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Unified approach to the classical statistical analysis of small signals
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We give a classical confidence belt construction which unifies the treatment of upper confidence limits for
null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem
~apparently not previously recognized! that the choice of upper limit or two-sided intervals leads to intervals
which are not confidence intervals if the choice is based on the data. We apply the construction to two related
problems which have recently been a battleground between classical and Bayesian statistics: Poisson processes
with background and Gaussian errors with a bounded physical region. In contrast with the usual classical
construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism~frequentist coverage greater than the stated
confidence! in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We
generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We
show that this technique both gives correct coverage and is powerful, while other classical techniques that have
been used by neutrino oscillation search experiments fail one or both of these criteria.
@S0556-2821~98!00109-X#

PACS number~s!: 06.20.Dk, 14.60.Pq
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I. INTRODUCTION

Classical confidence intervals are the traditional way
which high energy physicists report errors on results of
periments. Approximate methods of confidence interval c
struction, in particular the likelihood-ratio method, are oft
used in order to reduce computation. When these approx
tions are invalid, true confidence intervals can be obtai
using the original~defining! construction of Neyman@1#. In
recent years, there has been considerable dissatisfaction
the usual results of Neyman’s construction for upper co
dence limits, in particular when the result is an unphysi
~or empty set! interval. This dissatisfaction led the Partic
Data Group~PDG! @2# to describe procedures for Bayesia
interval construction in the troublesome cases: Poisson
cesses with background and Gaussian errors with a bou
physical region.

In this paper, we use the freedom inherent in Neyma
construction in a novel way to obtain a unified set of clas
cal confidence intervals for setting upper limits and quot
two-sided confidence intervals. The new element is a part
lar choice of ordering, based on likelihood ratios, which
substitute for more common choices in Neyman’s constr
tion. We then obtain confidence intervals which are ne
unphysical or empty. Thus they remove an original motiv
tion for the description of Bayesian intervals by the PDG

Moreover, we show below that commonly quoted con
dence intervals are wrongmore than allowed by the state
confidenceif ~as is typical! one uses the experimental data
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decide whether to consult confidence interval tables for
per limits or for central confidence intervals. In contrast, o
unified set of confidence intervals satisfies~by construction!
the classical criterion of frequentist coverage of the unkno
true value. Thus the problem of wrong confidence interv
is also solved.

Our intervals also effectively decouple the calculation
intervals from the test of goodness-of-fit, which is desira
but in fact not the case for traditional classical upper lim
calculations.

After developing the new intervals for the two prototyp
cal 1D problems, we generalize them for use in the analy
of experiments searching for neutrino oscillations, contin
ing to adhere to the Neyman construction.

In Sec. II, we review and contrast Bayesian and class
interval construction. In Sec. III, we review the troublesom
cases of Poisson processes with background and Gau
errors with a bounded physical region. We introduce the u
fying ordering principle in Sec. IV, and apply it to the pre
viously discussed problems. In Sec. V, we generalize
method for use in neutrino oscillation searches, and comp
it to other classical methods. Finally, in Sec. VI, we intr
duce an additional quantity helpful in describing experime
which observe less background than expected. We conc
in Sec. VII.

We adopt the following notation: the subscriptt on a
parameter means the unknown true value; the subscri
means a particular measured value obtained by an exp
ment. Thus, for example,m is a parameter whose true valu
m t is unknown;n0 is the particular result of an experimen
which measures the number of events,n. For most of our
discussion, we use for illustration 90% confidence le
~C.L.! confidence intervals on a single parameterm. The C.L.
is more generally calleda.
3873 © 1998 The American Physical Society
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II. BAYESIAN AND CLASSICAL INTERVAL
CONSTRUCTIONS

A. Bayesian intervals

Although our approach is classical, it is worthwhile
review Bayesian intervals since we find that misconcepti
about classical intervals can have their roots in misinterp
ing them as Bayesian intervals. For advocacy of Bayes
intervals in high energy physics, see, for example, R
@3, 4#.

Suppose that we wish to make an inference about a
rameterm whose true valuem t is unknown. Assume that we
do this by making a single measurement of an observabx
such that the probability density function~pdf! for obtaining
the valuex depends on the unknown parameterm in a known
way: we call this pdfP(xum) @5#. ~Note thatx need not be a
measurement ofm, though that is often the case;x just needs
to be some observable whose pdf depends onm.!

Now suppose that the single measurement ofx yields the
value x0 . One substitutes this value ofx into P(xum) to
obtainP(x0um), known as the likelihood function, which w
denoteL(x0um).

The Bayesian deems it sensible to speak of pdf’s for
unknown m t ; these pdf’s represent degree of belief abo
m t . One makes inferences using the ‘‘posterior’’ pdf, whi
is the conditional pdfP(m tux0) for the unknownm t , given
the resultx0 of the measurement. It is related toL by apply-
ing Bayes’s theorem. Bayes’s theorem in classical proba
ity says that the probability that an element is in both setA
andB is P(AuB)P(B)5P(BuA)P(A). Bayesians apply this
to pdf’s for m t , obtaining

P~m tux0!5L~x0um t!P~m t!/P~x0!. ~2.1!

Typically the denominator is just a normalization consta
and so the major issue is what to use forP(m t), which is
called the ‘‘prior’’ pdf. For the moment we assume that o
has the prior pdf, so that then one has the posterior pdf.

A Bayesian interval@m1 ,m2# corresponding to a confi
dence levela can be constructed from the posterior pdf
requiring

E
m1

m2
P~m tux0!dm t5a. ~2.2!

These intervals are more properly called ‘‘credible int
vals,’’ although the phrase ‘‘Bayesian confidence interva
is also used@6#. Note that there is freedom in thechoiceof
m1 depending on whether one desires an upper limit, low
limit, central interval, etc.

We believe that for making decisions, this Bayesian
scription of inference is probably how many scientists
~and should! think, and that the prior pdf one uses is typ
cally the subjectiveprior. One person’s subjective prior in
corporates all of that person’s personal beliefs as well as
results of previous experiments. Thus, values ofm which
contradict well-founded theoretical thinking are~properly!
given a low prior@7#.

There have been long-standing attempts to take the
jectivity out of the prior pdf, in order to have an ‘‘objective
Bayesian interval. One attempts to define a prior pdf wh
s
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represents prior ignorance or which is ‘‘non-informative
The naive choice of a uniform prior is not well defined for
continuous variable, since one must specify in what me
the prior is uniform; this is just as hard as specifying t
functional form in a particular given metric. For a parame
m which is restricted to@0,̀ #, a common non-informative
prior in the statistics literature@8,9# is P(m t)51/m t , which
corresponds to a uniform prior for lnmt . An alternative
@10,11# for the Poisson mean isP(m t)51/Am t. In contrast,
the PDG description is equivalent to using a prior which
uniform in m t . This prior has no basis that we know of i
Bayesian theory. It is based on the desire to have inter
which are conservative~see below! and somewhat robus
from a frequentist~anti-Bayesian! point of view.

In our view, the attempt to find a non-informative prio
within Bayesian inference is misguided. The real power
Bayesian inference lies in its ability to incorporate ‘‘info
mative’’ prior information, not ‘‘ignorance.’’ The interpreta
tion of Bayesian intervals based on uniform priors is vag
at best, since they may bear no relation either to subjec
Bayesian intervals of a typical scientist or to classical con
dence intervals which are probability statements based o
on P(xum).

B. Classical confidence intervals

Neyman’s original ‘‘confidence intervals’’@1# completely
avoid the concept of pdf’s inm t , and hence have no trouble
some prior. They are limited to statements derived fro
P(xum); in our experience this can lead to misinterpretatio
by those who mistakenly take them to be statements ab
P(m tux0). We believe that, compared to Bayesian interv
with an ‘‘objective prior,’’ confidence intervals provide th
preferred option for publishing numerical results of an e
periment in an objective way. However, it is critical not
interpret them as Bayesian intervals, i.e., as statements a
P(m tux0). Rather, a confidence interval@m1 ,m2# is a mem-
ber of a set, such that the set has the property that

P~mP@m1 ,m2# !5a. ~2.3!

Here m1 and m2 are functions of the measuredx, and Eq.
~2.3! refers to thevaryingconfidence intervals@m1 ,m2# from
an ensemble of experiments withfixedm. For a set of confi-
dence intervals, Eq.~2.3! is true for every allowedm. Thus,
in particular, the intervals contain thefixed unknownm t in a
fraction a of experiments. This is entirely different from th
Bayesian statement that the degree of belief thatm t is in
@m1 ,m2# is a.

If Eq. ~2.3! is satisfied, then one says that the interv
‘‘cover’’ m at the stated confidence, or equivalently, that
set of intervals has the correct ‘‘coverage.’’ If there is a
value ofm for which P(mP@m1 ,m2#),a, then we say that
the intervals ‘‘undercover’’ for thatm. Significant undercov-
erage for anym is a serious flaw. If there is any value ofm
for which P(mP@m1 ,m2#).a, then we say that the inter
vals ‘‘overcover’’ for that m. A set of intervals is called
‘‘conservative’’ if it overcovers for some values ofm while
undercovering for no values ofm. Conservatism, while no
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57 3875UNIFIED APPROACH TO THE CLASSICAL . . .
generally considered to be as serious a flaw as underco
age, comes with a price: loss of power in rejecting fa
hypotheses.

Our confidence intervals require the full power of Ne
man’s construction, which for one measured quantity a
one unknown parameter is called the method of ‘‘confide
belts’’ @10,12#. Figure 1 illustrates such a construction on
graph of the parameterm vs the measured quantityx. For
each value ofm, one examinesP(xum) along the horizontal
line throughm. One selects an interval@x1 ,x2# which is a
subset of this line such that

P~xP@x1 ,x2#um!5a. ~2.4!

Such intervals are drawn as horizontal line segments in
1, at representative values ofm. We refer to the interval
@x1 ,x2# as the ‘‘acceptance region’’ or the ‘‘acceptance
terval’’ for that m. In order to specify uniquely the accep
tance region, one mustchooseauxiliary criteria. One has
total freedom to make this choice,if the choice is not influ-
enced by the data x0 . The most common choices are

P~x,x1um!512a, ~2.5!

which leads to ‘‘upper confidence limits’’~which satisfy
P(m.m2)512a!, and

P~x,x1um!5P~x.x2um!5~12a!/2, ~2.6!

which leads to ‘‘central confidence intervals’’@which satisfy
P(m,m1)5P(m.m2)5(12a)/2#. For these choices, th
full confidence belt construction is rarely mentioned, sinc
simpler explanation suffices when one specifiesP(x,x1um)
and P(x.x2um) separately. For more complicated choice
which still satisfy the more general specification of Eq.~2.4!,
an ordering principle is needed to specify whichx’s to in-
clude in the acceptance region. We give our ordering p
ciple in Sec. IV.

FIG. 1. A generic confidence belt construction and its use.
each value ofm, one draws a horizontal acceptance interval@x1 ,x2#
such thatP(xP@x1 ,x2#um)5a. Upon performing an experiment t
measurex and obtaining the valuex0 , one draws the dashed vert
cal line throughx0 . The confidence interval@m1 ,m2# is the union
of all values ofm for which the corresponding acceptance interva
intercepted by the vertical line.
er-
e

d
e

g.

a

-

The construction is complete when horizontal accepta
intervals are drawn for each value ofm. Upon performing an
experiment to measurex and obtaining the valuex0 , one
draws a vertical line~shown as a dashed line in Fig. 1!
throughx0 on the horizontal axis. The confidence interval
the union of all values ofm for which the corresponding
horizontal interval is intercepted by the vertical line; typ
cally this is a simply connected interval@m1 ,m2#. When
displayed in texts, typically only the end points of the inte
vals are drawn, which collectively form the ‘‘confidenc
belt.’’

By construction, Eq.~2.3! is satisfied for allm; hence it is
satisfied form t , whose value is fixed but unknown.

III. EXAMPLES OF CLASSICAL INTERVALS

A. Gaussian with a boundary at the origin

Figures 2 and 3 show standard confidence belts~for upper
limits and central intervals, respectively! when the observ-

r FIG. 2. Standard confidence belt for 90% C.L. upper limits
the mean of a Gaussian, in units of the rms deviation. The sec
line in the belt is atx51`.

FIG. 3. Standard confidence belt for 90% C.L. central con
dence intervals for the mean of a Gaussian, in units of the
deviation.
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3876 57GARY J. FELDMAN AND ROBERT D. COUSINS
able x is simply the measured value ofm in an experiment
with a Gaussian resolution function with known fixed rm
deviations, set here to unity. I.e.,

P~xum!5
1

A2p
exp@2~x2m!2/2#. ~3.1!

We consider the interesting case where only non-nega
values form are physically allowed~for example, ifm is a
mass!. Thus, the graph does not exist form,0.

Although these are standard graphs, we believe that c
mon use of them is not entirely proper. Figure 2, construc
using Eq. ~2.5!, is appropriate for experimentswhen it is
determined before performing the experiment that an up
limit will be published. Figure 3, constructed using Eq.~2.6!,
is appropriate for experimentswhen it is determined befor
performing the experiment that a central confidence inter
will be published. However, it may be deemed more sensib
to decide,based on the results of the experiment, whether to
publish an upper limit or a central confidence interval.

Let us suppose, for example, that physicist X takes
following attitude in an experiment designed to measur
small quantity: ‘‘If the resultx is less then 3s, I will state an
upper limit from the standard tables. If the result is grea
than 3s, I will state a central confidence interval from th
standard tables.’’ We call this policy ‘‘flip-flopping’’ base
on the data. Furthermore, physicist X may say, ‘‘If my me
sured value of a physically positive quantity is negative
will pretend that I measured zero when quoting a confide
interval,’’ which introduces some conservatism.

We can examine the effect of such a flip-flopping poli
by displaying it in confidence-belt form as shown in Fig.
For each value of measuredx, we draw at thatx the vertical
segment@m1 ,m2# that physicist X will quote as a confidenc
interval. Then we can examine this collection of vertical co
fidence intervals to see what horizontal acceptance inter

FIG. 4. Plot of confidence belts implicitly used for 90% C.
confidence intervals~vertical intervals between the belts! quoted by
flip-flopping physicist X, described in the text. They are not va
confidence belts, since they can cover the true value at a frequ
less than the stated confidence level. For 1.36,m,4.28, the cov-
erage~probability contained in the horizontal acceptance interval! is
85%.
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it implies. For example, form52.0, the acceptance interva
has x15221.28 andx25211.64. This interval only con-
tains 85% of the probabilityP(xum). Thus Eq.~2.4! is not
satisfied. Physicists X’s intervalsundercoverfor a significant
range ofm: they arenot confidence intervals or conservativ
confidence intervals.

Both Figs. 2 and 3are confidence intervals when use
appropriately, i.e., without flip-flopping. However, the resu
is unsatisfying when one measures, for example,x521.8.
In that case, one draws the vertical line as directed and fi
that the confidence interval is the empty set.@An alternative
way of expressing this situation is to allow non-physicalm’s
when constructing the confidence belt, and then to say
the confidence interval is entirely in the non-physical regio
This requires knowingP(xum) for non-physicalm, which
can raise conceptual difficulties.# When this situation arises
oneknowsthat one is in the ‘‘wrong’’ 10% of the ensembl
quoting 90% C.L. intervals. One can go ahead and quote
wrong result, and the ensemble of intervals will have t
proper coverage. But this is not very comforting.

Both problems of the previous two paragraphs are sol
by the ordering principle which we give in Sec. IV.

B. Poisson process with background

Figures 5 and 6 show standard@13,14# confidence belts
for a Poisson process when the observablex is the total
number of observed events,n, consisting of signal events
with meanm and background events withknown meanb.
I.e.,

P~num!5~m1b!nexp@2~m1b!#/n!. ~3.2!

In these figures, we use for illustration the case wh
b53.0.

Sincen is an integer, Eq.~2.3! can only be approximately
satisfied. By convention dating to the 1930s, one stric
avoids undercoverage and replaces the equality in Eq.~2.3!
with ‘‘ >.’’ Thus the intervals overcover, and are conserv
tive.

cy

FIG. 5. Standard confidence belt for 90% C.L. upper limits,
unknown Poisson signal meanm in the presence of a Poisson bac
ground with known meanb53.0. The second line in the belt is a
n51`.
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57 3877UNIFIED APPROACH TO THE CLASSICAL . . .
Although the word ‘‘conservative’’ in this context may b
viewed by some as desirable, in fact it is an undesira
property of a set of confidence intervals. Ideal intervals co
the unknown true value at exactly the stated confidence: 9
C.L. intervalsshouldfail to contain the true value 10% of th
time. If one desires intervals which cover more than 90%
the time, the solution is not to add conservatism to the in
vals, but rather to choose a higher confidence level. The
creteness ofn in the Poisson problem leads unavoidably
some conservatism, but this is unfortunate, not a virtue.

The Poisson intervals in Figs. 5 and 6 suffer from t
same problems as the Gaussian intervals. First, if physici
uses the data to decide whether to use Fig. 5 or Fig. 6,
the resulting hybrid set can undercover. Second, there
well-known problem if, for example,b53.0 and no events
are observed. In that case, the confidence interval is again
empty set. These problems are solved by the ordering p
ciple given in Sec. IV.

For this Poisson case, there is an alternative set of in
vals, given by Crow and Gardner@15#, which is instructive
because it requires the full Neyman construction. In c
structing these intervals, one minimizes the horizontal len
of the acceptance region@n1 ,n2# at each value ofm. Sincen
is a discrete variable, the concept of length in the horizon
direction can be well defined as the number of discr
points. Said another way, the points in the acceptance in
val at eachm are chosen in order of decreasingP(num), until
the sum ofP(num) meets or exceeds the desired C.L.~There
are other technical details in the original paper.! The Crow-
Gardner intervals are instructive because neither Eq.~2.5!
nor Eq. ~2.6! is satisfied, even as a conservative inequal
~Recall that x is identified with n in this section.! For
a50.9, P(n,n1um) varies between 0.018 and 0.089, a
P(n.n2um) varies between 0.011 and 0.078, in a man
dictated by the Neyman construction so that alwa
P(nP@n1 ,n2#um)>0.9. Like Crow and Gardner, we us
Neyman’s construction, but with a different ordering f
choosing the points in the acceptance interval.

FIG. 6. Standard confidence belt for 90% C.L. central con
dence intervals, for unknown Poisson signal meanm in the presence
of a Poisson background with known meanb53.0.
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IV. NEW INTERVALS FROM AN ORDERING PRINCIPLE
BASED ON LIKELIHOOD RATIOS

A. Poisson process with background

We begin with a numerical example which occurs in t
construction of confidence belts for a Poisson process w
background. The construction proceeds in the manner of
1, where the measurementx in Fig. 1 now corresponds to th
measured total number of eventsn.

Let the known mean background beb53.0, and consider
the construction of the horizontal acceptance interval at
nal meanm50.5. ThenP(num) is given by Eq.~3.2!, and is
given in the second column of Table I.

Now consider, for example,n50. For the assumedb53.,
the probability of obtaining 0 events is 0.03 ifm50.5, which
is quite low on an absolute scale. However, it is not so l
when compared to the probability~0.05! of obtaining 0
events withb53.0 andm50.0, which is the alternate hy
pothesis with the greatest likelihood. Aratio of likelihoods,
in this case 0.03/0.05, is what we use as our ordering p
ciple when selecting those values ofn to place in the accep
tance interval.

That is, for eachn, we letmbestbe that value of the mean
signal m which maximizesP(num); we requirembest to be
physically allowed, i.e., non-negative in this case. Th
mbest5max(0,n2b), and is given in the third column o
Table I. We then computeP(numbest), which is given in the
fourth column. The fifth column contains the ratio

R5P~num!/P~numbest!, ~4.1!

and is the quantity on which our ordering principle is bas
R is a ratio of two likelihoods: the likelihood of obtainingn
given the actual meanm, and the likelihood of obtainingn
given the best-fit physically allowed mean. Values ofn are
added to the acceptance region for a givenm in decreasing
order of R, until the sum ofP(num) meets or exceeds th
desired C.L. This ordering, for values ofn necessary to ob-
tain total probability of 90%, is shown in the column labele
‘‘rank.’’ Thus, the acceptance region form50.5 ~analogous

-

TABLE I. Illustrative calculations in the confidence belt con
struction for signal meanm in the presence of known mean bac
groundb53.0. Here we find the acceptance interval form50.5.

n P(num) mbest P(numbest) R rank U.L. central

0 0.030 0.0 0.050 0.607 6
1 0.106 0.0 0.149 0.708 5 A A
2 0.185 0.0 0.224 0.826 3 A A
3 0.216 0.0 0.224 0.963 2 A A
4 0.189 1.0 0.195 0.966 1 A A
5 0.132 2.0 0.175 0.753 4 A A
6 0.077 3.0 0.161 0.480 7 A A
7 0.039 4.0 0.149 0.259 A A
8 0.017 5.0 0.140 0.121 A
9 0.007 6.0 0.132 0.050 A

10 0.002 7.0 0.125 0.018 A
11 0.001 8.0 0.119 0.006 A
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3878 57GARY J. FELDMAN AND ROBERT D. COUSINS
to a horizontal line segment in Fig. 1! is the interval
n5@0,6#. Because of the discreteness ofn, the acceptance
region contains a summed probability greater than 90%;
is unavoidable no matter what the ordering principle, a
leads to confidence intervals which are conservative.

For comparison, in the column of Table I labeled ‘‘U.L.,
we place check marks at the values ofn which are in the
acceptance region of standard 90% C.L. upper limits for
example, and in the column labeled ‘‘central,’’ we pla
check marks at the values ofn which are in the acceptanc
region of standard 90% C.L central confidence intervals.

The construction proceeds by finding the acceptance
gion for all values ofm, for the given value ofb. With a
computer, we perform the construction on a grid of discr
values ofm, in the interval@0, 50# in steps of 0.005. This
suffices for the precision desired~0.01! in the end points of
confidence intervals. We find that a mild pathology arises
a result of the fact that the observablen is discrete. When the
vertical dashed line is drawn at somen0 ~in analogy with in
Fig. 1!, it can happen that the set of intersected horizon
line segments is not simply connected. When this occurs
naturally take the confidence interval to havem1 correspond-
ing to the bottommost segment intersected, and to havem2
corresponding to the topmost segment intersected.

We then repeat the construction for a selection of fix
values ofb. We find an additional mild pathology, aga
caused by the discreteness inn: when we compare the resul
for different values ofb for fixed n0 , the upper end pointm2
is not always a decreasing function ofb, as would be ex-
pected. When this happens, we force the function to be n
increasing, by lengthening selected confidence intervals
necessary. We have investigated this behavior, and com
sated for it, over a fine grid ofb in the range@0, 25# in
increments of 0.001~with some additional searching to eve
finer precision!.

Our compensation for the two pathologies mentioned
the previous paragraphs adds slightly to our intervals’ c
servatism, which however remains dominated by the
avoidable effects due to the discreteness inn.

The confidence belts resulting from our construction
shown in Fig. 7, which may be compared with Figs. 5 and
At large n, Fig. 7 is similar to Fig. 6; the background
effectively subtracted without constraint, and our order
principle produces two-sided intervals which are appro
mately central intervals. At smalln, the confidence intervals
from Fig. 7 automatically become upper limits onm; i.e., the
lower end pointm1 is 0 for n<4 in this case. Thus, flip-
flopping between Figs. 5 and 6 is replaced by one cohe
set of confidence intervals~and no interval is the empty set!.

Tables II–IX give our confidence intervals@m1 ,m2# for
the signal meanm for the most commonly used confidenc
levels, namely 68.27%~sometimes called 1s intervals by
analogy with Gaussian intervals!, 90%, 95%, and 99%. Val
ues in italics indicate results which must be taken with p
ticular caution, since the probability of obtaining the numb
of events observed or fewer is less than 1%, even ifm50.
~See Sec. IV C below.!

Figure 8 shows, forn50 – 10, the value ofm2 as a func-
tion of b, for 90% C.L. The small horizontal sections in th
curves are the result of the mild pathology mentioned abo
in which the original curves make a small dip, which w
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have eliminated. Dashed portions in the lower right indic
results which must be taken with particular caution, cor
sponding to the italicized values in the tables. Dotted p
tions on the upper left indicate regions wherem1 is non-zero.
These corresponding values ofm1 are shown in Fig. 9.

Figure 8 can be compared with the Bayesian calculat
in Fig. 28.8 of Ref.@2# which uses a uniform prior form t . A
noticeable difference is that our curve forn50 decreases a
a function ofb, while the result of the Bayesian calculatio
stays constant~at 2.3!. The decreasing limit in our case re
flects the fact thatP(n0um) decreases asb increases. We find
that objections to this behavior are typically based on a m
placed Bayesian interpretation of classical intervals, nam
the attempt to interpret them as statements aboutP(m tun0).

B. Gaussian with a boundary at the origin

It is straightforward to apply our ordering principle to th
other troublesome example of Sec. III, the case of a Gaus
resolution function@Eq. ~3.1!# for m, when m is physically
bounded to non-negative values. In analogy with the Pois
case, for a particularx, we letmbestbe the physically allowed
value of m for which P(xum) is maximum. Then
mbest5max(0,x), and

P~xumbest!5H 1/A2p, x>0,

exp~2x2/2!/A2p, x,0.
~4.2!

We then computeR in analogy to Eq.~4.1!, using Eqs.~3.1!
and ~4.2!:

R~x!5
P~xum!

P~xumbest!
5H exp~2~x2m!2/2!, x>0

exp~xm2m2/2!, x,0 .
~4.3!

During our Neyman construction of confidence intervals,R
determines the order in which values ofx are added to the
acceptance region at a particular value ofm. In practice, this
means that for a given value ofm, one finds the interval
@x1 ,x2# such thatR(x1)5R(x2) and

FIG. 7. Confidence belt based on our ordering principle,
90% C.L. confidence intervals for unknown Poisson signal meam
in the presence of a Poisson background with known meanb53.0.
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TABLE II. Our 68.27% C.L. intervals for the Poisson signal meanm, for total events observedn0 , for known mean backgroundb
ranging from 0 to 5.

n0\b 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0

0 0.00, 1.29 0.00, 0.80 0.00, 0.54 0.00, 0.41 0.00, 0.41 0.00, 0.25 0.00, 0.25 0.00, 0.21 0.00, 0.210.00, 0.19
1 0.37, 2.75 0.00, 2.25 0.00, 1.75 0.00, 1.32 0.00, 0.97 0.00, 0.68 0.00, 0.50 0.00, 0.50 0.00, 0.36 0.0
2 0.74, 4.25 0.44, 3.75 0.14, 3.25 0.00, 2.75 0.00, 2.25 0.00, 1.80 0.00, 1.41 0.00, 1.09 0.00, 0.81 0.0
3 1.10, 5.30 0.80, 4.80 0.54, 4.30 0.32, 3.80 0.00, 3.30 0.00, 2.80 0.00, 2.30 0.00, 1.84 0.00, 1.45 0.0
4 2.34, 6.78 1.84, 6.28 1.34, 5.78 0.91, 5.28 0.44, 4.78 0.25, 4.28 0.00, 3.78 0.00, 3.28 0.00, 2.78 0.0
5 2.75, 7.81 2.25, 7.31 1.75, 6.81 1.32, 6.31 0.97, 5.81 0.68, 5.31 0.45, 4.81 0.20, 4.31 0.00, 3.81 0.0
6 3.82, 9.28 3.32, 8.78 2.82, 8.28 2.32, 7.78 1.82, 7.28 1.37, 6.78 1.01, 6.28 0.62, 5.78 0.36, 5.28 0.0
7 4.25,10.30 3.75, 9.80 3.25, 9.30 2.75, 8.80 2.25, 8.30 1.80, 7.80 1.41, 7.30 1.09, 6.80 0.81, 6.30 0.3
8 5.30,11.32 4.80,10.82 4.30,10.32 3.80, 9.82 3.30, 9.32 2.80, 8.82 2.30, 8.32 1.84, 7.82 1.45, 7.32 0.8
9 6.33,12.79 5.83,12.29 5.33,11.79 4.83,11.29 4.33,10.79 3.83,10.29 3.33, 9.79 2.83, 9.29 2.33, 8.79 1.

10 6.78,13.81 6.28,13.31 5.78,12.81 5.28,12.31 4.78,11.81 4.28,11.31 3.78,10.81 3.28,10.31 2.78, 9.81 1
11 7.81,14.82 7.31,14.32 6.81,13.82 6.31,13.32 5.81,12.82 5.31,12.32 4.81,11.82 4.31,11.32 3.81,10.82 2
12 8.83,16.29 8.33,15.79 7.83,15.29 7.33,14.79 6.83,14.29 6.33,13.79 5.83,13.29 5.33,12.79 4.83,12.29 3
13 9.28,17.30 8.78,16.80 8.28,16.30 7.78,15.80 7.28,15.30 6.78,14.80 6.28,14.30 5.78,13.80 5.28,13.30 4
14 10.30,18.32 9.80,17.82 9.30,17.32 8.80,16.82 8.30,16.32 7.80,15.82 7.30,15.32 6.80,14.82 6.30,14.32 5
15 11.32,19.32 10.82,18.82 10.32,18.32 9.82,17.82 9.32,17.32 8.82,16.82 8.32,16.32 7.82,15.82 7.32,15.32 6
16 12.33,20.80 11.83,20.30 11.33,19.80 10.83,19.30 10.33,18.80 9.83,18.30 9.33,17.80 8.83,17.30 8.33,16.80 7
17 12.79,21.81 12.29,21.31 11.79,20.81 11.29,20.31 10.79,19.81 10.29,19.31 9.79,18.81 9.29,18.31 8.79,17.81 7
18 13.81,22.82 13.31,22.32 12.81,21.82 12.31,21.32 11.81,20.82 11.31,20.32 10.81,19.82 10.31,19.32 9.81,18.82 8
19 14.82,23.82 14.32,23.32 13.82,22.82 13.32,22.32 12.82,21.82 12.32,21.32 11.82,20.82 11.32,20.32 10.82,19.82
20 15.83,25.30 15.33,24.80 14.83,24.30 14.33,23.80 13.83,23.30 13.33,22.80 12.83,22.30 12.33,21.80 11.83,21.30 1

TABLE III. 68.27% C.L. intervals for the Poisson signal meanm, for total events observedn0 , for known mean backgroundb ranging
from 6 to 15.

n0\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0 0.00, 0.18 0.00, 0.17 0.00, 0.17 0.00, 0.17 0.00, 0.16 0.00, 0.16 0.00, 0.16 0.00, 0.16 0.00, 0.16 0.0
1 0.00, 0.24 0.00, 0.21 0.00, 0.20 0.00, 0.19 0.00, 0.18 0.00, 0.17 0.00, 0.17 0.00, 0.17 0.00, 0.17 0.00
2 0.00, 0.31 0.00, 0.27 0.00, 0.230.00, 0.21 0.00, 0.20 0.00, 0.19 0.00, 0.19 0.00, 0.18 0.00, 0.18 0.00,
3 0.00, 0.69 0.00, 0.42 0.00, 0.31 0.00, 0.26 0.00, 0.230.00, 0.22 0.00, 0.21 0.00, 0.20 0.00, 0.20 0.00, 0.
4 0.00, 1.22 0.00, 0.69 0.00, 0.60 0.00, 0.38 0.00, 0.30 0.00, 0.260.00, 0.24 0.00, 0.23 0.00, 0.22 0.00, 0.2
5 0.00, 1.92 0.00, 1.23 0.00, 0.99 0.00, 0.60 0.00, 0.48 0.00, 0.35 0.00, 0.29 0.00, 0.260.00, 0.24 0.00, 0.23
6 0.00, 3.28 0.00, 2.38 0.00, 1.65 0.00, 1.06 0.00, 0.63 0.00, 0.53 0.00, 0.42 0.00, 0.33 0.00, 0.290.00, 0.26
7 0.00, 4.30 0.00, 3.30 0.00, 2.40 0.00, 1.66 0.00, 1.07 0.00, 0.88 0.00, 0.53 0.00, 0.47 0.00, 0.38 0.0
8 0.31, 5.32 0.00, 4.32 0.00, 3.32 0.00, 2.41 0.00, 1.67 0.00, 1.46 0.00, 0.94 0.00, 0.62 0.00, 0.48 0.0
9 0.69, 6.79 0.27, 5.79 0.00, 4.79 0.00, 3.79 0.00, 2.87 0.00, 2.10 0.00, 1.46 0.00, 0.94 0.00, 0.78 0.0

10 1.22, 7.81 0.69, 6.81 0.23, 5.81 0.00, 4.81 0.00, 3.81 0.00, 2.89 0.00, 2.11 0.00, 1.47 0.00, 1.03 0.0
11 1.92, 8.82 1.23, 7.82 0.60, 6.82 0.19, 5.82 0.00, 4.82 0.00, 3.82 0.00, 2.90 0.00, 2.12 0.00, 1.54 0.0
12 2.83,10.29 1.94, 9.29 1.12, 8.29 0.60, 7.29 0.12, 6.29 0.00, 5.29 0.00, 4.29 0.00, 3.36 0.00, 2.57 0.0
13 3.28,11.30 2.38,10.30 1.65, 9.30 1.06, 8.30 0.60, 7.30 0.05, 6.30 0.00, 5.30 0.00, 4.30 0.00, 3.37 0.0
14 4.30,12.32 3.30,11.32 2.40,10.32 1.66, 9.32 1.07, 8.32 0.53, 7.32 0.00, 6.32 0.00, 5.32 0.00, 4.32 0.0
15 5.32,13.32 4.32,12.32 3.32,11.32 2.41,10.32 1.67, 9.32 1.00, 8.32 0.53, 7.32 0.00, 6.32 0.00, 5.32 0.0
16 6.33,14.80 5.33,13.80 4.33,12.80 3.33,11.80 2.43,10.80 1.46, 9.80 0.94, 8.80 0.47, 7.80 0.00, 6.80 0.0
17 6.79,15.81 5.79,14.81 4.79,13.81 3.79,12.81 2.87,11.81 2.10,10.81 1.46, 9.81 0.94, 8.81 0.48, 7.81 0.0
18 7.81,16.82 6.81,15.82 5.81,14.82 4.81,13.82 3.81,12.82 2.89,11.82 2.11,10.82 1.47, 9.82 0.93, 8.82 0.4
19 8.82,17.82 7.82,16.82 6.82,15.82 5.82,14.82 4.82,13.82 3.82,12.82 2.90,11.82 2.12,10.82 1.48, 9.82 0.
20 9.83,19.30 8.83,18.30 7.83,17.30 6.83,16.30 5.83,15.30 4.83,14.30 3.83,13.30 2.91,12.30 2.12,11.30 1.
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TABLE IV. 90% C.L. intervals for the Poisson signal meanm, for total events observedn0 , for known mean backgroundb ranging from
0 to 5.

n0\b 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0

0 0.00, 2.44 0.00, 1.94 0.00, 1.61 0.00, 1.33 0.00, 1.26 0.00, 1.18 0.00, 1.08 0.00, 1.06 0.00, 1.010.00, 0.98
1 0.11, 4.36 0.00, 3.86 0.00, 3.36 0.00, 2.91 0.00, 2.53 0.00, 2.19 0.00, 1.88 0.00, 1.59 0.00, 1.39 0.0
2 0.53, 5.91 0.03, 5.41 0.00, 4.91 0.00, 4.41 0.00, 3.91 0.00, 3.45 0.00, 3.04 0.00, 2.67 0.00, 2.33 0.0
3 1.10, 7.42 0.60, 6.92 0.10, 6.42 0.00, 5.92 0.00, 5.42 0.00, 4.92 0.00, 4.42 0.00, 3.95 0.00, 3.53 0.0
4 1.47, 8.60 1.17, 8.10 0.74, 7.60 0.24, 7.10 0.00, 6.60 0.00, 6.10 0.00, 5.60 0.00, 5.10 0.00, 4.60 0.0
5 1.84, 9.99 1.53, 9.49 1.25, 8.99 0.93, 8.49 0.43, 7.99 0.00, 7.49 0.00, 6.99 0.00, 6.49 0.00, 5.99 0.0
6 2.21,11.47 1.90,10.97 1.61,10.47 1.33, 9.97 1.08, 9.47 0.65, 8.97 0.15, 8.47 0.00, 7.97 0.00, 7.47 0.0
7 3.56,12.53 3.06,12.03 2.56,11.53 2.09,11.03 1.59,10.53 1.18,10.03 0.89, 9.53 0.39, 9.03 0.00, 8.53 0.
8 3.96,13.99 3.46,13.49 2.96,12.99 2.51,12.49 2.14,11.99 1.81,11.49 1.51,10.99 1.06,10.49 0.66, 9.99 0.
9 4.36,15.30 3.86,14.80 3.36,14.30 2.91,13.80 2.53,13.30 2.19,12.80 1.88,12.30 1.59,11.80 1.33,11.30 0.

10 5.50,16.50 5.00,16.00 4.50,15.50 4.00,15.00 3.50,14.50 3.04,14.00 2.63,13.50 2.27,13.00 1.94,12.50 1
11 5.91,17.81 5.41,17.31 4.91,16.81 4.41,16.31 3.91,15.81 3.45,15.31 3.04,14.81 2.67,14.31 2.33,13.81 1
12 7.01,19.00 6.51,18.50 6.01,18.00 5.51,17.50 5.01,17.00 4.51,16.50 4.01,16.00 3.54,15.50 3.12,15.00 2
13 7.42,20.05 6.92,19.55 6.42,19.05 5.92,18.55 5.42,18.05 4.92,17.55 4.42,17.05 3.95,16.55 3.53,16.05 2
14 8.50,21.50 8.00,21.00 7.50,20.50 7.00,20.00 6.50,19.50 6.00,19.00 5.50,18.50 5.00,18.00 4.50,17.50 3
15 9.48,22.52 8.98,22.02 8.48,21.52 7.98,21.02 7.48,20.52 6.98,20.02 6.48,19.52 5.98,19.02 5.48,18.52 4
16 9.99,23.99 9.49,23.49 8.99,22.99 8.49,22.49 7.99,21.99 7.49,21.49 6.99,20.99 6.49,20.49 5.99,19.99 4
17 11.04,25.02 10.54,24.52 10.04,24.02 9.54,23.52 9.04,23.02 8.54,22.52 8.04,22.02 7.54,21.52 7.04,21.02 6
18 11.47,26.16 10.97,25.66 10.47,25.16 9.97,24.66 9.47,24.16 8.97,23.66 8.47,23.16 7.97,22.66 7.47,22.16 6
19 12.51,27.51 12.01,27.01 11.51,26.51 11.01,26.01 10.51,25.51 10.01,25.01 9.51,24.51 9.01,24.01 8.51,23.51 7
20 13.55,28.52 13.05,28.02 12.55,27.52 12.05,27.02 11.55,26.52 11.05,26.02 10.55,25.52 10.05,25.02 9.55,24.52 8

TABLE V. 90% C.L. intervals for the Poisson signal meanm, for total events observedn0 , for known mean backgroundb ranging from
6 to 15.

n0\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0 0.00, 0.97 0.00, 0.95 0.00, 0.94 0.00, 0.94 0.00, 0.93 0.00, 0.93 0.00, 0.92 0.00, 0.92 0.00, 0.92 0.0
1 0.00, 1.14 0.00, 1.10 0.00, 1.07 0.00, 1.05 0.00, 1.03 0.00, 1.01 0.00, 1.00 0.00, 0.99 0.00, 0.99 0.00
2 0.00, 1.57 0.00, 1.38 0.00, 1.270.00, 1.21 0.00, 1.15 0.00, 1.11 0.00, 1.09 0.00, 1.08 0.00, 1.06 0.00,
3 0.00, 2.14 0.00, 1.75 0.00, 1.49 0.00, 1.37 0.00, 1.290.00, 1.24 0.00, 1.21 0.00, 1.18 0.00, 1.15 0.00, 1.
4 0.00, 2.83 0.00, 2.56 0.00, 1.98 0.00, 1.82 0.00, 1.57 0.00, 1.450.00, 1.37 0.00, 1.31 0.00, 1.27 0.00, 1.2
5 0.00, 4.07 0.00, 3.28 0.00, 2.60 0.00, 2.38 0.00, 1.85 0.00, 1.70 0.00, 1.58 0.00, 1.480.00, 1.39 0.00, 1.32
6 0.00, 5.47 0.00, 4.54 0.00, 3.73 0.00, 3.02 0.00, 2.40 0.00, 2.21 0.00, 1.86 0.00, 1.67 0.00, 1.550.00, 1.47
7 0.00, 6.53 0.00, 5.53 0.00, 4.58 0.00, 3.77 0.00, 3.26 0.00, 2.81 0.00, 2.23 0.00, 2.07 0.00, 1.86 0.0
8 0.00, 7.99 0.00, 6.99 0.00, 5.99 0.00, 5.05 0.00, 4.22 0.00, 3.49 0.00, 2.83 0.00, 2.62 0.00, 2.11 0.0
9 0.00, 9.30 0.00, 8.30 0.00, 7.30 0.00, 6.30 0.00, 5.30 0.00, 4.30 0.00, 3.93 0.00, 3.25 0.00, 2.64 0.0

10 0.22,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.00, 6.50 0.00, 5.56 0.00, 4.71 0.00, 3.95 0.00, 3.27 0.0
11 1.01,11.81 0.02,10.81 0.00, 9.81 0.00, 8.81 0.00, 7.81 0.00, 6.81 0.00, 5.81 0.00, 4.81 0.00, 4.39 0.0
12 1.57,13.00 0.83,12.00 0.00,11.00 0.00,10.00 0.00, 9.00 0.00, 8.00 0.00, 7.00 0.00, 6.05 0.00, 5.19 0.0
13 2.14,14.05 1.50,13.05 0.65,12.05 0.00,11.05 0.00,10.05 0.00, 9.05 0.00, 8.05 0.00, 7.05 0.00, 6.08 0.0
14 2.83,15.50 2.13,14.50 1.39,13.50 0.47,12.50 0.00,11.50 0.00,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.0
15 3.48,16.52 2.56,15.52 1.98,14.52 1.26,13.52 0.30,12.52 0.00,11.52 0.00,10.52 0.00, 9.52 0.00, 8.52 0.0
16 4.07,17.99 3.28,16.99 2.60,15.99 1.82,14.99 1.13,13.99 0.14,12.99 0.00,11.99 0.00,10.99 0.00, 9.99 0.
17 5.04,19.02 4.11,18.02 3.32,17.02 2.38,16.02 1.81,15.02 0.98,14.02 0.00,13.02 0.00,12.02 0.00,11.02 0.
18 5.47,20.16 4.54,19.16 3.73,18.16 3.02,17.16 2.40,16.16 1.70,15.16 0.82,14.16 0.00,13.16 0.00,12.16 0.
19 6.51,21.51 5.51,20.51 4.58,19.51 3.77,18.51 3.05,17.51 2.21,16.51 1.58,15.51 0.67,14.51 0.00,13.51 0.
20 7.55,22.52 6.55,21.52 5.55,20.52 4.55,19.52 3.55,18.52 2.81,17.52 2.23,16.52 1.48,15.52 0.53,14.52 0.
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TABLE VI. 95% C.L. intervals for the Poisson signal meanm, for total events observedn0 , for known mean backgroundb ranging from
0 to 5.

n0\b 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0

0 0.00, 3.09 0.00, 2.63 0.00, 2.33 0.00, 2.05 0.00, 1.78 0.00, 1.78 0.00, 1.63 0.00, 1.63 0.00, 1.570.00, 1.54
1 0.05, 5.14 0.00, 4.64 0.00, 4.14 0.00, 3.69 0.00, 3.30 0.00, 2.95 0.00, 2.63 0.00, 2.33 0.00, 2.08 0.0
2 0.36, 6.72 0.00, 6.22 0.00, 5.72 0.00, 5.22 0.00, 4.72 0.00, 4.25 0.00, 3.84 0.00, 3.46 0.00, 3.11 0.0
3 0.82, 8.25 0.32, 7.75 0.00, 7.25 0.00, 6.75 0.00, 6.25 0.00, 5.75 0.00, 5.25 0.00, 4.78 0.00, 4.35 0.0
4 1.37, 9.76 0.87, 9.26 0.37, 8.76 0.00, 8.26 0.00, 7.76 0.00, 7.26 0.00, 6.76 0.00, 6.26 0.00, 5.76 0.0
5 1.84,11.26 1.47,10.76 0.97,10.26 0.47, 9.76 0.00, 9.26 0.00, 8.76 0.00, 8.26 0.00, 7.76 0.00, 7.26 0.0
6 2.21,12.75 1.90,12.25 1.61,11.75 1.11,11.25 0.61,10.75 0.11,10.25 0.00, 9.75 0.00, 9.25 0.00, 8.75 0.
7 2.58,13.81 2.27,13.31 1.97,12.81 1.69,12.31 1.29,11.81 0.79,11.31 0.29,10.81 0.00,10.31 0.00, 9.81 0.
8 2.94,15.29 2.63,14.79 2.33,14.29 2.05,13.79 1.78,13.29 1.48,12.79 0.98,12.29 0.48,11.79 0.00,11.29 0.
9 4.36,16.77 3.86,16.27 3.36,15.77 2.91,15.27 2.46,14.77 1.96,14.27 1.62,13.77 1.20,13.27 0.70,12.77 0.

10 4.75,17.82 4.25,17.32 3.75,16.82 3.30,16.32 2.92,15.82 2.57,15.32 2.25,14.82 1.82,14.32 1.43,13.82 0.
11 5.14,19.29 4.64,18.79 4.14,18.29 3.69,17.79 3.30,17.29 2.95,16.79 2.63,16.29 2.33,15.79 2.04,15.29 1.
12 6.32,20.34 5.82,19.84 5.32,19.34 4.82,18.84 4.32,18.34 3.85,17.84 3.44,17.34 3.06,16.84 2.69,16.34 1.
13 6.72,21.80 6.22,21.30 5.72,20.80 5.22,20.30 4.72,19.80 4.25,19.30 3.84,18.80 3.46,18.30 3.11,17.80 2.
14 7.84,22.94 7.34,22.44 6.84,21.94 6.34,21.44 5.84,20.94 5.34,20.44 4.84,19.94 4.37,19.44 3.94,18.94 3.
15 8.25,24.31 7.75,23.81 7.25,23.31 6.75,22.81 6.25,22.31 5.75,21.81 5.25,21.31 4.78,20.81 4.35,20.31 3.
16 9.34,25.40 8.84,24.90 8.34,24.40 7.84,23.90 7.34,23.40 6.84,22.90 6.34,22.40 5.84,21.90 5.34,21.40 4.
17 9.76,26.81 9.26,26.31 8.76,25.81 8.26,25.31 7.76,24.81 7.26,24.31 6.76,23.81 6.26,23.31 5.76,22.81 4.
18 10.84,27.84 10.34,27.34 9.84,26.84 9.34,26.34 8.84,25.84 8.34,25.34 7.84,24.84 7.34,24.34 6.84,23.84 5
19 11.26,29.31 10.76,28.81 10.26,28.31 9.76,27.81 9.26,27.31 8.76,26.81 8.26,26.31 7.76,25.81 7.26,25.31 6
20 12.33,30.33 11.83,29.83 11.33,29.33 10.83,28.83 10.33,28.33 9.83,27.83 9.33,27.33 8.83,26.83 8.33,26.33 7
,
ce

in-

red
nce
E
x1

x2
P~xum!dx5a. ~4.4!

We solve forx1 andx2 numerically to the desired precision
for eachm in a grid with 0.001 spacing. With the acceptan
regions all constructed, we then read off the confidence
tervals@m1 ,m2# for eachx0 as in Fig. 1.

Table X contains the results for representative measu
values and confidence levels. Figure 10 shows the confide
belt for 90% C.L.
0, 1.47
, 1.56
1.67
80
5

0, 2.59
0, 3.02
0, 3.60
0, 4.24
0, 4.93
0, 5.70
0, 6.96
0, 7.94

00, 9.31
00,10.40
00,11.81
00,12.84
00,14.31
00,15.33
TABLE VII. 95% C.L. intervals for the Poisson signal meanm, for total events observedn0 , for known mean backgroundb ranging
from 6 to 15.

n0\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0 0.00, 1.52 0.00, 1.51 0.00, 1.50 0.00, 1.49 0.00, 1.49 0.00, 1.48 0.00, 1.48 0.00, 1.48 0.00, 1.47 0.0
1 0.00, 1.78 0.00, 1.73 0.00, 1.69 0.00, 1.66 0.00, 1.64 0.00, 1.61 0.00, 1.60 0.00, 1.59 0.00, 1.58 0.00
2 0.00, 2.28 0.00, 2.11 0.00, 1.980.00, 1.86 0.00, 1.81 0.00, 1.77 0.00, 1.74 0.00, 1.72 0.00, 1.70 0.00,
3 0.00, 2.91 0.00, 2.69 0.00, 2.37 0.00, 2.17 0.00, 2.060.00, 1.98 0.00, 1.93 0.00, 1.89 0.00, 1.82 0.00, 1.
4 0.00, 4.05 0.00, 3.35 0.00, 3.01 0.00, 2.54 0.00, 2.37 0.00, 2.230.00, 2.11 0.00, 2.04 0.00, 1.99 0.00, 1.9
5 0.00, 5.33 0.00, 4.52 0.00, 3.79 0.00, 3.15 0.00, 2.94 0.00, 2.65 0.00, 2.43 0.00, 2.300.00, 2.20 0.00, 2.13
6 0.00, 6.75 0.00, 5.82 0.00, 4.99 0.00, 4.24 0.00, 3.57 0.00, 3.14 0.00, 2.78 0.00, 2.62 0.00, 2.480.00, 2.35
7 0.00, 7.81 0.00, 6.81 0.00, 5.87 0.00, 5.03 0.00, 4.28 0.00, 4.00 0.00, 3.37 0.00, 3.15 0.00, 2.79 0.0
8 0.00, 9.29 0.00, 8.29 0.00, 7.29 0.00, 6.35 0.00, 5.50 0.00, 4.73 0.00, 4.03 0.00, 3.79 0.00, 3.20 0.0
9 0.00,10.77 0.00, 9.77 0.00, 8.77 0.00, 7.77 0.00, 6.82 0.00, 5.96 0.00, 5.18 0.00, 4.47 0.00, 3.81 0.0

10 0.00,11.82 0.00,10.82 0.00, 9.82 0.00, 8.82 0.00, 7.82 0.00, 6.87 0.00, 6.00 0.00, 5.21 0.00, 4.59 0.0
11 0.17,13.29 0.00,12.29 0.00,11.29 0.00,10.29 0.00, 9.29 0.00, 8.29 0.00, 7.34 0.00, 6.47 0.00, 5.67 0.0
12 0.92,14.34 0.00,13.34 0.00,12.34 0.00,11.34 0.00,10.34 0.00, 9.34 0.00, 8.34 0.00, 7.37 0.00, 6.50 0.0
13 1.68,15.80 0.69,14.80 0.00,13.80 0.00,12.80 0.00,11.80 0.00,10.80 0.00, 9.80 0.00, 8.80 0.00, 7.85 0.0
14 2.28,16.94 1.46,15.94 0.46,14.94 0.00,13.94 0.00,12.94 0.00,11.94 0.00,10.94 0.00, 9.94 0.00, 8.94 0.0
15 2.91,18.31 2.11,17.31 1.25,16.31 0.25,15.31 0.00,14.31 0.00,13.31 0.00,12.31 0.00,11.31 0.00,10.31 0.
16 3.60,19.40 2.69,18.40 1.98,17.40 1.04,16.40 0.04,15.40 0.00,14.40 0.00,13.40 0.00,12.40 0.00,11.40 0.
17 4.05,20.81 3.35,19.81 2.63,18.81 1.83,17.81 0.83,16.81 0.00,15.81 0.00,14.81 0.00,13.81 0.00,12.81 0.
18 4.91,21.84 4.11,20.84 3.18,19.84 2.53,18.84 1.63,17.84 0.63,16.84 0.00,15.84 0.00,14.84 0.00,13.84 0.
19 5.33,23.31 4.52,22.31 3.79,21.31 3.15,20.31 2.37,19.31 1.44,18.31 0.44,17.31 0.00,16.31 0.00,15.31 0.
20 6.33,24.33 5.39,23.33 4.57,22.33 3.82,21.33 2.94,20.33 2.23,19.33 1.25,18.33 0.25,17.33 0.00,16.33 0.



0, 3.59
0, 4.37
0, 5.57
0, 7.30

00, 8.75
00,10.27
00,11.77
00,13.27
00,14.46
00,15.83
00,17.31
43,18.80
10,19.92
78,21.33
48,22.81
15,23.85
73,25.33
37,26.81
01,27.85
57,29.32
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TABLE VIII. 99% C.L. intervals for the Poisson signal meanm, for total events observedn0 , for known mean backgroundb ranging
from 0 to 5.

n0\b 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0

0 0.00, 4.74 0.00, 4.24 0.00, 3.80 0.00, 3.50 0.00, 3.26 0.00, 3.26 0.00, 3.05 0.00, 3.05 0.00, 2.980.00, 2.94
1 0.01, 6.91 0.00, 6.41 0.00, 5.91 0.00, 5.41 0.00, 4.91 0.00, 4.48 0.00, 4.14 0.00, 4.09 0.00, 3.89 0.0
2 0.15, 8.71 0.00, 8.21 0.00, 7.71 0.00, 7.21 0.00, 6.71 0.00, 6.24 0.00, 5.82 0.00, 5.42 0.00, 5.06 0.0
3 0.44,10.47 0.00, 9.97 0.00, 9.47 0.00, 8.97 0.00, 8.47 0.00, 7.97 0.00, 7.47 0.00, 6.97 0.00, 6.47 0.0
4 0.82,12.23 0.32,11.73 0.00,11.23 0.00,10.73 0.00,10.23 0.00, 9.73 0.00, 9.23 0.00, 8.73 0.00, 8.23 0.0
5 1.28,13.75 0.78,13.25 0.28,12.75 0.00,12.25 0.00,11.75 0.00,11.25 0.00,10.75 0.00,10.25 0.00, 9.75 0.
6 1.79,15.27 1.29,14.77 0.79,14.27 0.29,13.77 0.00,13.27 0.00,12.77 0.00,12.27 0.00,11.77 0.00,11.27 0.
7 2.33,16.77 1.83,16.27 1.33,15.77 0.83,15.27 0.33,14.77 0.00,14.27 0.00,13.77 0.00,13.27 0.00,12.77 0.
8 2.91,18.27 2.41,17.77 1.91,17.27 1.41,16.77 0.91,16.27 0.41,15.77 0.00,15.27 0.00,14.77 0.00,14.27 0.
9 3.31,19.46 3.00,18.96 2.51,18.46 2.01,17.96 1.51,17.46 1.01,16.96 0.51,16.46 0.01,15.96 0.00,15.46 0.

10 3.68,20.83 3.37,20.33 3.07,19.83 2.63,19.33 2.13,18.83 1.63,18.33 1.13,17.83 0.63,17.33 0.13,16.83 0.
11 4.05,22.31 3.73,21.81 3.43,21.31 3.14,20.81 2.77,20.31 2.27,19.81 1.77,19.31 1.27,18.81 0.77,18.31 0.
12 4.41,23.80 4.10,23.30 3.80,22.80 3.50,22.30 3.22,21.80 2.93,21.30 2.43,20.80 1.93,20.30 1.43,19.80 0.
13 5.83,24.92 5.33,24.42 4.83,23.92 4.33,23.42 3.83,22.92 3.33,22.42 3.02,21.92 2.60,21.42 2.10,20.92 1.
14 6.31,26.33 5.81,25.83 5.31,25.33 4.86,24.83 4.46,24.33 4.10,23.83 3.67,23.33 3.17,22.83 2.78,22.33 1.
15 6.70,27.81 6.20,27.31 5.70,26.81 5.24,26.31 4.84,25.81 4.48,25.31 4.14,24.81 3.82,24.31 3.42,23.81 2.
16 7.76,28.85 7.26,28.35 6.76,27.85 6.26,27.35 5.76,26.85 5.26,26.35 4.76,25.85 4.26,25.35 3.89,24.85 3.
17 8.32,30.33 7.82,29.83 7.32,29.33 6.82,28.83 6.32,28.33 5.85,27.83 5.42,27.33 5.03,26.83 4.67,26.33 3.
18 8.71,31.81 8.21,31.31 7.71,30.81 7.21,30.31 6.71,29.81 6.24,29.31 5.82,28.81 5.42,28.31 5.06,27.81 4.
19 9.88,32.85 9.38,32.35 8.88,31.85 8.38,31.35 7.88,30.85 7.38,30.35 6.88,29.85 6.40,29.35 5.97,28.85 5.
20 10.28,34.32 9.78,33.82 9.28,33.32 8.78,32.82 8.28,32.32 7.78,31.82 7.28,31.32 6.81,30.82 6.37,30.32 5.
,
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It is instructive to compare Fig. 10 with Fig. 3. At largex,
the confidence intervals@m1 ,m2# are the same in both plots
since that is far away from the constraining boundary. Bel
x51.28, the lower end point of the new confidence interv
is zero, so that there is automatically a transition from tw
s
-

sided confidence intervals to an upper confidence limit giv
by m2 . The point of this transition is fixed by the calculatio
of the acceptance interval form50; the solution has
x152`, and so Eq.~4.4! is satisfied byx251.28 when
a590%. Of course, one is not obligated to claim a non-n
0, 2.86
, 3.03
3.23
47
4

0, 4.82
0, 5.29
0, 5.95
0, 7.07
0, 7.84

00, 9.09
00, 9.98
00,11.36
00,12.81
00,13.85
00,15.33
00,16.81
00,17.85
00,19.32
TABLE IX. 99% C.L. intervals for the Poisson signal meanm, for total events observedn0 , for known mean backgroundb ranging from
6 to 15.

n0\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0 0.00, 2.91 0.00, 2.90 0.00, 2.89 0.00, 2.88 0.00, 2.88 0.00, 2.87 0.00, 2.87 0.00, 2.86 0.00, 2.86 0.0
1 0.00, 3.42 0.00, 3.31 0.00, 3.21 0.00, 3.18 0.00, 3.15 0.00, 3.11 0.00, 3.09 0.00, 3.07 0.00, 3.06 0.00
2 0.00, 4.13 0.00, 3.89 0.00, 3.700.00, 3.56 0.00, 3.44 0.00, 3.39 0.00, 3.35 0.00, 3.32 0.00, 3.26 0.00,
3 0.00, 5.25 0.00, 4.59 0.00, 4.35 0.00, 4.06 0.00, 3.890.00, 3.77 0.00, 3.65 0.00, 3.56 0.00, 3.51 0.00, 3.
4 0.00, 6.47 0.00, 5.73 0.00, 5.04 0.00, 4.79 0.00, 4.39 0.00, 4.170.00, 4.02 0.00, 3.91 0.00, 3.82 0.00, 3.7
5 0.00, 7.81 0.00, 6.97 0.00, 6.21 0.00, 5.50 0.00, 5.17 0.00, 4.67 0.00, 4.42 0.00, 4.240.00, 4.11 0.00, 4.01
6 0.00, 9.27 0.00, 8.32 0.00, 7.47 0.00, 6.68 0.00, 5.96 0.00, 5.46 0.00, 5.05 0.00, 4.83 0.00, 4.630.00, 4.44
7 0.00,10.77 0.00, 9.77 0.00, 8.82 0.00, 7.95 0.00, 7.16 0.00, 6.42 0.00, 5.73 0.00, 5.48 0.00, 5.12 0.0
8 0.00,12.27 0.00,11.27 0.00,10.27 0.00, 9.31 0.00, 8.44 0.00, 7.63 0.00, 6.88 0.00, 6.18 0.00, 5.83 0.0
9 0.00,13.46 0.00,12.46 0.00,11.46 0.00,10.46 0.00, 9.46 0.00, 8.50 0.00, 7.69 0.00, 7.34 0.00, 6.62 0.0

10 0.00,14.83 0.00,13.83 0.00,12.83 0.00,11.83 0.00,10.83 0.00, 9.87 0.00, 8.98 0.00, 8.16 0.00, 7.39 0.0
11 0.00,16.31 0.00,15.31 0.00,14.31 0.00,13.31 0.00,12.31 0.00,11.31 0.00,10.35 0.00, 9.46 0.00, 8.63 0.0
12 0.00,17.80 0.00,16.80 0.00,15.80 0.00,14.80 0.00,13.80 0.00,12.80 0.00,11.80 0.00,10.83 0.00, 9.94 0.
13 0.10,18.92 0.00,17.92 0.00,16.92 0.00,15.92 0.00,14.92 0.00,13.92 0.00,12.92 0.00,11.92 0.00,10.92 0.
14 0.78,20.33 0.00,19.33 0.00,18.33 0.00,17.33 0.00,16.33 0.00,15.33 0.00,14.33 0.00,13.33 0.00,12.33 0.
15 1.48,21.81 0.48,20.81 0.00,19.81 0.00,18.81 0.00,17.81 0.00,16.81 0.00,15.81 0.00,14.81 0.00,13.81 0.
16 2.18,22.85 1.18,21.85 0.18,20.85 0.00,19.85 0.00,18.85 0.00,17.85 0.00,16.85 0.00,15.85 0.00,14.85 0.
17 2.89,24.33 1.89,23.33 0.89,22.33 0.00,21.33 0.00,20.33 0.00,19.33 0.00,18.33 0.00,17.33 0.00,16.33 0.
18 3.53,25.81 2.62,24.81 1.62,23.81 0.62,22.81 0.00,21.81 0.00,20.81 0.00,19.81 0.00,18.81 0.00,17.81 0.
19 4.13,26.85 3.31,25.85 2.35,24.85 1.35,23.85 0.35,22.85 0.00,21.85 0.00,20.85 0.00,19.85 0.00,18.85 0.
20 4.86,28.32 3.93,27.32 3.08,26.32 2.08,25.32 1.08,24.32 0.08,23.32 0.00,22.32 0.00,21.32 0.00,20.32 0.
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discovery just because the 90% C.L. confidence interval d
not contain zero. With a proper understanding of what c
fidence intervals are~Sec. II B!, one realizes that they do no
indicate the degree of belief.

Our 90% C.L. upper limit atx50 is m251.64, which,
interestingly, is the standard 95% C.L. upper limit, rath
thanm251.28, which is the standard 90% C.L. upper lim
The departure from the standard 90% C.L. upper limits
flects the fact, mentioned above, that they provide frequen
coverage only when the decision to quote an upper limi
not based on the data. Our method repairs the undercove
caused by flip-flopping~Fig. 4!, with a necessary cost in
loosening the upper limits aroundx50.

FIG. 8. Upper endm2 of our 90% C.L. confidence interval
@m1 ,m2#, for unknown Poisson signal meanm in the presence of an
expected Poisson background with known meanb. The curves for
the casesn0 from 0 through 10 are plotted. Dotted portions on t
upper left indicate regions wherem1 is non-zero~and shown in the
following figure!. Dashed portions in the lower right indicate r
gions where the probability of obtaining the number of events
served or fewer is less than 1%, even ifm50.

FIG. 9. Lower endm1 of our 90% C.L. confidence interval
@m1 ,m2#, for unknown Poisson signal meanm in the presence of an
expected Poisson background with known meanb. The curves cor-
respond to the dotted regions in the plots ofm2 of the previous
figure, with againn0510 for the upper right curve, etc.
es
-

r

-
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As x decreases, the upper limits from our method d
crease, asymptotically going as 1/uxu for large negativex. As
in the Poisson case, particular caution is necessary whe
terpreting limits obtained from measured values ofx which
are unlikely for all physicalm.

C. Decoupling of goodness-of-fit C.L. from the confidence
interval C.L.

An advantage of our intervals compared to the stand
classical intervals is that ours effectively decouple the co
dence level used for a goodness-of-fit test from the co
dence level used for confidence interval construction.

To elaborate, let us first recall the procedure used i
standard ‘‘easy’’x2 fit ~free from constraints, background
etc.!, for example the fit of a one-parameter curve to a se
points with Gaussian error bars. One examines thex2 be-
tween the data and the fitted curve, as a function of the
parameter. Thevalueof x2 at its minimum is used to deter
mine the goodness-of-fit: using standard tables, one can
vert this value to a goodness-of-fit confidence level wh
tells one the quality of the fit. A very poor fit means that t
information on the fitted parameter is suspect: the exp
mental uncertainties may not be assessed properly, the f
tional form of the parametrized curve may be wrong, or,
the most general terms, the hypotheses being considered
not be the relevant ones.

If the value of the minimumx2 is considered acceptable
then one examines theshapeof x2 ~as a function of the fit
parameter! near its minimum, in order to obtain an~approxi-
mate! confidence interval for the fit parameter atanydesired
confidence level. This procedure is powerful because it d
not permit random fluctuations that favor no particular p
rameter value to influence the confidence interval. The t
confidence levels invoked in this example are then indep
dent; for example, one may require that the goodness-o
C.L. be in the top 99% in order to consider the fit to
acceptable, while quoting a 68% C.L. confidence interval
the fitted parameter.

The problems with the standard classical intervals in S
III can be viewed from the point of view that they effective
constrain the C.L. used for the goodness-of-fit to be rela
to that used for the the confidence interval. In both t
Gaussian and the Poisson upper limit examples, consider
example, 90% as the C.L. for upper limits; the confiden
interval is the empty set~or outside the physical region, som
prefer to say! some fraction of the time which is determine
by this choice of C.L. For example, if the true mean is ze
in the constrained Gaussian problem, then the empty se
obtained 10% of the time from Fig. 2; if the true mean
zero in the Poisson-with-background problem, the empty
can be obtained up to 10% of the time from confidence b
such as Fig. 5~depending on the mean backgroundb and on
how discreteness affects the intervals for thatb.! An empty-
set confidence interval has the same effect as failing
goodness-of-fit test: no useful confidence interval is inferr
With the standard confidence intervals, one is forced to us
specific C.L. for this effective goodness-of-fit test, coupled
the C.L. used for interval construction. We believe this to
most undesirable and at the heart of the community’s dis
isfaction with the standard intervals.

-
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TABLE X. Our confidence intervals for the meanm of a Gaussian, constrained to be non-negative, as a function of the measured
x0 , for commonly used confidence levels. Italicized intervals correspond to cases where the goodness-of-fit probability~Sec. IV C! is less
than 1%. All numbers are in units ofs.

x0 68.27% C.L. 90% C.L. 95% C.L. 99% C.L. x0 68.27% C.L. 90% C.L. 95% C.L. 99% C.L.
80
82
84
87
89
92
95
99
02
06
10
14
19
24
29
35
41
47
54
61
68
76
84
93
01
10
19
28
38
48
58

68
78
88
98
08
18
28
38
48
58
68
78
88
98
08
18
28
38
48
58
68
78
88
98
08
18
28
38
48
58
68
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23.0 0.00, 0.04 0.00, 0.26 0.00, 0.42 0.00, 0.
22.9 0.00, 0.04 0.00, 0.27 0.00, 0.44 0.00, 0.
22.8 0.00, 0.04 0.00, 0.28 0.00, 0.45 0.00, 0.
22.7 0.00, 0.04 0.00, 0.29 0.00, 0.47 0.00, 0.
22.6 0.00, 0.05 0.00, 0.30 0.00, 0.48 0.00, 0.
22.5 0.00, 0.05 0.00, 0.32 0.00, 0.50 0.00, 0.
22.4 0.00, 0.05 0.00, 0.33 0.00, 0.52 0.00, 0.
22.3 0.00, 0.05 0.00, 0.34 0.00, 0.54 0.00, 0.
22.2 0.00, 0.06 0.00, 0.36 0.00, 0.56 0.00, 1.
22.1 0.00, 0.06 0.00, 0.38 0.00, 0.59 0.00, 1.
22.0 0.00, 0.07 0.00, 0.40 0.00, 0.62 0.00, 1.
21.9 0.00, 0.08 0.00, 0.43 0.00, 0.65 0.00, 1.
21.8 0.00, 0.09 0.00, 0.45 0.00, 0.68 0.00, 1.
21.7 0.00, 0.10 0.00, 0.48 0.00, 0.72 0.00, 1.
21.6 0.00, 0.11 0.00, 0.52 0.00, 0.76 0.00, 1.
21.5 0.00, 0.13 0.00, 0.56 0.00, 0.81 0.00, 1.
21.4 0.00, 0.15 0.00, 0.60 0.00, 0.86 0.00, 1.
21.3 0.00, 0.17 0.00, 0.64 0.00, 0.91 0.00, 1.
21.2 0.00, 0.20 0.00, 0.70 0.00, 0.97 0.00, 1.
21.1 0.00, 0.23 0.00, 0.75 0.00, 1.04 0.00, 1.
21.0 0.00, 0.27 0.00, 0.81 0.00, 1.10 0.00, 1.
20.9 0.00, 0.32 0.00, 0.88 0.00, 1.17 0.00, 1.
20.8 0.00, 0.37 0.00, 0.95 0.00, 1.25 0.00, 1.
20.7 0.00, 0.43 0.00, 1.02 0.00, 1.33 0.00, 1.
20.6 0.00, 0.49 0.00, 1.10 0.00, 1.41 0.00, 2.
20.5 0.00, 0.56 0.00, 1.18 0.00, 1.49 0.00, 2.
20.4 0.00, 0.64 0.00, 1.27 0.00, 1.58 0.00, 2.
20.3 0.00, 0.72 0.00, 1.36 0.00, 1.67 0.00, 2.
20.2 0.00, 0.81 0.00, 1.45 0.00, 1.77 0.00, 2.
20.1 0.00, 0.90 0.00, 1.55 0.00, 1.86 0.00, 2.

0.0 0.00, 1.00 0.00, 1.64 0.00, 1.96 0.00, 2.

In contrast, our construction always provides a confide
interval at the desired confidence level~with of course some
conservatism for the discrete problems!. Independently, one
can calculate the analogue of the goodness-of-fit, and de
whether or not to consider the data or model~including mean
expected background! to be invalid. This issue arises in th
case when an upper limit is quoted; i.e., the confidence
terval is @0,m2#.

In the constrained Gaussian case, one might have
x0522.0 and hence a 90% C.L. confidence interval@0, 0.4#
from Table X. The natural analogue for the goodness-of-fi
the probability to obtainx<x0 under the best-fit assumptio
of m50.

In the Poisson-with-background case, one might have d
n051 for b53 and hence a 90% C.L. confidence interval@0,
1.88# from Table IV. The natural analogue for the goodne
of-fit is the probability to obtainn<n0 under the best-fit
assumption ofm50.
0.1 0.00, 1.10 0.00, 1.74 0.00, 2.06 0.00, 2.
0.2 0.00, 1.20 0.00, 1.84 0.00, 2.16 0.00, 2.
0.3 0.00, 1.30 0.00, 1.94 0.00, 2.26 0.00, 2.
0.4 0.00, 1.40 0.00, 2.04 0.00, 2.36 0.00, 2.
0.5 0.02, 1.50 0.00, 2.14 0.00, 2.46 0.00, 3.
0.6 0.07, 1.60 0.00, 2.24 0.00, 2.56 0.00, 3.
0.7 0.11, 1.70 0.00, 2.34 0.00, 2.66 0.00, 3.
0.8 0.15, 1.80 0.00, 2.44 0.00, 2.76 0.00, 3.
0.9 0.19, 1.90 0.00, 2.54 0.00, 2.86 0.00, 3.
1.0 0.24, 2.00 0.00, 2.64 0.00, 2.96 0.00, 3.
1.1 0.30, 2.10 0.00, 2.74 0.00, 3.06 0.00, 3.
1.2 0.35, 2.20 0.00, 2.84 0.00, 3.16 0.00, 3.
1.3 0.42, 2.30 0.02, 2.94 0.00, 3.26 0.00, 3.
1.4 0.49, 2.40 0.12, 3.04 0.00, 3.36 0.00, 3.
1.5 0.56, 2.50 0.22, 3.14 0.00, 3.46 0.00, 4.
1.6 0.64, 2.60 0.31, 3.24 0.00, 3.56 0.00, 4.
1.7 0.72, 2.70 0.38, 3.34 0.06, 3.66 0.00, 4.
1.8 0.81, 2.80 0.45, 3.44 0.16, 3.76 0.00, 4.
1.9 0.90, 2.90 0.51, 3.54 0.26, 3.86 0.00, 4.
2.0 1.00, 3.00 0.58, 3.64 0.35, 3.96 0.00, 4.
2.1 1.10, 3.10 0.65, 3.74 0.45, 4.06 0.00, 4.
2.2 1.20, 3.20 0.72, 3.84 0.53, 4.16 0.00, 4.
2.3 1.30, 3.30 0.79, 3.94 0.61, 4.26 0.00, 4.
2.4 1.40, 3.40 0.87, 4.04 0.69, 4.36 0.07, 4.
2.5 1.50, 3.50 0.95, 4.14 0.76, 4.46 0.17, 5.
2.6 1.60, 3.60 1.02, 4.24 0.84, 4.56 0.27, 5.
2.7 1.70, 3.70 1.11, 4.34 0.91, 4.66 0.37, 5.
2.8 1.80, 3.80 1.19, 4.44 0.99, 4.76 0.47, 5.
2.9 1.90, 3.90 1.28, 4.54 1.06, 4.86 0.57, 5.
3.0 2.00, 4.00 1.37, 4.64 1.14, 4.96 0.67, 5.
3.1 2.10, 4.10 1.46, 4.74 1.22, 5.06 0.77, 5.

e
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As noted above, in Fig. 8 we follow the practice of th
PDG @2# by indicating with dashed lines those regions whe
the goodness-of-fit criterion is less than 1%. In Tables II–
the corresponding intervals are italicized.

In summary, because our intervals decouple the co
dence level used for a goodness-of-fit test from the co
dence level used for confidence interval construction, on
free to choose them independently, at whatever level des

V. APPLICATION TO NEUTRINO OSCILLATION
SEARCHES

A. Experimental problem

Experimental searches for neutrino oscillations provide
example of the application of this technique to a multidime
sional problem. Indeed it is just this problem that origina
focused our attention on this investigation.

Experiments of this type search for a transformation
one species of neutrino into another. To be concrete,
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assume that the experiment is to search for transformat
between muon type neutrinos,nm , and electron type neutri
nos,ne , and that the influence of other types of neutrinos c
be ignored. We hypothesize that the weak eigenstatesunm&
and une& are linear superpositions of two mass eigensta
un1& and un2&,

une&5un1&cosu1un2&sin u ~5.1!

and

unm&5un2&cosu2un1&sin u, ~5.2!

and that the mass eigenvalues forun1& and un2& arem1 and
m2 , respectively. Quantum mechanics dictates that the p
ability of such a transformation is given by the formu
@2,16#

P~nm→ne!5sin2~2u!sin2S 1.27Dm2L

E D , ~5.3!

whereP is the probability for anm to transform into ane , L
is the distance in km between the creation of the neutr
from meson decay and its interaction in the detector,E is the
neutrino energy in GeV, andDm25um1

22m2
2u in (eV/c2)2.

The result of such an experiment is typically represen
as a two-dimensional confidence region in the plane of
two unknown physical parameters,u, the rotation angle be
tween the weak and mass eigenstates, andDm2, the ~posi-
tive! difference between the squares of the neutrino mas
Traditionally, sin2(2u) is plotted along the horizontal axi
and Dm2 is plotted along the vertical axis. An example
such a plot is shown in Fig. 11, based on a toy model that
develop below. In this example, no evidence for oscillatio
is seen and the confidence region is set as the area to th
of the curve in this figure.

B. Proposed technique for determining confidence regions

The problem of setting the confidence region for a n
trino oscillation search experiment often shares all of
difficulties discussed in the previous sections. The varia

FIG. 10. Plot of our 90% confidence intervals for the mean o
Gaussian, constrained to be non-negative, described in the tex
ns

n

s

b-

o

d
e

s.

e
s
left

-
e
le

sin2(2u) is clearly bounded by zero and one. Values outs
this region can have no possible interpretation within
theoretical framework that defines the unknown physical
rameters. Yet consider an experiment searching in a reg
of Dm2 in which oscillations either do not exist or are we
below the sensitivity of the experiment. Such an experim
is typically searching for a small signal of excessne interac-
tions in a potentially large background ofne interactions
from conventional sources and misidentifiednm interactions.
Thus, it is equally likely to have a best fit to a negative val
of sin2(2u) as to a positive one, provided that the fit to E
~5.3! is unconstrained.

Typically, the experimental measurement consists
counting the number of events in an arbitrary number of b
@17# in the observed energy of the neutrino and possi
other measured variables, such as the location of the inte
tion in the detector. Thus, the measured data consist of a
N[$ni%, together with an assumed known mean expec
backgroundB[$bi% and a calculated expected oscillatio
contributionT[$m i usin2(2u),Dm2%.

To construct the confidence region, the experimenter m
choose an ordering principle to decide which of the lar
number of possibleN sets should be included in the acce
tance region for each point on the sin2(2u)-Dm2 plane. We
suggest an ordering principle identical to the one sugge
in Sec. IV, namely the ratio of the probabilities,

R5
P~NuT!

P~NuTbest!
, ~5.4!

whereTbest„sin2(2u)best,Dmbest
2

… gives the highest probability
for P(NuT) for the physically allowed values of sin2(2u) and
Dm2.

In the Gaussian regime,x2522 ln(P), and so this ap-
proach is equivalent to using the difference inx2 betweenT
andTbest, i.e.,

R8[Dx25(
i

F ~ni2bi2m i !
2

s i
2 2

~ni2bi2mbesti
!2

s i
2 G ,

~5.5!

a FIG. 11. Calculation of the confidence region for an example
the toy model in which sin2(2u)50. The 90% confidence region i
the area to the left of the curve.
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wheres i is the Gaussian error. We actually recommend
alternative form based on the likelihood function@18#,

R9[Dx252(
i

Fm i2mbesti
1ni lnS mbesti

1bi

m i1bi
D G , ~5.6!

since it can be used in all cases.
To demonstrate how this works in practice, and how

compares to alternative approaches that have been use
consider a toy model of a typical neutrino oscillation expe
ment. The toy model is defined by the following paramete
Mesons are assumed to decay to neutrinos uniformly i
region 600–1000 m from the detector. The expected ba
ground from conventionalne interactions and misidentified
nm interactions is assumed to be 100 events in each o
energy bins which span the region from 10 to 60 GeV. W
assume that thenm flux is such that ifP(nm→ne)50.01
averaged over any bin, then that bin would have an expe
additional contribution of 100 events due tonm→ne oscilla-
tions.

The acceptance region for each point in the sin2(2u)-Dm2

plane is calculated by performing a Monte Carlo simulat
of the results of a large number of experiments for the giv
set of unknown physical parameters and the known neut
flux of the actual experiment. For each experiment,Dx2 is
calculated according to the prescription of either Eq.~5.5! or
~5.6!. The single number that is needed for each point in
sin2(2u)-Dm2 plane isDxc

2
„sin2(2u),Dm2

…, such thata of the
simulated experiments haveDx2,Dxc

2 . After the data are
analyzed, Dx2 for the data and each point in th
sin2(2u)-Dm2 plane, i.e.Dx2(Nusin2(2u),Dm2), is compared
to Dxc

2 and the acceptance region is all points such that

Dx2
„Nusin2~2u!,Dm2

…,Dxc
2
„sin2~2u!,Dm2

…. ~5.7!

Figure 11 is an example of the result of a calculation fo
random experiment in the toy model for which there were
oscillations, i.e., for sin2(2u)50.

One might naively expect thatDxc
254.61, the 90% C.L.

value for ax2 distribution with two degrees of freedom. Fo
the toy model, it actually varies from about 2.4 to 6.6 acro
the sin2(2u)-Dm2 plane. The deviation from 4.61 is caused
at least three effects:

~1! Proximity to the unphysical region. Points close to t
unphysical region occasionally have best fits in the unph
cal region. Since our algorithm restricts fits to the physi
region, these fits give a lowerDx2 than unrestricted fits.

~2! Sinusoidal nature of the oscillation function. Thex2

distribution assumes a Gaussian probability density funct
but the oscillation probability function is sinusoidal. For hig
values ofDm2 fluctuations can cause a global minimum in
‘‘wrong’’ trough of the function, increasing the value ofDx2

from what it would be if there were only one trough.
~3! One-dimensional regions. In some regions of t

plane, the probability distribution function becomes o
rather than two dimensional. For example, at very low val
of Dm2 the only relevant quantity is the number of events
the lowest energy bin, since the oscillation probability, E
~5.3!, is proportional to 1/E2 for sufficiently lowDm2. Fluc-
n

t
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tuations in higher energy bins do not lead to any physi
interpretation, and thus cancel in the calculation ofDx2. In
these regions,Dxc

2 tends to lower values than normal.

C. Comparison to alternative classical methods

Most papers reporting the results of neutrino oscillati
searches have not been explicit enough for us to determ
exactly how the confidence regions were set. However,
can imagine three classical methods that either have or c
have been used. We refer to these as the raster scan
flip-flop raster scan, and the global scan. All of them ha
the advantage that a Gaussian approximation is made so
a full Neyman construction of the confidence region is n
necessary.

~1! The raster scan: For each value ofDm2, a best fit is
made for sin2(2u). At eachDm2, x2 is calculated as a func
tion of sin2(2u), and the 1D confidence interval in sin2(2u) at
thatDm2 is taken to be all points that have ax2 within 2.71
of the minimum value.~2.71 is the two-sided 90% C.L. for a
x2 distribution with one degree of freedom.! The confidence
region in the„sin2(2u),Dm2

… plane is then the union of al
these intervals.

~2! The flip-flop raster scan: Similar to the raster sc
except that a decision to use a one-sided upper limit o
two-sided interval is made based on the data. If there
signal with significance greater than three standard de
tions, the raster scan is used. If not, an upper limit is set b
raster scan using the one-sided 90% C.L.Dx2 value of 1.64.

~3! The global scan: A best fit is made to both sin2(2u)
and Dm2, and the confidence region is given as all poin
that have ax2 within 4.61 of the minimum value.~As men-
tioned above, 4.61 is the two-sided 90% C.L. for ax2 distri-
bution with two degrees of freedom.!

In all three cases, we assume that there is no restric
that the best fit be in the physical region. This is because
method of using a fixedDx2 depends on the referencex2

being the minimum of a parabolicx2 distribution. Any at-
tempt to restrict the minimum to the physical region au
matically gives improper coverage. Thus, all three of the
methods suffer from the possibility that they could either ru
out the entire physical plane or give limits which are n
characteristic of the sensitivity of the experiment.

We have used the toy model to study the coverage of e
of these techniques. The raster scan gives exact cove
However, it is not a powerful technique in that it cann
distinguish a likely value ofDm2 from an unlikely one, since
it works at fixedDm2. This is best illustrated in the case i
which a positive signal is found. Figure 12 shows the con
dence regions for both the raster scan and our proposed
nique for a sample case for whichDmt

2540 (eV/c2)2 and
sin2(2ut)50.006. Both techniques provide exact covera
but the proposed technique isolates the signal, with one g
region, while the raster scan does not.

Since the raster scan gives exact coverage, it will
surprise the reader to learn that the flip-flop raster scan
dercovers for the reasons given in Sec. III. Figure 13 sho
the region of significant undercoverage~greater than 1%! for
the flip-flop raster scan. The coverage drops as low as 8
as is to be expected from the discussion in Sec. III. To set
scale, a quantity we call the ‘‘sensitivity’’ is also shown
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57 3887UNIFIED APPROACH TO THE CLASSICAL . . .
this figure. The sensitivity is defined as the average up
limit one would get from an ensemble of experiments w
the expected background and no true signal. We discuss
use of this quantity further in Sec. VI.

Unlike the raster scan and flip-flop raster scan, the glo
scan is a powerful technique. However, it suffers from n
giving proper coverage for the reasons enumerated at the
of the previous subsection@numbers~2! and~3!#. It has both
regions of undercoverage and overcoverage, as shown in
14. The coverage varies across the plane from about 76
94%.

Table XI summarizes the properties of the proposed te
nique and the three alternative techniques that we have
sidered.

FIG. 12. Calculation of the confidence regions for an example
the toy model in whichDm2540 ~eV/c2)2 and sin2(2u)50.006, as
evaluated by the proposed technique and the raster scan.

FIG. 13. Region of significant undercoverage for the flip-flo
Raster Scan.
er
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al
t
nd

ig.
to

h-
n-

VI. PROBLEM OF FEWER EVENTS THAN EXPECTED
BACKGROUND

We started this investigation to solve the problem in cl
sical statistics in which an experiment which measures
nificantly fewer events than are expected from backgrou
will report a meaningless or unphysical result. While w
have solved that problem, our solution still yields results t
are bothersome to some in that an experiment that meas
fewer events than expected from backgrounds will repo
lower upper limit than an identical experiment that measu
a number of events equal to that expected from the ba
ground. This seems particularly troublesome in the case
which the experiment has no observed events. Why sho
an experiment claim credit for expected backgrounds, w
it is clear, in that particular experiment, there were none?
why should a well-designed experiment which has no ba
ground and observes no events be forced to report a hi
upper limit than a less well-designed experiment which
pects backgrounds, but, by chance, observes none?

The origin of these concerns lies in the natural tende
to want to interpret these results as the probabilityP(m tux0)
of a hypothesis given data, rather than what they are re
related to, namely the probabilityP(x0um) of obtaining data
given a hypothesis. It is the former that a scientist may w
to know in order to make a decision, but the latter whi

f FIG. 14. Regions of significant under- and overcoverage for
global scan.

TABLE XI. Properties of the proposed technique for setti
confidence regions in neutrino oscillation search experiments
three alternative classical techniques defined in the text.

Technique

Always
gives useful

results

Gives
proper

coverage Is powerful

Raster scan A
Flip-flop raster scan
Global scan A
Proposed technique A A A
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3888 57GARY J. FELDMAN AND ROBERT D. COUSINS
classical confidence intervals relate to. As we discusse
Sec. II A, scientists may make Bayesian inferences
P(m tux0) based on experimental results combined with th
personal, subjective prior probability distribution function.
is thus incumbent on the experimenter to provide inform
tion that will assist in this assessment.

Our suggestion for doing this is that in cases in which
measurement is less than the estimated background, th
periment reports both the upper limit and the ‘‘sensitivity
of the experiment, where the ‘‘sensitivity’’ is defined as t
average upper limit that would be obtained by an ensem
of experiments with the expected background and no
signal. Table XII gives these values, for the case of a m
surement of a Poisson variable.

Thus, an experiment that measures 2 events and ha
expected background of 3.5 events would report a 90% C
upper limit of 2.7 events~from Table IV!, but a sensitivity of
4.6 events~from Table XII!.

Figure 15 represents a common occurrence for a neut
oscillation search experiment. It is a repeat of Fig. 11,
example of the toy model in which sin2(2u)50, but with the
sensitivity shown by a dashed line. The behavior is typica
what one would expect. Because of random fluctuations,
upper limit is greater than the sensitivity for some values
Dm2 and less than others. In this case, it is due to fluct
tions, but in an actual experiment, it could also be due to
presence of a signal around or below the experiment’s s
sitivity at some valueDm2, making other values ofDm2 less
likely. Again, for cases in which a significant portion of th
upper limit curve is below the sensitivity of the experime

TABLE XII. Experimental sensitivity~defined as the averag
upper limit that would be obtained by an ensemble of experime
with the expected background and no true signal!, as a function of
the expected background, for the case of a measurement of a
son variable.

b 68.27% C.L. 90% C.L. 95% C.L. 99% C.L.

0.0 1.29 2.44 3.09 4.74
0.5 1.52 2.86 3.59 5.28
1.0 1.82 3.28 4.05 5.79
1.5 2.07 3.62 4.43 6.27
2.0 2.29 3.94 4.76 6.69
2.5 2.45 4.20 5.08 7.11
3.0 2.62 4.42 5.36 7.49
3.5 2.78 4.63 5.62 7.87
4.0 2.91 4.83 5.86 8.18
5.0 3.18 5.18 6.32 8.76
6.0 3.43 5.53 6.75 9.35
7.0 3.63 5.90 7.14 9.82
8.0 3.86 6.18 7.49 10.27
9.0 4.03 6.49 7.81 10.69

10.0 4.20 6.76 8.13 11.09
11.0 4.42 7.02 8.45 11.46
12.0 4.56 7.28 8.72 11.83
13.0 4.71 7.51 9.01 12.22
14.0 4.87 7.75 9.27 12.56
15.0 5.03 7.99 9.54 12.90
in
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we suggest that the sensitivity curve be displayed as we
the upper limit.

VII. CONCLUSION

The construction described in this paper strictly adhere
the Neyman method@1#, as applied to discrete distribution
since the 1930s@13–15#. Thus, the resulting confidence in
tervals are firmly grounded in classical statistics theo
What is new is the particular choice of ordering we ma
within the freedom inherent in Neyman’s method. Th
choice, described in Sec. IV, yields intervals which automa
cally change over from upper limits to two-sided intervals
the ‘‘signal’’ becomes more statistically significant. Th
eliminates undercoverage caused by basing this choice
the data~‘‘flip-flopping’’ !. Our tables give classical confi
dence intervals for the two common problems for which t
PDG has described Bayesian solutions incorporating a~ques-
tionable! uniform prior for a bounded variable: Poisson pr
cesses with background and Gaussian errors with a boun
physical region. This introduction of Bayesian methods w
at least partly motivated by problems with the tradition
classical intervals~non-physical or empty-set intervals, an
coupling of goodness-of-fit C.L. with confidence interv
C.L.! which our new intervals solve. Thus, there should
renewed discussion of the appropriateness of Bayesian in
vals for reporting experimental measurements in an objec
way.

The new ordering principle can be applied quite gen
ally. We have developed the application to neutrino osci
tion searches, where the confidence region can have a
ticularly complicated structure due to physical constrai
and multiple local minima in the pdf’s.

Finally, we certainly agree that no matter how one co
structs an interval, it is important to publish relevant ingr
dients to the calculation so that the reader~and the PDG! can
~at least approximately! perform alternative calculations o
combine the result with other experiments@19#. In the
Gaussian case, the ingredients are the measured value~even
if non-physical! and the standard error.~Separating the sta

FIG. 15. Comparison of the confidence region for an example
the toy model in which sin2(2u)50 and the sensitivity of the experi
ment, as defined in the text.
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57 3889UNIFIED APPROACH TO THE CLASSICAL . . .
tistical and systematic errors, as is often done, is even
ter.! In the case of a counting experiment with know
background, the required ingredients are the number of
served events, the expected mean background, and the f
~incorporating, e.g., integrated luminosity, efficiencies, e!
which converts the number of observed events to the rele
physics quantity~cross section, branching ratio, etc.!.

Note added in proof.Although we are not aware of pre
vious application of this ordering principle to the constru
tion of confidence intervals for the presentation of scient
y-
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lls

-
.

6
7

a

the

e
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nt
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results, such an ordering is naturally implied by the theory
likelihood ratio tests, as explained in Sec. 23.1 of Ref.@10#.
We thank H. Chernoff for clarifying discussions on th
point.
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