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This paper investigates the influence of thickness of template layer on strain fields and transition
energies in lens-shaped self-assembled SiGe /Si quantum dots. This study analyzes strain fields in
and around quantum dots on the basis of the theory of linear elasticity. Strain fields are then
incorporated into the steady-state effective-mass Schrödinger equation. Energy levels and
wavefunctions of both electrons and holes are calculated. The calculated results of strain-induced
phonon frequency are consistent with previous results obtained by Raman spectroscopy. Moreover,
the calculated transition energy agrees well with previous experimental photoluminescence data.
Numerical results also suggest that transition energy decreases as the template layer thickness
increases. © 2008 American Institute of Physics. �DOI: 10.1063/1.2891418�

I. INTRODUCTION

Due to three-dimensional quantum confinements, quan-
tum dots �QDs� possess several interesting characteristics,
including discrete energy levels and “atomlike” electronic
states. These characteristics and their potential applications
in optoelectronics have recently attracted substantial atten-
tion in the investigation of QDs.1,2 Numerous studies have
reported on InGaAs /GaAs and other group III-V quantum-
dot heterostructures showing a wide range of dot sizes and
shapes.2–4 Group IV quantum-dot systems, such as SiGe /Si,
are also interesting because of their potential applications in
devices and their compatibility with silicon-based
technology.5–7

Strain fields in and around self-assembled quantum dots
�SAQDs� strongly affect optoelectronic properties of QDs.
Hydrostatic strain shifts the edges of the conduction and the
valence bands, while the uniaxial strain lifts the band degen-
eracy. Designing optoelectronic devices requires an accurate
determination of the induced strain fields in both the quan-
tum dot and the surrounding matrix. This information reveals
how material parameters affect the conduction and valence
bands and their curvatures, thereby altering the effective
masses and transport properties.

Recently, Kurdi et al.8 evaluated the strain fields of
SiGe /Si SAQDs using valence force field theory. Makeev
and co-workers9,10 studied stress distribution in Ge /Si QDs
using atomistic simulations. This paper investigates strain
fields and energy levels in QDs using finite element method
�FEM� to simulate the system of SiGe /Si QDs. The FEM is
a very versatile and effective numerical method for accom-
modating different theories to model QDs at various levels of
complexity. Previous studies4 using the FEM showed good
agreement with experimental photoluminescence data. This
study analyzes strain fields induced by lattice mismatches in
heterostructures on the basis of the theory of linear elasticity.
The three-dimensional steady-state Schrödinger equation is

then modified by incorporating the effects of strain fields into
the carrier confinement potential and is analyzed by FEM
numerically. The results include the energy levels and wave-
function spectra of SiGe /Si QDs. The calculated strain fields
are also used to evaluate the strain-induced phonon frequen-
cies which, along with the calculated transition energies, are
compared against experimental data. Finally, this paper dis-
cusses the influence of template layer thickness on transition
energies in SiGe /Si QDs.

II. PROBLEM STATEMENT

This paper considers a single lens-shaped SiGe QD bur-
ied in a Si matrix, as depicted schematically in Fig. 1. A thin
template layer of Si0.5Ge0.5 is first grown on a �001� Si sub-
strate. A thin Ge layer is then deposited on the template layer.
Spontaneous coherent island formation then produces
SAQDs. Finally, the quantum-dot islands are covered by a
further deposition of the same material as the substrate. Nu-
merical examples in this paper consider three different thick-
nesses of the Si0.5Ge0.5 template layer: t=3, 4, and 5 nm, all
of which are less than the critical thickness.11 The base di-
ameter d and height h of the quantum dot are 70 and 21 nm,
respectively. The thicknesses of the substrate and the capping
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FIG. 1. �a� Schematics and geometries of Ge QD nanostructure. �b� d and h
are the base diameter and height of the island, respectively.
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layer are 80 and 60 nm, respectively. The SiGe QD is as-
sumed to have a uniform Ge concentration of 48%.12

III. STRAIN FIELD

Epitaxially grown semiconductor structures often consist
of materials with different lattice constants. The mismatch of
lattice constants creates strain fields in quantum-dot hetero-
structures, which affect the optoelectronic properties of
quantum dots. In-plane lattice mismatch parameters13 are de-
fined as

��0�xx = ��0�yy =
as − ad

ad
�1�

where as and ad are the lattice constants of the substrate
�lower layer� and the quantum dots �upper layer� materials,
respectively. The numerical values of lattice constant of the
Si1−cGec are set as 5.431+0.1992c+0.02733c2, where c is
the Ge concentration.14 In this example, the lattice constant
of the substrate material �Si� is smaller than that of the tem-
plate layer material �Si0.5Ge0.5�. However, the lattice constant
of the template-layer material exceeds that of the quantum-
dot material �Si0.52Ge0.48�. Therefore, the Si layer compresses
the Si0.5Ge0.5 template layer, and the Si0.5Ge0.5 template layer
puts tension on the Si0.52Ge0.48 dot. In other words, the
Si0.52Ge0.48 dot will be less compressive than the Si0.5Ge0.5

template layer.
This paper assumes the deposition material adjusts its

in-plane lattice constant to that of the substrate during epi-
taxial growth. It therefore induces an initial in-plane strain in
the deposition material �i.e., ��0�xx= ��0�yy in Eq. �1��. The
initial in-plane strain also accompanies an initial normal
strain in the z axis �the direction of QD growth� in the depo-
sition material due to Poisson’s effect.15,16 Based on the
plane-stress assumption,17 the initial out-of-plane strain
��0�zz leads to

��0�zz = −
2C12

C11
��0�xx. �2�

Here, both Si and Si1−cGec are considered as cubic materials.
Each material has three independent elastic moduli: C11, C12,
and C44. The numerical values of elastic moduli used in this
paper are taken from Ref. 18.

Notice that the lattice mismatch parameters defined in
Eq. �1� are not yet the complete strain fields in the quantum-
dot island. In fact, lattice mismatches will induce further
elastic deformation in the entire nanostructure system, in the
substrate, template layer, and the island, to ensure the equi-
librium of the corresponding stresses. This paper regards the
parameters ��0�xx, ��0�yy, and ��0�zz as the initial normal
strains in the x-, y-, and z-directions, respectively. These ini-
tial strains in the template layer and the island induce further
elastic strain fields in the entire SAQD system. Therefore,
they serve as inputs in the following finite element analysis.

According to the theory of linear elasticity, the relation-
ship between stresses �ij, total strains �kl, and initial strains
can be expressed as

�ij = Cijkl � �kl − ��0�kl�, i, j,k,l = x,y,z , �3�

where Cijkl is the component of the fourth-order tensor of
elastic moduli and ��0�kl denotes the initial strain tensors
described in Eqs. �1� and �2� with

��0�kl = 0 for k � l . �4�

This paper uses a finite element package �COMSOL Mult-
iphysics� to analyze the linear elastic boundary value prob-
lem. This problem arises from the mismatch in lattice con-
stants between the island, the template layer, and substrate
materials. Analysis requires appropriate boundary conditions.
The periodic symmetric argument requires that all nodes of
the x- and y-outer surfaces are fixed against displacement in
the normal direction. The bottom outer surface is fixed
against displacement in the z-direction to avoid any possible
rigid body translation. The upper surface is kept traction-
free. The compatibilities of displacements across
Si0.5Ge0.5 /Si and Si0.52Ge0.48 /Si0.5Ge0.5 interfaces are satis-
fied automatically in finite element formulation with dis-
placement fields used as basic unknowns.

Figures 2�a� and 2�b� show normal strain components �xx

and �zz, respectively, of QD structure along the z-axis �the
direction of QD growth� when the template layer is 5 nm
thick. Kurdi et al. obtained similar tendency on strain distri-
bution using the valence force field theory.8 These strain
components are not continuous across the
Si0.52Ge0.48 /Si0.5Ge0.5 and Si0.5Ge0.5 /Si interfaces, as one
might expect from the theory of continuum mechanics. No-
tice from Fig. 2, inside the template layer and the dot, the
strain fields �xx are compressive, while �zz are tensile. More-
over, inside the dot �xx is less compressive than that in the
template layer. These results reveal that the lattice constants
of the Si0.5Ge0.5 template layer and the Si0.52Ge0.48 quantum
dot are larger than that of the Si substrate. The calculated
strains have similar distributions but slightly differ in values
for cases of different template layer thicknesses. In particu-
lar, the difference in �xx within the Si matrix �substrate and
cap layer� increases as the thickness t increases, while the
difference in �zz decreases.

The hydrostatic strain and uniaxial strain are defined re-
spectively as

�h = �xx + �yy + �zz and �u = �zz −
��xx + �yy�

2
. �5�

The calculated results show that the hydrostatic strain is
negative in the template layer and the QD, while the uniaxial
strain is positive. The strain in the Si layer is small since Si
is much stiffer than SiGe. Figure 2�c� shows the hydrostatic
stress, �h=�xx+�yy +�zz, along the z-axis �the direction of
QD growth�. The strain fields obtained here will serve as
inputs for the confinement potentials and electric structure
calculations in the following section. Makeev and co-
workers report similar phenomena for a pyramidal Ge QD
using atomistic simulation.9,10

It is also of interest to point out that several studies have
used Raman scattering to characterize the strain and compo-
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sition of Si1−cGec films.12,19,20 The GeGe mode phonon fre-
quency � induced by QD strain components can be written
as19

� = �0 +
1

2�0
�p �zz + 2 q �xx� , �6�

where �0=0.5468�1014 s−1 is the frequency of Si0.52Ge0.48

bulk alloys,20 and the Ge deformation potentials p and q are
−4.7�1027 and −6.167�1027 s−2, respectively.19 The aver-
ages of calculated strain fields,�xx and �zz, inside the quan-

tum dot are −1.22�10−2 and 7.52�10−3, respectively, for a
template layer thickness of t=5 nm. Substituting these val-
ues directly into Eq. �6� leads to a phonon frequency � of
296 cm−1. For the sake of comparison the same procedure is
used to calculate a hut-shaped QD with the same thickness of
template layer, and the strain-induced phonon frequency is
297 cm−1 instead. It is well-known that the phonon fre-
quency depends not only on built-in strain but also on the
exact composition of the dots. Nevertheless, these calculated
phonon frequencies here are very similar to an experimental
GeGe mode phonon frequency.12

IV. TRANSITION ENERGY

The confinement potential V for strained quantum-dot
heterostructures can be written as the sum of energy offsets
of the unstrained conduction �or valence� band Vband and the
strain-induced potential Vstrain,

V�r� = Vband�r� + Vstrain�r� . �7�

The difference in the bandgap energies of the constituent
materials of the heterostructure determines the contribution
of Vstrain. Since strain effects induce an extra potential field
Vstrain, as suggested by the deformation potential theory,21

any alteration in the band structure and optical properties of
a quantum-dot system calls for further investigation. The
electric material properties used in this study are taken from
Ref. 18 and 22–26.

The confinement potentials in strained semiconductor
QDs, including the strain-induced effects, are piecewise con-
tinuous functions of position. Figure 3 shows these poten-
tials, along the z-axis �the direction of QD growth�, for both
electrons and holes. Notice that the �4 valley in the Si matrix
and the �2 valley in the SiGe region are neglected. The con-
duction band offset at each interface has been calculated, and
their values for the minima conduction band as deduced from
�Ec

�2−��Si0.5Ge0.5 /Si� and �Ec
�4−��Si0.5Ge0.5 /Si� are around

−36 and 28 meV, respectively, for different thicknesses t. On
the other hand, �Ec

�2−��Si0.52Ge0.48 /Si�=−91, −93, and
−95 meV, and �Ec

�4−��Si0.52Ge0.48 /Si�=33, 34, and 35 meV,
for template layer thicknesses t=3, 4, and 5 nm, respectively.
Thus, the band offset remains at a nearly constant value at

FIG. 2. �Color online�Strain components, �a� �xx and �b� �zz, and hydrostatic
stress, �c� �h=�xx+�yy +�zz, plotted along the z-axis for various different
template layer thicknesses.

FIG. 3. Energy diagrams of the strained SiGe /Si QD heterostructures plot-
ted along the z-axis for template layer thicknesses t=5 nm.
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the Si0.5Ge0.5 /Si interface. However, the band offset in-
creases as the thickness t increases at the Si0.52Ge0.48 /Si in-
terface.

The three-dimensional steady-state effective-mass
Schrödinger equation helps to determine the behavior of in-
dividual carriers in quantum-dot nanostructures. This paper
numerically analyzes the Schrödinger equation using the
same finite element package used above. The ground state
energy levels of the conduction as well as the heavy-hole and
light-hole bands are calculated. Figure 4 shows these ground
state energy levels for cases of different template layer thick-
nesses. Transition energy is defined as the difference between
energy levels of the electron and the hole. These transition
energies are related to the peaks of photoluminescence �PL�
spectra. The optical conductivity peaks at particular wave-
lengths of light that are more strongly absorbed. The calcu-
lated fundamental transition energies are 0.804 and 0.810 eV
for lens-shaped and hut-shaped QDs, respectively, with

thickness t=5 nm, which agree well with the peak of experi-
mental PL emission spectrum.12 The transition energies of
lens-shaped QDs for t=3 and 4 nm are 0.813 and 0.809 eV,
respectively. These results suggest that the transition energy
decreases as the template layer thickness increases.

Figure 5 shows the probability density function profiles
���2 for the ground state in a quantum-dot nanostructure. Fig-
ures 5�a� and 5�b� are the probability density function pro-
files of the electron state and the heavy-hole state, respec-
tively, for the template layer thicknesses t=5 nm. In Fig.
5�a�, the electrons are attracted to the top of the SiGe QD and
are confined in the Si capping layer. This result might be due
to the fact that a SiGe quantum-dot heterostructure is a typi-
cal type II transition material. In Fig. 5�b�, the effect of the
quantum-dot confines the hole in the template layer region
right below the QD with a disklike shape. Other template
layer thicknesses yield similar phenomena.

V. CONCLUSIONS

Based on the theory of linear elasticity, this paper ana-
lyzed the strain fields induced by lattice constant mismatches
in SiGe /Si quantum-dot heterostructures using finite element
methods. This study used the calculated strains to evaluate
the strain-induced phonon frequencies and found that they
were consistent with experimental phonon frequencies. Fur-
thermore, the energy levels and wavefunction distribution
have been obtained by analyzing the three-dimensional
steady-state effective-mass Schrödinger equation. The calcu-
lated transition energies agreed well with previous experi-
mental photoluminescence studies. Numerical results
showed that transition energy decreases as the template layer
thickness increases.

FIG. 4. Ground state energy levels of each band for different template layer
thicknesses. The different lines correspond to the different energy bands.

FIG. 5. �Color online� Probability density function profiles for energy levels of the ground state corresponding to �a� conduction band and �b� heavy-hole band
for template layer thickness t=5 nm.
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