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The paper presents numerical models describing transformation based perfect lenses and corners for

flexural waves propagating in thin elastic plates. We show that complementary media can be designed

to cancel out the elastic space, in a way similar to what Pendry and Ramakrishna (2003) [1] proposed

for the optical space.
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1. Introduction

Transformation based electromagnetic media allow for an
unprecedented control of the propagating and evanescent
components of the electromagnetic field [1–4]. However, the
Navier equations which govern the propagation of elastic waves
do not generally retain their form under geometric transforms: for
instance elastic cloaks generally require metamaterials beyond
Newton’s laws [5], as the pressure and shear waves are inherently
coupled [6]. Nevertheless, in the specific case of thin elastic plates,
flexural waves are governed by the biharmonic equation which
behaves nicely under geometric transforms [7].
2. Geometric transform and biharmonic equation

The equation governing the propagation of bending waves in
(possibly anisotropic and heterogeneous) thin-plates involves a
fourth order differential equation [8]. The main assumption is that
the working wavelength l is supposed to be large enough
compared to the thickness of the plate h and small compared to
its in-plane dimension L, i.e. h5l5L. With all the above
assumptions, the out-of-plane displacement u¼ ð0;0;Uðx1; x2ÞÞ

along the vertical direction x3 satisfies

lrðz�1
rðlrðz�1

rUÞÞÞ � b4
0U ¼ 0; ð1Þ

with b4
0 ¼o2r0h=D0, where D0 is the flexural rigidity of the plate,

r0 its density and h its thickness. z is a diagonal rank-2 tensor

describing and l is a varying coefficient of the material, a case
encompassed in Ref. [8].
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Importantly, physical considerations based on dimensional
analysis show that this equation retains its form under geometric
transform provided that

z2
¼ E�1 and l2

¼ r�1; ð2Þ

where E has the physical dimension of a Young modulus and r is

a scalar density as shown in Ref. [7].

2.1. Perfect lenses and complementary media

The original ‘perfect lens’ presupposed a uniform slab of
isotropic material with dielectric permittivity e¼ � 1 and
magnetic permeability m¼ � 1. However, focussing will occur
under more general conditions [1]. Any system for which

e1 ¼ þeðx2Þ; m1 ¼ þmðx2Þ; � dox1o0;

e2 ¼ � eðx2Þ; m2 ¼ � mðx2Þ; 0ox1od ð3Þ

will show identical focussing. Focussing will always occur
irrespective of the medium in which the lens is embedded. This
is true for any medium which is mirror antisymmetric about a
plane, such as checkerboards [5]. A negatively refracting medium
is complementary to an equal thickness of vacuum and optically
‘cancels’ its presence. The compensating action extends to both
the evanescent and the propagating modes [1]. It can be shown
using geometric transforms that such complementary media fold
the optical space onto itself [9,10]. However, the biharmonic wave
equation retains its form under geometric transform, in a way
similar to the harmonic wave equation [7]. This property forms
the basis of the following discussion.

In the case of thin-elastic plates, complementary media are
such that

z1 ¼ þzðx2Þ; l1 ¼ þlðx2Þ; � dox1o0;

z2 ¼ � zðx2Þ; l2 ¼ � lðx2Þ; 0ox1od: ð4Þ
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If we now consider a heterogeneous anisotropic thin plate
described by

z1 ¼
z11 z12

z21 z22

 !
ðx2Þ; l1 ¼ þlðx2Þ; � dox1o0; ð5Þ

then the resulting complementary medium is given by

z2 ¼
�z11 þz12

þz21 �z22

 !
ðx2Þ; l2 ¼ � lðx2Þ; 0ox1od: ð6Þ

2.2. Perfect corners arranged in a checkerboard fashion

Among the large class of optical systems built by sticking
together complementary media are corner lenses, or perfect
corner reflectors. In two dimensions, they are obtained by
mapping a 1D photonic crystal onto a chessboard like structure
via a change from Cartesian to polar coordinates, as first
Fig. 1. (Color online) Perfect lens of width 1 symmetric about the middle vertical segm

l¼ 0:315 located in the plane x1 ¼ � 0:8, displays a ghost image in the plane around x1

E¼ � 0:95 and density r¼ � 0:95. The slab lens is surrounded by an infinite elastic ma

highest values on that color scale); (b) plot of jRfUgj (blue means zero and red highes

Fig. 2. (Color online) Perfect corner: a point force generating a concentric flexural wav

ðx1 ; x2Þ ¼ ð�0:3;0:6Þ, a perfect image at ðx1; x2Þ ¼ ð�0:3;�0:6Þ and a second ghost image

sidelength 1.5. The Young modulus and density in the upper right and lower left regions

regions E¼ 0:1 and r¼ 1. (a) Plot of RfUg (green means zero, and red and blue highest va

on that color scale). The plate thickness is h¼ 1.
demonstrated by Pendry and Ramakrishna in Ref. [1]. These
represent very singular situations (including plasmons at the
interface between complementary media associated with diver-
gent series [11]) whereby the optical space can be folded back
onto itself in all three dimensions, as shown in Ref. [3]. Similar
physics actually applies to thin elastic plates made of comple-
mentary media, as we now illustrate with numerics.
3. Numerical illustrations

We have implemented the weak form of Eq. (1) in the Finite
Element software COMSOL. We used specially designed perfectly
matched layers for flexural waves to model the infinite domain.
Our computations reported in Figs. 1 and 2 show that
electromagnetic paradigms such as the perfect lens or perfect
corners can be also achieved in the context of flexural waves.
We note the strong oscillations of the field U on the interface
ent at x1 ¼ 0: a point force generating a concentric flexural wave of wavelength

¼ � 0:2 and a perfect image close to x1 ¼ 1:2 through a slab lens of Young modulus

terial with E¼ 0:1 and r¼ 1. (a) Plot of RfUg (green means zero, and red and blue

t values on that color scale). The plate thickness is h¼ 1.

e of wavelength l¼ 0:315 located at ðx1; x2Þ ¼ ð0:3;0:6Þ; displays a ghost image at

at ðx1 ; x2Þ ¼ ð0:3;�0:6Þ through a corner reflector alternating four elastic regions of

are respectively E¼ � 0:95 and r¼ � 0:95, while in the upper left and lower right

lues on that color scale); (b) plot of jRfUgj (blue means zero and red highest values
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x1 ¼ � 0:5 close to the source. We note that the white color stands
for saturated values in Figs. 1 and 2 i.e. appears where the field
magnitude lies outside the range of values selected for the color
scales.
4. Conclusion

In this paper, we have extended the design of negatively
refracting electromagnetic metamaterials to the area of bending
waves propagating at the surface of elastic thin-plates with
negative density and Young modulus (which could be obtained
via homogenization of locally resonant structures). Our proposal
is an alternative to the design of transformation based elastic
metamaterials within which pressure and shear elastodynamic
waves are in general fully coupled [5,7]. We hope it will foster
research efforts in these directions.
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