

�c1
�+���2 = �c2

�+���2 = 0, �34�

�c3
�+���2 = cos2��

−�

+�

��t�dt , �35�

�c4
�+���2 = sin2��

−�

+�

��t�dt . �36�

Here the relation

�1�t� = − �2�t� ¬ − ��t�, ∀ t �37�

was used.23

Thus in the harmonic case, even for adiabatic evolution a
superposition of the target states is eventually produced.
Since the statistical weights of the two dressed states in-
volved in the state vector are both equal in magnitude �see
Eq. �28�� and hence at maximum, their behavior would con-
sequently match with the foregoing analysis of the anhar-
monic system: The smaller �h, the larger the contribution of
a second dressed state. The dynamics of the harmonic system
within the adiabatic approximation may so far be considered
as a limiting case of an anharmonic system discussed previ-
ously. Figure 3 illustrates this behavior by depicting the con-
tributions of dressed states �1� and �2� to the state vector at a
characteristic time t*.

However, as the harmonic system is more or less a
“pathological” case of minor practical relevance, we shall
henceforth concentrate on the anharmonic case.

2. Effects of permanent dipole moments

In deriving the expression for the RWA-Hamiltonian ma-
trix, we have so far excluded the role of the diagonal ele-
ments of the dipole matrix � j j. The generalization of the
RWA to N-level systems with nonvanishing � j j was derived
by Nakai and Meath.19 To this end they introduced an addi-
tional transformation of the form24

b̃ ª Tb ,

Tk,j ª e−i�k

�k,j , �38�

�k

ª �kkE�

0

t

cos��s + ��ds

=
�kkE

�

�sin��t + �� − sin �� ,

to be subsequently applied on a vector b, obtained by invok-
ing the transformations included in the standard IR-RWA
treatment. In Eq. �38�,  has to be properly replaced by the
pump pulse and Stokes pulse, respectively. The transforma-
tion accomplishes to eliminate the rapidly oscillating cosine
terms in the diagonal elements of the original IR-
Hamiltonian matrix, which afterwards are equal to those in
the case when all � j j vanish, see Eq. �16�.

The effects of nonzero � j j are consequently contained in
the off-diagonal elements of the Hamiltonian matrix. They
enter due to a characteristic parameter, zjk

 , which is a mea-
sure for the relative strength of the permanent dipole mo-
ments considering the coupling j↔k, defined by

zjk

ª

djkE

�

, djk ª � j j − �kk. �39�

After neglecting off-resonant and rapidly oscillatory terms
analogous to the standard RWA, the off-diagonal elements
k� j finally read19

Hj,k
RWA = − 1

2E� jke
izjk

 sin �ei�k−j���Jk−j−1�zjk
 �

+ Jk−j+1�zjk
 �� , �40�

which for zjk
 �0 may be equivalently expressed as

Hj,k
RWA = − E� jke

izjk
 sin �ei�k−j��

k − j

zjk
 Jk−j�zjk

 � . �41�

The remarkable point with Eq. �41� is that applied to our
4LS we also obtain a nonvanishing contribution of the two-

FIG. 3. Contribution of the instantaneous eigenvectors �1� and �2� to the
RWA state vector ��� at �1+1�-on-resonance conditions as a function of the
anharmonicity ratio fh. Exemplarily shown are the statistical weights �c1�2
and �c2�2 at t*=15 ps, where they display stationary behavior corresponding
to the situation of both pulses present �compare Fig. 2�. For fh=1, both
eigenstates contribute equally to ���. The driving pulse pair is the standard
one from Table III.
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photon coupling �24. However, the strength of this term de-
pends on the value of the Bessel function J2 for given zjk

 .
More generally, the inclusion of permanent dipole moments
� j j gives rise to additional coupling elements that are for-
mally related to multiphoton processes,25 where an n-photon
term scales with a Bessel function of order n.

Furthermore, zjk
 contains the driving field frequency �.

In particular, this means that the element H1,2 of the Hamil-
tonian matrix will explicitly depend on �P, even though
we have restricted our analysis to the on-resonance case
Eq. �17�.

Thus the inclusion of the effects of nonvanishing � j j

gives rise to a dependence of the dynamics on �P, which we
here represent as a dependence on fPS, in addition to its
dependence on �h. This fact will become essential for the
consideration of phase-dependent final populations, as this
behavior was first found for certain ratios of pulse
frequencies.10

The effects of nonvanishing � j j on the system’s dynam-
ics become clear, if we look at the characteristic equation
that determines the dressed energies. In analogy to Eq. �18�
for vanishing � j j, it becomes

0 = 16�4 + 16�3�h − 4�2�ES
2��̃24

2 + �̃23
2 + �̃34

2 � + EP
2 �̃12

2 �

+ 4��ES
2�̃23�̃24�̃34 − �h�ES

2�̃23
2 + EP

2 �̃12
2 ��

+ EP
2 ES

2�̃12
2 �̃34

2 . �42�

Equation �42� is almost equivalent to the corresponding
equation for no permanent dipole moment, Eq. �18�, if the
dipole matrix elements � jk, j�k, in Eq. �18� are replaced by
the corresponding quantities �̃ jk defined as

�̃ jk ª � jk2�k − j�
Jk−j�zjk

 �
zjk

 for zjk
 � 0. �43�

However, due to the two-photon coupling that enters the
RWA matrix, we also obtain additional terms in the charac-
teristic polynomial Eq. �42�. As will turn out, one of these
two additional terms alters the dynamics in a essential way.
To study its effects, we define the splitting index � given by

� ª ES
3�̃23�̃24�34 − �h�ES

2�̃23
2 + EP

2 �̃12
2 � , �44�

where the leading term enters due to the inclusion of nonva-
nishing � j j. Note the dimension of � is �energy3�. We will
henceforth make use of the same terminology as in the fore-
going study of the dynamics without permanent dipole mo-
ment.

On IP, where only the Stokes field is present, there is still
one eigenvalue �1 that equals zero. As we have shown for the
case when all � j j are zero, the dynamics is determined by the
“coupling” of the dressed states �1� and �2� corresponding to
the eigenvalues �1 and �2, respectively, which evolve close to
each other on IP.

Concentrating on the anharmonic case, the eigenstate �1�
still corresponds to a transport state that leads from the initial
state �10� to the target state �30�. Possible diabatic transitions
to state �2�, which at the end of the interaction with the two
laser fields coincides with target state �40�,26 are in accord

with the necessary condition for adiabatic transport in non-
degenerate systems, Eq. �5�, determined by the splitting of
the two related dressed energies �1 and �2.

In order to make assertions about this splitting we con-
sider a time interval which we designate extended IP �EIP�.

Extended IP (EIP): The Stokes field interacts with the
system

ES � 0. �45�

The pump field has already started to act; however, it is
assumed to be “small” enough to fulfill

EP
2 ES

2�̃12
2 �̃24

2 � 0. �46�

Obviously, this time interval contains IP; however, it is ex-
tended to times where one can assume the term EP

2 ES
2�̃12

2 �̃34
2

to be negligible, as it is of order O�E,0
4 �. After reduction of

the characteristic polynomial of Eq. �42�, by one order of �,
corresponding to �1=0, the remaining polynomial within the
EIP reads

p̃��� ª 16�3 + 16�2�h − 4��ES
2��̃24

2 + �̃23
2 + �̃34

2 �EP
2 �̃12

2 �

+ 4� . �47�

From this equation the meaning of � as well as the reason for
choosing the name “splitting index” becomes evident. Thus
the temporal behavior of � determines the splitting of the
eigenvalues �1 and �2, respectively, which become degener-
ate, �1=�2=0, for �=0.

However, as in � the additional term

� ª ES
3�̃23�̃24�̃34 �48�

arises, if the effects of permanent dipole moment are in-
cluded in the theory, its temporal behavior will be different
compared to the RWA analysis, where these effects have
been excluded. Figure 4 compares � as a function of time for
the two cases, with and without the inclusion of permanent
dipole moment.

From Fig. 4 it follows that the additional term in �
strongly alters its behavior on EIP, giving rise to a thor-
oughly pronounced maximum in this time interval. This es-
sential change of � related to the formal inclusion of �24

consequently affects the dressed energies �1 and �2. Numeri-
cal solution of the characteristic equation shows that it leads,

FIG. 4. Temporal behavior of the splitting index � for the 3:2-4LS at
�1+1�-on-resonance conditions. The parameters are the standard values
from Table I, so that fh=1.0590. Solid line: standard RWA treatment without
permanent dipole moments, � j j =0; dashed line: dipolar system, � j j from
Table II. The driving pulse pair is the standard one from Table III.
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in fact, to the development of an avoided crossing between
these two eigenvalues. This is demonstrated in Fig. 5 for the
case of the 3:2-4LS.

As a consequence of Eq. �5�, this avoided crossing leads
to strongly pronounced diabatic transitions between the
dressed states �1� and �2�. As �h does not enter �, which
gives rise to the avoided crossing, this effect will be weak-
ened with increasing �h �or fh�, as was the case with the
system with no permanent dipole moment.

B. Phase-dependent final populations

Having analyzed the dynamics of our extended � system
in considerable detail, we are now able to turn to the ques-
tion of phase-dependent final populations of the target states
�30� and �40�. Since diabatic transitions are controlled by the
parameters �h and �P that finally lead to populations of both
target states, phase dependence can only arise if the transi-
tion probability for the diabatic coupling between the two
dressed states �1� and �2� becomes phase dependent. Further-
more, the parameters given above, which control these tran-
sitions, should also control phase-dependent behavior.
Hence, we have to investigate the dressed energies as well as
the dressed states for an additional dependence on �.

We first consider the dressed energies. Including � j j

�0, we have to solve for the roots of the characteristic equa-
tion of the Hamiltonian matrix with elements given as in Eq.
�41�, where

� = �� � �0,2�� for  = P

0 for  = S .
� �49�

To this end, we consider the characteristic equation

�50�

where the Hermitian matrix A assumes the form

A =�
A1,1 A1,2 0 0

A1,2 A2,2 A2,3 A2,4

0 A2,3 A3,3 A3,4

0 A2,4 A3,4 A4,4

� with Aj,j � R . �51�

Expansion with respect to the first row yields

det�A� = A1,1 · S1,1 − A1,2 · S1,2,

S1,1 ª A2,2A3,3A4,4 + 2 Re�A2,3A3,4A2,4�

− �A2,4�2A3,3 − �A3,4�2A2,2 − �A2,3�2A4,4,

S1,2 ª A1,2�A3,3A4,4 − �A3,4�2� .

As the phase only enters the coupling element H1,2

H1,2 = − 1
2 �̃12EP exp�i�� + z12

P sin ��� , �52�

and the determinant of A solely contains the absolute
squared norm of this element, the characteristic polynomial
is independent of � and hence so are its roots.

The characteristic features of the dynamics, as given by
the temporal behavior of the dressed energies, are therefore
shown to be independent of phase. Whether a phase depen-
dence in the final populations is given within the RWA, now
lies completely in the dressed states. Again, as a closed form
of the dressed states will be rather unwieldy, we will restrict
the further analysis to results of numerical calculations by
solving the time-dependent RWA-Schrödinger equation, and
considering whether a phase dependence of its solution
arises for t→ +�. If so, the dressed states �1� and �2� are
bound to bear a phase dependence that is not physically
trivial, i.e., does not vanish when the physically relevant ab-
solute squares of the components are considered.

First, we consider the 3:2-4LS. As the inclusion of the
permanent dipole moment significantly changes the dynam-
ics, we will compare results for our standard pulse setting for
the two cases with and without taking into account the effects
of nonvanishing � j j. While for the nonpolar system, we find
�c3�2=1 and �c4�2=0 independent of �, in the dipolar system
the population varies from 0.856 to 0.865 for target state �30�,
and correspondingly from 0.144 to 0.135 for state �40�.
Hence, only the inclusion of permanent dipole moments
leads to a phase dependence in the final populations for the
3:2-4LS. In this case, the dressed states �1� and �2� bear a
phase dependence that is physically nontrivial.

For further analysis we define the overall phase sensitiv-
ity � j of the state �j0� as

FIG. 5. Effects of permanent dipole moments on the RWA dressed states
and the state vector. Panels �a�, �b�, �e�, and �f� are exact counterparts of the
dipole-free cases in panels �c�–�f� of Fig. 2. As a consequence of the inclu-
sion of the dipole moment, an avoided crossing arises between �1� and �2�
that leads to strong coupling and diabatic transitions between these states.
Panels �c� and �d� zoom into the extended initial period of panels �a� and �b�
to highlight this dipole-induced avoided crossing. A comparison of panels
�b� and �f� shows that the influence of the avoided crossing on the dynamics
decreases with increasing anharmonicity.
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� j ª lim
t→+�� max

���0,2��
�cj�t;���2 − min

���0,2��
�cj�t;���2� , �53�

where we expect the relations

�3 = �4, �1 = �2 = 0 �54�

to hold for STIRAP-like transport processes. In such cases
we will sometimes drop the explicit reference to the state and
simply speak of the overall phase sensitivity �.

It now remains to identify the parameters that control the
� j. Since only those parameters that influence the dynamics
in the case �=0 are possible candidates, we have to consider
the effects of variations of fh and fPS, which are illustrated in
Fig. 6.

We start with discussing the dependence on �h. For zero
permanent dipole moment, we find no phase-dependent be-
havior of the final populations. However, panel �a� in Fig. 6
shows that for nonzero � j j a nonzero overall phase sensitiv-
ity is observed, and �3 and �4 exhibit a common global
maximum at fh=1.0433. The decrease of � for larger values
of fh can be understood as a consequence of the increasing
eigenvalue splitting according to Eq. �44�.

We next address the influence of fPS, which we vary at
fixed anharmonicity. In panel �b� of Fig. 6, we show the � j as
a function of fPS with fh fixed at=1.0433, corresponding to
the value of maximum phase sensitivity in the 3:2-4LS. In
accord with the starting point of our work,10 the plot shows
that �3 and �4 depend on fPS.

Summing up, phase-dependent final populations in an
extended � system as discussed here may hence be ex-

plained within the framework of the RWA. They arise as a
result of explicitly incorporating permanent dipole moments,
which formally leads to a contribution of the nonzero two-
photon coupling related to �24. Thus we may interpret phase-
dependent behavior as a result of both nonzero two-photon
coupling of the spectroscopic states �20�↔ �40� and of perma-
nent dipole moments � j j. However, this last interpretation
has to be verified by simulations that are correctly incorpo-
rating direct multiphoton processes. In order to complete our
analysis, we will now compare the conclusions drawn from
the treatment within the RWA with results obtained by a
direct numerical integration of the Schrödinger equation.

IV. RESULTS FROM A FULL NUMERICAL
TREATMENT

In this section we present results on the dynamics of the
4LS obtained by direct numerical propagation without mak-
ing any approximations in the semiclassical Hamiltonian Eq.
�2�. This, in particular, means that we do not invoke the
coupling approximation, introduced in Sec. II B for the cou-
pling of the field to the individual level pairs of the system.
In Sec. IV A we first consider �1+1�-on-resonance condi-
tions paralleling the RWA analysis in the previous section. In
addition in Sec. IV B we investigate separately the effects of
permanent dipole moments and of direct overtone coupling.
In Sec. IV C we extend the investigation to off-resonance
conditions. This allows us to to find the maximum phase
sensitivity, to draw conclusions concerning the robustness of
STIRAP under conditions of phase sensitivity, and to identify
the signatures of phase-sensitive behavior in �P-�S space.
The standard parameters of the Gaussian pulses we are using
in these simulations are those shown in Table III.

A. Comparison with the RWA analysis

In the RWA treatment we find that for fixed field strength
the � j are controlled by fh and fPS. Corresponding results for
the dependence of the phase sensitivity on these two param-
eters from the full numerical treatment are shown in Fig. 7.
For a variation of fh in the 3:2-4LS, �3 and �4 are found to
be more than one order of magnitude more pronounced than
in the RWA �see Fig. 6�. Qualitatively though, there are clear
similarities to the behavior obtained within the RWA. As
there, � exhibits a global maximum. Comparison of Fig. 6�a�
and Fig. 7�a� shows that, in fact, the agreement is fair only
for relatively small anharmonicities fh	1.06. For larger val-
ues of fh the full simulations predict sizable phase effects,
while the RWA results do not. However, this latter behavior
is not unexpected: since in the RWA only quasiresonant
terms are retained within the IR Hamiltonian, this puts a
limit on the value of fh to be considered within its range of
validity.

As for the dependence of � j on fPS, we consider its
variation in a system with fh=1.0963 a.u., corresponding to
the previously detected maximum of phase sensitivity for the
3:2-4LS. In order to achieve STIRAP-like behavior, in par-
ticular, to guarantee sufficiently distinct pump and Stokes
frequencies,27 �P is varied in the range of 1.32–1.73. In Fig.
7 we detect a complex oscillatory behavior with a number of

FIG. 6. Overall phase sensitivities �3 and �4 from a RWA analysis, obtained
for the 3:2-4LS at �1+1�-on-resonance conditions. Panel �a�: Dependence of
�3 and �4 on the anharmonicity ratio fh. Note that �3 and �4 coincide on the
interval considered, their maximum appearing at fh=1.0433, while �1 and
�2 are negligibly small. Panel �b�: Dependence of �3 and �4 on the
pump:Stokes ratio fPS for �1+1�-on-resonance conditions. The anharmonic-
ity ratio fh is set to 1.0433, corresponding to the maximum of panel �a�.
Weak oscillations in �3 and �4 indicate minute perturbations of STIRAP-
like transport as �P is varied. Again �1 and �2 are negligibly small.
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local maxima and minima. Although one of the maxima cor-
responds to a frequency ratio �P /�S=3/2 resembling the
findings in Ref. 10, there are other local maxima on the
interval considered which cannot be related to any simple
commensurable frequencies. Whereas we could explain the
role of fPS �and hence implicitly of �P� for phase-dependent
final populations within the RWA, the detailed behavior of �
vs �P, exhibiting local maxima and minima corresponding to
partial amplifications and extinctions, cannot be explained
within the limitations of this theory.

The contour plots in Fig. 8 show that the trends in both
one-dimensional cuts in Fig. 7 are typical ones and are not
compromised by the specific choice of conditions. In the
ranges where phase sensitivity does appear, � shows oscilla-
tory behavior both with respect to variations in fh and fPS,
clearly indicative of interference effects. We also see that
moderately increasing the field strength E0, increases the
amount of phase sensitivity and extends the range of fre-
quencies where it can be observed, but again the overall
behavior is left unchanged. Note in our simulations we have
ascertained that the values of E0, are sufficiently large to
guarantee adiabatic transport in the time range where the two
pulses overlap strongly.

In summary it appears that within predictable limits the
conclusions drawn from the RWA treatment are in accord

with the results from a numerical integration of the
Schrödinger equation. Definitely, the degree of the phase
sensitivity obtained in the fully numerical calculations is
much more enhanced than the corresponding effects in the
RWA. This may be related to the fact that phase dependence
has been shown to be a consequence of both the nonzero
two-photon coupling as well as the permanent dipole mo-
ment. Although the two-photon coupling formally enters the
RWA when including nonvanishing � j j, its strength given by
�24 is considerably diminished by a prefactor containing the
Bessel function of second order �see Eq. �43��. On the other
hand, invoking the RWA also means accepting an upper
bound with respect to the field strength, since it demands14

��kjE0,� 
 �, �55�

to hold for the coupling element Hk,j, k� j. Hence in con-
nection with the conditions on E0, posed in order to guar-
antee sufficiently adiabatic evolution of the system, in gen-
eral there may arise difficulties with the overlap of the range
of validity of the adiabatic approximation on the one hand
and the RWA on the other.

B. Elements of the phase sensitivity

Following the arguments of Sec. III B, we have inter-
preted phase-dependent behavior as a result of the interplay
of two factors: the nonzero two-photon coupling related to
�24=0 and the nonvanishing � j j. As these effects are coupled
within the RWA, we have not been able to discuss them
separately. On the basis of the simulations using the full
Hamiltonian we can attempt to disentangle some of the ef-
fects. In order to do so, we modify our basic Hamiltonian

FIG. 7. Overall phase sensitivities �2, �3, and �4 from a numerical treat-
ment of the full Hamiltonian, obtained for the 3:2-4LS at
�1+1�-on-resonance conditions. The plots complement the RWA analysis in
Fig. 6. Panel �a�: Dependence of �3 and �4 on the anharmonicity ratio fh. �3

and �4 are closely coincident on the interval considered, their maximum
appearing at fh=1.0963, while �3 and �4 are negligibly small. Panel �b�:
Dependence of �2, �3, and �4 on the pump:Stokes ratio fPS for
�1+1�-on-resonance conditions. Here fh is set to 1.0963, corresponding to
the maximum of panel �a�. The plot is obtained from 1000 grid points, the
fast oscillations near fPS=1.45 are not fully resolved. For fPS�1.56 �3 and
�4 do not coincide due to deviations from STIRAP-like transport; there are
also weak frequency-dependent perturbations for smaller values of fPS mani-
fest as �2�0, indicating residual phase-dependent population in the apex
state �20�.

FIG. 8. Simultaneous dependence of the overall phase-sensitivity �3 on the
anharmonicity ratio fh and the pump:Stokes ratio fPS from a numerical treat-
ment of the full Hamiltonian, obtained for �1+1�-on-resonance conditions.
Panels �a�–�d�: Contour plots for various field strengths E0, as indicated.
The common scale for the plots is included in panel �a�.
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and suppress in turn separately �24 and � j j �and both�. We
start with the investigation of the influence of � j j by setting
�24=0. This situation corresponds to a hypothetical purely
sequential 4LS with permanent dipole moments. Figure 9
depicts the corresponding results. Phase-dependent behavior
of the final populations is still observed in the sequentially
coupled dipolar system, although the suppression of direct
two-photon coupling reduces � by about an order of magni-
tude.

Investigating now the role of the two-photon coupling
related to �24 in isolation, we consider a nonpolar system by
assuming � j j =0, 1	 j	4. The results of the corresponding
simulations are illustrated in Fig. 10. Again the most impor-
tant observation is that phase sensitivity is still present in the
nonpolar system, which means this behavior can be induced
by direct overtone coupling irrespective of its origin. In more
detail, the reduced dependence of � on fh seen in panel �a� as
compared with the corresponding results for the full dipolar
Hamiltonian in Fig. 7 could be understood on the basis of the
RWA analysis, where we have shown that the inclusion of
permanent dipole moments leads to much stronger diabatic
coupling and therefore the possibility of enhanced phase ef-
fects. The results in panel �b�, which suggest a partial in-
crease of the phase sensitivity in the nonpolar system relative
to the full dipolar one, cannot be understood on the basis of
the analysis within the RWA, although based on more ex-
tended results of the full simulations, we will address this
problem in a heuristic interpretation in terms of interference
effects.

So far the discussion suggests that the phenomenon of
phase-sensitive final populations is caused both by the non-
zero permanent dipole moments as well as by the existing
two-photon coupling related to �24, and that it would also
exist for nonpolar systems with sufficiently strong overtone
coupling. The overall effect for the full system bearing both

these characteristic features then must result from a superpo-
sition of the individual effects, which would be sensitive to
interference. At this point we note that for a system, which
includes neither the direct two-photon coupling �20�↔ �40�
nor nonzero � j j, we find no phase-dependent behavior what-
soever.

The results from the full simulations suggest a heuristic
interpretation of phase-sensitive behavior as arising from a
two- �or more-� path situation, where the target states are
accessible by different mechanisms, either sequentially or via
multiphoton-overtone transitions. Interference effects associ-
ated with this situation will give rise to an oscillatory behav-
ior of � as observed, in particular, with respect to its depen-
dence on fps. The observed decrease of � for the full system
as compared with the nonpolar one then has an explanation
as an interference effect, which �fortuitously� happens to be
weakly destructive at the specific conditions in question. In-
deed we find that the relative magnitudes of � for the three
cases �full Hamiltonian versus � j j =0 vs �24=0� can be to-
tally different for different frequency combinations away
from the �1+1�-on-resonance case.

C. Off-resonant frequencies: Robustness
and the signatures of phase sensitivity

In order to explore the full extent of phase sensitivity, we
now extend our simulations to off-resonant frequencies. Con-
trary to the previous sections, this means that �P and �S are
used to explore the full frequency scale and are no longer
fixed to the �1+1� zero-order resonance values. We keep
the system parameters fixed as those of the 3:2-4LS with
fh=1.0963, which is a case that gave a particularly large
value of � for the �1+1�-on-resonance situation.

These simulations will reveal how robust the transfer
remains if phase sensitivity arises in a STIRAP-like setup. In
Fig. 11 we present contour plots of final target populations in

FIG. 9. As Fig. 7, but with the overtone coupling �24 set to zero. FIG. 10. As Fig. 7, but with the dipole moments � j j set to zero.
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the ��P ,�S� plane for the phase fixed as �=0. Panels �a�–�c�
show in turn the total transfer probability, i.e., the sum of the
�1+1�- and �1+2�-transfer probabilities, relating to the ro-
bustness of the overall transfer process, and the two indi-
vidual contributions, indicating the properties of target state
branching. Note in these plots we adopt a wave number rep-
resentation in order to emphasize the extent of robustness in
an experimental context. The remarkably large range of com-
plete or near complete population transfer to the “products”
shows that the usual robustness of �1+1�-STIRAP still pre-
vails, and suggests STIRAP could be a useful technique for
molecular isomerization reactions �see Ref. 20 for a similar
conclusion�. We find that contour plots for different fixed
values of � have the same appearance, indicating that the
assumption �3=�4 is valid over the entire range spanned by
the plot, so that it is just the product branching ratio that is
affected by any phase sensitivity.

This latter point is more clearly seen in panels �b� and
�c� of Fig. 11, which demonstrate that the range of robust
�1+1� transfer is the more extended one. Most intriguingly,
however, there is a range of balanced rapidly oscillatory
change of the populations near the center of the two plots,
which is the signature of phase sensitivity in a situation with-
out phase variation. For both plots we have �=0 �and similar,

but clearly shifted patterns are obtained for different fixed
values of ��. Locally �in time� for a field obtained by super-
position of two pulses with different frequencies, a slight
change of one of the frequencies has an effect similar to a
slight variation of its phase, so that in the range of phase
sensitivity, frequency variation in some sense emulates phase
variation. We also observe transitional ranges where the
phase dependence is weak, so that target superpositions with
“phase-stable” branching ratio are formed.

The oscillatory effect in the phase-sensitive range is
more dramatically demonstrated in Fig. 12, where we zoom
into the oscillatory range around the �1+1�-on-resonance fre-
quencies change, for demonstration purposes only, to �
=� /8, and superimpose the populations of the target states
�30� and �40� such that each of the two colors �gray versus
black� corresponds to a population of more than 50% in one
of the states �noting also that the total transfer probability is
close to 100% throughout this range�. The oscillations are the
clear signatures of phase sensitivity in a setup without phase
variation. The �1+1�-on-resonance case, serving as our ref-
erence in the RWA investigations, lies well within the sen-
sible range. We note that the phase effects may be even

FIG. 12. Contour plot with the individual target populations of the �1+1�
and �1+2� processes superimposed. System and pulse parameters are as in
Fig. 11, except that we zoom into the central frequency range and set the
phase at �=� /8. Gray areas: �1+1�-STIRAP dominates, �50% population
in �30�; black areas: �1+2�-STIRAP dominates, �50% population in �40�.
The strong frequency-dependent oscillations indicate the phase sensitivity of
the target populations. The points marked O and A denote, respectively, the
�1+1�-on-resonance frequencies and the point of maximum phase sensitiv-
ity �see Fig. 13�.

FIG. 13. Explicit phase dependence of target state populations for selected
frequency pairs from Fig. 12. Panel �a�: On resonance case, point O of Fig.
12. Panel �b�: Complete phase-dependent target level switching is observed
at slightly off-resonant conditions, point A of Fig. 12.

FIG. 11. Contour plots of the final target populations in
the 3:2-4LS with fh=1.0963 �this value maximizes the
phase sensitivity; see also Fig. 7�, standard pulse pa-
rameters, phase �=0. Panel �a�: Total target population
from �1+1� and �1+2� processes. The crosses mark the
�1+1�- and �1+2�-on-resonance frequencies. Panel �b�:
�1+1�-STIRAP to target state �30�; the cross marks the
�1+1�-on-resonance frequencies. Panel �c�:
�1+2�-STIRAP to target state �40�; the cross marks the
�1+2�-on-resonance frequencies.
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larger in certain off-resonant situations, indicated by an even
more pronounced oscillatory character of the target popula-
tions. Indeed at the point marked A we find that the phase
sensitivity assumes its maximum �=1, so that upon varia-
tion of � the populations of the target states oscillate between
0 and 1. In Fig. 13 we show the explicit phase dependence at
the on-resonance point O, where � is about 60%, and at
point A with its complete phase-induced level switching.

V. SUMMARY AND CONCLUSIONS

In this paper we provide means for understanding the
role of the relative phase in STIRAP-like transport processes
in a molecular extended � system. To this end we use a
dressed state representation within the RWA to display the
system’s dynamics. This adiabatic approach proved to be
more advantageous than a perturbative treatment of the
dynamics,16 which up to third order shows no phase depen-
dence in the populations. Furthermore, we augment the ana-
lytical treatment with numerical simulations using the full
semiclassical Hamiltonian without any further approxima-
tions.

In the RWA treatment we find that only two of the
dressed states contribute to the state vector, each coinciding
finally with one of the two target states. The mechanism for
creating a certain superposition of the target states can thus
be identified with nonadiabatic coupling among these two
dressed states. In particular, phase sensitivity of the target
state branching has been shown to arise as a result of phase-
dependent diabatic transitions controlled by the anharmonic-
ity of the energy level structure on the target side, the
pump:Stokes ratio and the field strength.

However, this dependence of diabatic coupling on the
relative phase only arises if �different� nonzero diagonal el-
ements of the dipole matrix are included. As this inclusion
formally leads to an additional two-photon coupling in con-
nection with the nonzero dipole matrix element �24, we in-
terpret phase-dependent behavior as a consequence of both
nonzero two-photon coupling of the states �20�↔ �40� and of
differences in the permanent dipole moments of the initial,
intermediate, and target states.

Comparing the RWA results with those from numerical
simulations, we find that the implications of the analytical
treatment can be carried over to the full Hamiltonian. Al-
though the phase sensitivity detected in these computer
simulations turns out to be considerably stronger, and to
cover a distinctly larger region in parameter space, the quali-
tative behavior as well as the effects obtained in these calcu-
lations are in accord with the conclusions drawn from the
RWA treatment. The observed deviations and, in particular,
the limits of validity of these comparisons can be understood
on the basis of the simplifications and additional approxima-
tions inherent in the RWA. The more extended scope of the
numerical simulations permits a heuristic interpretation of
the phase effects on a different level of phenomenology,
namely, as arising from interferences in a two-path situation,

where the lower target state can be accessed either sequen-
tially or via direct overtone coupling �which may be dipole
assisted�.

We have thus shown that this novel phenomenon of
phase sensitivity in STIRAP-like transport processes taking
place in systems relevant, e.g., for the study of chemical
reactions arises as a consequence of fundamental properties
of general molecular systems such as permanent dipole mo-
ment and direct n-photon couplings, i.e., by admitting sys-
tems that do not obey the strict symmetry rules of the stan-
dard STIRAP ansatz. We have also been able to qualitatively
understand important aspects of these processes on the basis
of an analysis carried out within the RWA.
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