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Inseparability Criterion for Continuous Variable Systems
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An inseparability criterion based on the total variance of a pair of Einstein-Podolsky-Rosen type op-
erators is proposed for continuous variable systems. The criterion provides a sufficient condition for
entanglement of any two-party continuous variable states. Furthermore, for all Gaussian states, this cri-
terion turns out to be a necessary and sufficient condition for inseparability.
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It is now believed that quantum entanglement plays an
essential role in all branches of quantum information the-
ory [1]. A problem of great importance is then to check
if a state, generally mixed, is entangled or not. Concern-
ing this problem, Peres proposed an inseparability crite-
rion based on partial transpose of the composite density
operator [2], which provides a sufficient condition for en-
tanglement. This criterion was later shown by Horodecki
to be a necessary and sufficient condition for inseparabil-
ity of the (2 3 2)- or (2 3 3)-dimensional states, but not
to be necessary any more for higher-dimensional states
[3,4]. Many recent protocols for quantum communication
and computation are based on continuous variable quan-
tum systems [5–11], and the continuous variable optical
system has been used to experimentally realize the un-
conditional quantum teleportation [12]. Hence, it is de-
sirable to know if a continuous variable state is entangled
or not.

In this paper, we propose a simple inseparability crite-
rion for continuous variable states. The criterion is based
on the calculation of the total variance of a pair of Einstein-
Podolsky-Rosen (EPR) type operators. We find that, for
any separable continuous variable states, the total variance
is bounded from below by a certain value resulting from
the uncertainty relation, whereas for entangled states this
bound can be exceeded. So, violation of this bound pro-
vides a sufficient condition for inseparability of the state.
We then investigate how strong the bound is for the set of
Gaussian states, which is of great practical importance. It
is shown that for a Gaussian state, the compliance with the
low bound by a certain pair of EPR type operators guar-
antees that the state has a P representation with positive
distribution, so the state must be separable. Hence we ob-
tain a necessary and sufficient inseparability criterion for
all of the Gaussian continuous variable states.

We say a quantum state r of two modes 1 and 2 is sepa-
rable if, and only if, it can be expressed in the following
form:

r �
X

i

piri1 ≠ ri2 , (1)
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where we assume ri1 and ri2 to be normalized states of
the modes 1 and 2, respectively, and pi $ 0 to satisfyP

i pi � 1.
A maximally entangled continuous variable state can be

expressed as a co-eigenstate of a pair of EPR type op-
erators [13], such as bx1 1 bx2 and bp1 2 bp2. Therefore,
the total variance of these two operators reduces to zero
for maximally entangled continuous variable states. Of
course, the maximally entangled continuous variable states
are not physical, but for the physically entangled continu-
ous variable states—the two-mode squeezed states [14]—
this variance will rapidly tend to zero by increasing the
degree of squeezing. Interestingly, we find that, for any
separable state, there exists a lower bound to the total vari-
ance. To be more general, we consider the following type
of EPR-like operators:

bu � jajbx1 1
1
a

bx2 , (2a)

by � jajbp1 2
1
a

bp2 , (2b)

where we assume a is an arbitrary (nonzero) real num-
ber. For any separable state, the total variance of any pair
of EPR-like operators in the form of Eqs. (2a) and (2b)
should satisfy a lower bound indicated by the following
theorem:

Theorem 1.–Sufficient criterion for inseparability: For
any separable quantum state r, the total variance of a
pair of EPR-like operators defined by Eqs. (2a) and (2b)
with the commutators �bxj , bpj0� � idjj0 � j, j0 � 1, 2� satis-
fies the inequality

��Dbu�2�r 1 ��Dby�2�r $ a2 1
1
a2 . (3)

Proof.—We can directly calculate the total variance
of the bu and by operators using the decomposition (1)
of the density operator r, and finally get the following
expression:
© 2000 The American Physical Society



VOLUME 84, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 20 MARCH 2000
��Dbu�2�r 1 ��Dby�2�r �
X

i

pi��bu2�i 1 �by2�i� 2 �bu�2
r 2 �by�2

r

�
X

i

pi

µ
a2�bx2

1�i 1
1
a2 �bx2

2�i 1 a2�bp2
1�i 1

1
a2 �bp2

2�i

∂

1 2
a
jaj

√X
i

pi�bx1�i�bx2�i 2
X

i

pi�bp1�i�bp2�i

!
2 �bu�2

r 2 �by�2
r

�
X

i

pi

µ
a2��Dbx1�2�i 1

1
a2 ��Dbx2�2�i 1 a2��Dbp1�2�i 1

1
a2 ��Dbp2�2�i

∂

1
X

i

pi�bu�2
i 2

√X
i

pi�bu�i

!2

1
X

i

pi�by�2
i 2

√X
i

pi�by�i

!2

. (4)
In Eq. (4), the symbol �· · ·�i denotes the average
over the product density operator ri1 ≠ ri2. It follows
from the uncertainty relation that ��Dbxj�2�i 1 ��Dbpj�2�i $

j�bxj , bpj�j � 1 for j � 1, 2, and, moreover, by applying
the Cauchy-Schwarz inequality �

P
i pi� �

P
i pi�bu�2

i � $

�
P

i pij�bu�ij�2, we know that the last line of Eq. (4) is
bounded from below by zero. Hence, the total variance
of the two EPR-like operators bu and by is bounded from
below by a2 1

1
a2 for any separable state. This completes

the proof of the theorem.
Note that this theorem in fact gives a set of inequalities

for separable states. The operators bxj , bpj � j � 1, 2� in
the definition (1) can be any local operators satisfying the
commutators �bxj , bpj0� � idjj0. In particular, if we apply an
arbitrary local unitary operation U1 ≠ U2 to the operatorsbu and by, the inequality (3) remains unchanged. Note also
that without loss of generality we have taken the operators
xj and pj dimensionless.

For inseparable states, the total variance of the bu andby operators is required by the uncertainty relation to be
larger than or equal to ja2 2

1
a2 j , which reduces to zero for

a � 1. For separable states the much stronger bound given
by Eq. (3) must be satisfied. A natural question is then
how strong is the bound. Is it strong enough to ensure that,
if some inequality in the form of Eq. (3) is satisfied, the
state necessarily becomes separable? Of course, it will be
very difficult to consider this problem for arbitrary contin-
uous variable states. However, in recent experiments and
protocols for quantum communication [5–12], continuous
variable entanglement is generated by two-mode squeez-
ing or by beam splitters, and the communication noise
results from photon absorption and thermal photon emis-
sion. All of these processes lead to Gaussian states. So,
we will limit ourselves to consider Gaussian states, which
are of great practical importance. We find that the in-
equality (3) indeed gives a necessary and sufficient insepa-
rability criterion for all of the Gaussian states. To present
and prove our main theorem, we need first mention some
notations and results for Gaussian states.

It is convenient to represent a Gaussian state by its
Wigner characteristic function. A two-mode state with the
density operator r has the following Wigner characteristic
function [14]:

x �w��l1, l2� � tr� r exp�l1ba1 2 l�
1bay

1 1 l2ba2 2 l�
2bay

2 ��

� tr� r exp�i
p

2 �lI
1bx1 1 lR

1 p1 1 lI
2bx2

1 lR
2 bp2��	 , (5)

where the parameters lj � l
R
j 1 ilI

j , and the annihila-
tion operators baj � 1

p
2

�bxj 1 ibpj�, with the quadrature
amplitudes bxj , bpj satisfying the commutators �bxj , bpj0� �
idjj0 � j, j0 � 1, 2�. For a Gaussian state, the Wigner char-
acteristic function x �w��l1, l2� is a Gaussian function of
l

R
j and l

I
j [14]. Without loss of generality, we can write

x �w��l1, l2� in the form
x �w��l1, l2� � exp

∑
2

1
2

�lI
1, lR

1 , lI
2, lR

2 �M�lI
1, lR

1 , lI
2, l

R
2 �T

∏
. (6)
In Eq. (6), linear terms in the exponent are not included
since they can be easily removed by some local displace-
ments of bxj , bpj and thus have no influence on separability
or inseparability of the state. The correlation property of
the Gaussian state is completely determined by the 4 3 4
real symmetric correlation matrix M, which can be ex-
pressed as

M �

µ G1 C

CT G2

∂
, (7)pt
where G1, G2, and C are 2 3 2 real matrices. To study the
separability property, it is convenient to first transform the
Gaussian state to some standard forms through local linear
unitary Bogoliubov operations (LLUBOs) Ul � U1 ≠ U2.
In the Heisenberg picture, the general form of the LLUBO
Ul is expressed as Ul�bxj , bpj�TU

y
l � Hj�bxj , bpj�T for j �

1, 2, where Hj is some 2 3 2 real matrix with detHj � 1.
Any LLUBO is obtainable by combining the squeezing
transformation together with some rotations [15]. We have
2723
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the following two lemmas concerning the standard forms
of the Gaussian state.

Lemma 1.—Standard form I: Any Gaussian state rG

can be transformed through LLUBOs to the standard form
I with the correlation matrix given by

MI
s �

0BB@
n c

n c0

c m
c0 m

1CCA, �n, m $ 1� . (8)

Proof.—A LLUBO on the state rG transforms the cor-
relation matrix M in the Wigner characteristic function in
the following way:µ

V1
V2

∂
M

µ
VT

1
VT

2

∂
, (9)

where V1 and V2 are real matrices with detV1 � detV2 �
1. Since the matrices G1 and G2 in Eq. (7) are real
symmetric, we can choose first a LLUBO with orthogonal
V1 and V2 which diagonalize G1 and G2, and then a local
squeezing operation which transforms the diagonalized
G1 and G2 into the matrices G0

1 � nI2 and G0
2 � mI2,

respectively, where I2 is the 2 3 2 unit matrix. After these
two steps of operations, we assume that the matrix C in
Eq. (7) is changed into C0, which always has a singular
value decomposition; thus it can be diagonalized by
another LLUBO with suitable orthogonal V1 and V2. The
last orthogonal LLUBO no longer influences G0

1 and G0
2

since they are proportional to the unit matrix. Hence, any
Gaussian state can be transformed by three-step LLUBOs
to the standard form I. The four parameters n, m, c, and
c0 in the standard form I are related to the four invariants
detG1, detG2, detC, and detM of the correlation matrix
under LLUBOs by the equations detG1 � n2, detG2 �
m2, detC � cc0, and detM � �nm 2 c2� �nm 2 c0 2�,
respectively.

Lemma 2.—Standard form II: Any Gaussian state rG

can be transformed through LLUBOs into the standard
form II with the correlation matrix given by

MII
s �

0BB@
n1 c1

n2 c2
c1 m1

c2 m2

1CCA , (10)

where the ni , mi , and ci satisfy

n1 2 1
m1 2 1

�
n2 2 1
m2 2 1

, (11a)

jc1j 2 jc2j �
q

�n1 2 1� �m1 2 1�

2

q
�n2 2 1� �m2 2 1� . (11b)

Proof.—Any Gaussian state can be tranformed through
LLUBOs to the standard form I. We then apply two ad-
ditional local squeezing operations on the standard form I,
and get the state with the following correlation matrix:
2724
M 0 �

0BBBBB@
nr1

p
r1r2 c

n
r1

c0

p
r1r2p

r1r2 c mr2
c0

p
r1r2

m
r2

1CCCCCA , (12)

where r1 and r2 are arbitrary squeezing parameters. M 0

in Eq. (12) has the standard form MII
s (10) if r1 and r2

satisfy the following two equations:
n
r1

2 1

nr1 2 1
�

m
r2

2 1

mr2 2 1
, (13)

p
r1r2 jcj 2

jc0j
p

r1r2
�

q
�nr1 2 1� �mr2 2 1�

2

sµ
n
r1

2 1

∂ µ
m
r2

2 1

∂
. (14)

Our task remains to prove that Eqs. (13) and (14) are
indeed satisfied by some positive r1 and r2 for arbitrary
Gaussian states. Without loss of generality, we assume
jcj $ jc0j and n $ m. From Eq. (13), r2 can be ex-
pressed as a continuous function of r1 with r2�r1 � 1� �
1 and r2�r1�

r1!`
!m. Substituting this expression

r2�r1� into Eq. (14), we construct a function f�r1�
by subtracting the right-hand side of Eq. (14) from
the left-hand side, i.e., f�r1� � left�14� 2 right�14�.
Obviously, f�r1 � 1� � jcj 2 jc0j $ 0, and f�r1� r1!`

!
p

r1m �jcj 2

q
n�m 2

1
m � � # 0, where the inequality

jcj #

q
n�m 2

1
m � results from the physical con-

dition ��Dbu0�2� 1 ��Dby0�2� $ j�bu0, by0�j with bu0 �q
m 2

1
m bx1 2

c
jcj

p
n bx2 and by0 �

p
n

m bp2. It follows from
continuity that there must exist a r�

1 [ �1, `� which makes
f�r1 � r�

1 � � 0. Therefore Eqs. (13) and (14) have at
least one solution. This proves lemma 2.

We remark that, corresponding to a given standard form
I or II, there is a class of Gaussian states which is equivalent
under LLUBOs. Note that separability or inseparability is
a property not influenced by LLUBOs, so all of the Gauss-
ian states with the same standard forms have the same
separability or inseparability property. With the above
preparations, we now present the following main theorem:

Theorem 2.—Necessary and sufficient inseparability
criterion for Gaussian states: A Gaussian state rG is
separable if, and only if, when expressed in its standard
form II, the inequality (3) is satisfied by the following two
EPR type operators

bu � a0bx1 2
c1

jc1j

1
a0

bx2 , (15a)

by � a0 bp1 2
c2

jc2j

1
a0

bp2 , (15b)
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where a2
0 �

q
m121
n121 �

q
m221
n221 .

Proof.—The “only if” part follows directly from theo-
rem 1. We only need to prove the “if” part. From lemma 2,
we can first transform the Gaussian state through LLUBOs
to the standard form II. The state after transformation is
denoted by r

II
G . Then, substituting the expressions (15a)

and (15b) of bu and by into the inequality (3), and calcu-
lating ��Dbu�2� 1 ��Dby�2� by using the correlation matrix
MII

s , we get the following inequality:

a2
0

n1 1 n2

2
1

m1 1 m2

2a2
0

2 jc1j 2 jc2j $ a2
0 1

1

a2
0

,

(16)

which, combined with Eqs. (11), yields

jc1j #

q
�n1 2 1� �m1 2 1� , (17a)

jc2j #

q
�n2 2 1� �m2 2 1� . (17b)

The inequalities (17a) and (17b) ensures that the matrix
MII

s 2 I is positive semidefinite. So there exists a Fourier
transformation to the following normal characteristic func-
tion of the state r

II
G :

x
�n�
II �l1, l2� � x

�w�
II �l1, l2� exp

∑
1
2

�jl1j
2 1 jl2j

2�
∏

� exp

∑
2

1
2

�lI
1, lR

1 , lI
2, lR

2 � �MII
s 2 I�

3 �lI
1, lR

1 , lI
2, lR

2 �T

∏
. (18)

This means that r
II
G can be expressed as

rII
G �

Z
d2a d2b P�a, b� ja, b� �a, bj , (19)

where P�a, b� is the Fourier transformation of
x

�n�
II �l1, l2� and thus is a positive Gaussian function.

Equation (19) shows r
II
G is separable. Since the original

Gaussian state rG differs from r
II
G by only some LLU-

BOs, it must also be separable. This completes the proof
of theorem 2.

Now we have a necessary and sufficient inseparability
criterion for all of the Gaussian states. We conclude
the paper by applying this criterion to a simple ex-
ample. Consider a two-mode squeezed vacuum state
e2r�ây

1 â
y

2 2â1â2�jvac� with the squeezing parameter r .
This state has been used in recent experiments for con-
tinuous variable quantum teleportation [12]. Suppose
that the two optical modes are subject to indepen-
dent thermal noise during transmission with the same
damping coefficient denoted by h and the same mean
thermal photon number denoted by n. It is easy to
show that, after time t, the standard correlation matrix
for this Gaussian state has the form of Eq. (8) with
n � m � cosh�2r�e22ht 1 �2n 1 1� �1 2 e22ht� and
c � 2c0 � sinh�2r�e22ht [16]. Therefore the insepa-
rability criterion means that, if the transmission time t
satisfies

t ,
1

2h
ln

µ
1 1

1 2 e22r

2n

∂
, (20)

the state is entangled; otherwise it becomes separable. In-
terestingly, Eq. (20) shows that, if there is only vacuum
fluctuation noise, i.e., n � 0 (this seems to be a good ap-
proximation for optical frequency), the initial squeezed
state is always entangled. This result does not remain
true if thermal noise is present. In the limit n ¿ 1, the
state is no longer entangled when the transmission time
t $

12e22r

4hn .
Note added.—After submission of this work, we be-

came aware of a recent preprint by R. Simon (quant-ph/
9909044), which shows that the Peres-Horodecki crite-
rion also provides a necessary and sufficient condition for
inseparability of Gaussian continuous variable quantum
states.
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