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SOME THEOREMS ON BOUNDED ANALYTIC FUNCTIONS

BY
WALTER RUDIN

1. Introduction. In a paper by Bers [3] the following unpublished theorem
of Chevalley and Kakutani is mentioned in a footnote:

THEOREM A. If to each boundary point W of a domain B there exists a
bounded analytic function defined in B and possessing at W a singularity, then
B is determined (modulo a conformal transformation) by the ring of all bounded
analytic functions on B. '

The purpose of this paper is twofold. A proof of Theorem A is given
which, according to Professor Kakutani, is considerably simpler than the
original one (Theorem 9; a slight extension is stated in Theorem 12). In
particular, no use is made of the theory of normed rings and of the topology
of the maximal ideal space; our methods are more function-theoretic. Sec-
ondly, we investigate those properties of the boundary of a domain which are
connected with the existence of singularities of bounded analytic functions.
This leads to the consideration of two classes of boundary points (removable
and essential) and of their relation to Painlevé null-sets (Theorem §). A
theorem on cluster sets is established (Theorem 14), and it is shown (Theo-
rem 15) that the domains considered by Chevalley and Kakutani (we shall
call these domains maximal) are precisely those which are domains of exist-
ence of single-valued bounded analytic functions, i.e., those whose boundaries
are natural boundaries of some such function. Theorem 11 shows that every
domain D is contained in a unique smallest maximal domain D*.

2. Definitions. Let B(D) denote the set of all single-valued bounded
analytic functions on the domain D (by a domain we mean a connected open
subset of the Riemann sphere S; unless the contrary is stated, we shall always
assume that the boundary of D is bounded; this involves no loss of generality,
since all our results are invariant under conformal one-to-one mappings of .S
onto .S).

Let fEB(D). If D, is a domain such that D;N\D is not vacuous, and if
there is a function fyEB(D,) such that f(z) =fi(z) for zED,N\D, we say that
f can be extended to D;.

A boundary point x of D is said to be removable if for every fEB(D) there
exists a neighborhood V of x such that f can be extended to V. By an essential
boundary point of D we mean one that is not removable. If every boundary
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334 WALTER RUDIN [March

point of D is essential, we say that D is maximal.

The closed disc with center at x and radius 7 will be denoted by J(x, 7).

3. Painlevé null-sets. Let K be the complement of a domain D. If B(D)
consists of the constant functions alone, then X is called a Painlevé null-set
[2, p. 107] or simply a null-set. It is known that X is a null-set if the linear
measure of K is zero [1, p. 2]; if K is a subset of an analytic arc, this sufficient
condition is also necessary [2, p. 122]; in the general case, no characteriza-
tion of this sort has yet been found.

It is trivial that null-sets are totally disconnected, and it is easily shown
[2, p. 108] that K is a null-set if and only if every fEB(A—K) can be ex-
tended to A, where A is any domain containing K. This remark leads to a
simple proof of the following property, which we state as a lemma:

4. LEMMA. Let A be a domain, and let K be a closed set. Suppose that for
every x CANK there exists r>0 (r depending on x) such that J(x, r)CA and
J(x, YNK is a Painlevé null-set. Then every fEB(A—K) can be extended to A.

Next we show that if x is a removable boundary point of D, there exists
a domain D; containing x and D, independent of f, such that every fEB(D)
can be extended to D:

S. THEOREM. Let K be the complement of the domain D. A point xEK is a
removable boundary point of D if and only if the set KNJ(x, r) is a Painlevé
null-set for some r>0.

Proof. The sufficiency of the condition is evident. To prove the necessity,
suppose KM J(x, r) is not a null-set for any »>0. Let V be a neighborhood of
x, and put A=V—{x}. If for every yCA there exists an >0 such that
KNJ(y, ) is a null-set, then every f&€B(A—K) can be extended to A, by
Lemma 4, and hence to V, so that KN\J(x, ) is a null-set provided J(x, ) C V.

This contradiction shows that there exists a sequence of disjoint discs
J(Xn,7a) CA(n=1,2,3, - - - ) such thatx,—x and such that K, =KNJ(x,, 7,)
is not a null-set. The complement D,, of K, contains D and is connected (be-
ing the union of two connected sets). Choose nonconstant functions f,EB(D,)
such that |fa(2)| <2-7 in D,, and define f(z) = D fal2).

Then fEB(D). Since f=(f—f.) +f. and f—f, can be extended to a neigh-
borhood of K,, whereas this is not true of f,, we see that f cannot be extended
to any neighborhood of x. Hence x is an essential boundary point of D, and
the theorem follows.

The following two lemmas will be needed in the proof of Theorem 9.

6. LEMMA. Suppose A is an open set which is dense in a domain D. If ¢ is
analytic in D (with possible poles) and schlicht in A, then ¢ is schlicht in D.

Proof. Suppose there are two distinct points 2, 2; in D such that ¢(z)
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=¢(2), and let V3, V; be disjoint neighborhoods of 2, 2., such that V,CD’
V.CD.

Since ¢(V,MNA) is an open set, dense in ¢(V;) (¢=1, 2), we see that
¢(ViNA) and ¢(VoMNA) have a point in common; this point has two distinct
inverse images in A, a contradiction.

7. LEMMA. Let D, be a domain. If D; is maximal and conformally equivalent
to Dy, then D, is also a maximal domain.

Proof. Suppose ¢ maps D, conformally onto D;. We assume, without loss
of generality, that ¢ is analytic, rather than conjugate analytic. If D; has
a removable boundary point x, there exists a neighborhood V of x such that
every f&EB(D,) can be extended to Dy = V\UD,, by Theorem 5 and Lemma 4.
D, is clearly dense in Dy, and since ¢ is bounded except in the neighborhood
of the point 20&D such that ¢(z) = » (if D; contains the point at infinity),
¢ can be extended to Dy . By Lemma 6, ¢ is schlicht in D{ , so that the domain
D{ =¢(D4) contains D, properly.

Choose f&B(D,), and set g(w) =f(¢(w)) for wED,. Since gEB(D;), g can
be extended to Dy, and the formula: f(2) =g(¢~(2)) extends f to D{, contra-
dicting the maximality of D.

Hence D, has no removable boundary point.

8. Before turning to the proof of the theorem of Chevalley and Kakutani,
we insert the following remark: We shall consider two domains, D; and D,,
and an isomorphic mapping ¢ of the ring B(D,) onto the ring B(D,), i.e.,
a one-to-one mapping which preserves sums and products; it is clear that
Y¥(1) =1. Since the imaginary unit ¢ is a primitive fourth root of unity, we
must either have ¥(7) =7 or ¥(¢) = —s. In the former case, we call Y a direct
isomorphism. If Y(2) = —1, conjugates must be introduced into (1) below in
an obvious manner, and the induced correspondence between the points of
D, and D,, while still conformal, reverses orientation.

9. THEOREM. Let D, and D, be maximal domains which are proper subsets
of the Riemann sphere, and let Y be a direct isomorphism mapping B(D1) onto
B(D;). Then there exists a one-to-one conformal mapping ¢ of Dy onto D, such
that

(1) f¢(w)) = f*(w) (w € Dy),
where f* =y (f).

Since the converse of the theorem is obvious, we can summarize the
situation by saying that D; and D;are conformally equivalent if and only if
B(D,) and B(D;) are algebraically isomorphic.

Proof. We assume, without loss of generality, that D, and D; are in the
finite plane.
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Using the notation f*=y(f), we readily see that r*=7 for any rational
number 7 (i.e., for any constant function whose range is the number ). Hav-
ing assumed that ¢* =4, we see that r*=r for any complex rational  (by a
complex rational we mean a complex number with rational real and imagin-
ary parts).

Let Q(f) denote the closure of the range of f. For any f&B(D,) and any
complex rational 7, the following four statements are clearly equivalent, since

f=—n*=fr-r=ff—r

and ¢ preserves reciprocals:

(@) reQ(f).

(b) f—r has no reciprocal in B(Dy).

(c) f*—r has no reciprocal in B(D,).

(d) 7€Q(f*).

Thus Q(f) and Q(f*) contain the same complex rationals.

It follows that for any constant ¢, ¢* is also a constant. Furthermore, if f
is not constant, then the same is true of f*;since Q(f) and Q(f*) are closures
of open sets, we conclude that

() Q(H) = Q™ (f € B(Dy), f # const.).

Now let ¢ be any constant, choose a nonconstant f&B(D,) such that

0€0(f), and put
f.lg) =c+ fG&)/n (GED,n=1,2,3 ).
Then

f¥(w) = ¢* + f*(w)/n (w €& Dy
and cEQ(fa), c*EQ(fY). By (2) we have

1n213v"')9

e=NOU) = N OGH = ¢,
n= n=1
so that ¢*=¢ for every constant c.

Now, if D, is unbounded, the identity function I(2) =z is not a member
of B(D;). This difficulty cannot, in general, be eliminated by mapping D,
conformally onto a bounded domain: Ahlfors and Beurling [2] have shown
that there are domains D on which there exist no bounded schlicht functions,
although B(D) contains nonconstant functions; such a domain D is not con-
formally equivalent to any bounded domain.

However, let F(D,) be the quotient field of B(D;) (j=1, 2), and extend ¢
in the natural manner to an isomorphic mapping of F(D;) onto F(Ds). We
shall see that I&E F(D;) and that the function ¢ =y/(I) € F(D,) is the desired
mapping function for which (1) holds.
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For any nonconstant f&€B(D;) and any point e €D,, put
8(@) = (f(2) — f(0))/(z — a)
so that

I(z) = z = a + (f(z) — f(a))/g(2).

These formulas show that g&B(D,) and hence that I&€ F(D,).

Now set ¢ =y(I), ¢(D;) =D;, D =DiN\Dj;. For any constant ¢, the follow-
ing four statements are clearly equivalent:

(@) c€Q).

(b) The reciprocal of I —¢ is not in B(Dy).

(c) The reciprocal of ¢ —c is not in B(D,).

(d) c€Q(9).

Thus D; and D; have the same closure; it follows that D is dense in D,
and in D;.

We have to show that ¢ is schlicht, and that D;=Ds.

Choose any point a €D and let M, be the set of all functions f&B(D,)
such that f(a) =0. M, is evidently an ideal. If g€ B(D,) and g(a) #0, then the
identity

_ gla) — g(z) g2
g(a) g(a)

1

shows that every ideal containing M, and g contains the constant 1 and hence
the whole ring B(D;). Thus M, is a maximal ideal of B(D,), which ¥ maps
onto a corresponding maximal ideal M} of B(D,).

For every fEM,, f/(I—a)EB(Dy), so that f*/(¢—a) EB(D.) for every
f*eMmp. 1t follows that f*(w) =0 whenever ¢(w) =a, for every f*& Mz*. If
there were more than one such point w&D,, the ideal M * would not be maxi-
mal. We conclude: for every a €D, there exists precisely one point b& Dy such
that ¢(b) =a.

If A is the set of all b&D; such that ¢(b) ED, the fact that D is dense in
D; implies that A is dense in D,, since the analytic function ¢ is an open map-
ping. Lemma 6 now shows that ¢ is schlicht.

Thus D; is conformally equivalent to D,; by Lemma 7, D; is maximal.

To complete the proof, choose fEB(Dy), aED, b&D; such that ¢(b) =a.
Then f—f(a) € M,, so that f*—f(a) E MF¥. But M ¥ consists of those functions
of B(D;) which vanish at b. Thus f*(b) =f(a), or

3) f(z) = f*(¢7%(2)) (f € B(Dy), z € D).

Since ¢ maps D, conformally onto Dj, there is a function g&B(Ds) such
that

4) 8(2) = f*(¢7(2) (z € Dy).
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The functions f and g coincide in D; thus every f& B(D,) can be extended to Ds.

On the other hand, for every g&B(D;) there is an f*&B(D,) for which
(4) holds; defining f=y¢~1(f*), we obtain a member of B(D;) for which (3)
holds; thus every g=B(D3) can be extended to D;.

Since D; and D; are maximal domains, we conclude that D;=D;. The
theorem follows.

10. REMARK. Let us apply Theorem 9 to the case D;=D,=D, say. Let
Y1, Y2 be two direct automorphisms of B(D), and let ¢4, ¢, be the correspond-
ing conformal transformations of D onto itself, in accordance with formulas
(1). Then it is easily seen that the automorphism Y/, corresponds to the
mapping ¢:9,, i.e., the mapping taking z into ¢1(¢2(2)). Replacing the auto-
morphisms ¢ by their inverses, the following is evident:

For every maximal domain D, there is a natural isomorphism between the
group of all direct automorphisms of the ring B(D) and the group of all directly
conformal one-to-one mappings of D onto D.

We now return to our investigation of the properties of essential boundary
points.

11. THEOREM. If K* is the set of all essential boundary points of a domain D,
then K* is perfect (if not vacuous). If D* is that component of the complement
of K* which contains D, then D is dense in D*, and D* is the smallest maximal
domain which contains D.

Proof. Theorem 5 shows that D* may be obtained in the following man-
ner: cover every removable boundary point x of D with an open disc U,
which does not intersect K*; D* is the union of D and these discs U,. Since
null-sets are totally disconnected, D is dense in D*.

By Lemma 4, every fEB(D) can be extended to D*. Thus there is no
smaller maximal domain containing D. To show that D* 4s maximal, let x
be a boundary point of D*. Then x is an essential boundary point of D, there
is some f&EB(D) which cannot be extended to any neighborhood of x, and
the same is of course true of the extension of f to D*. Thus x is an essential
boundary point of D*.

Thus D* is maximal, and since isolated boundary points are removable,
K* is perfect (or vacuous).

As a consequence of Theorem 11, Theorem 9 may now be restated as fol-
lows:

12. THEOREM. Let D* and Ds* be the smallest maximal domains containing
the domains Dy and D,. If B(D:) and B(D;) are algebraically isomorphic, then
Di* and Dy are conformally equivalent.

13. DEFINITION. Let x be a boundary point of a domain D, and let f be
analytic in D. Put D,=DN\J(x, 1/n), and let E, be the closure of f(D,) (the
range of the restriction of f to D,). The set
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C(fix) = N En
n=1

is called the cluster set of f at x.

It is clear that for every w& C(f; x) there is a sequence {z,,} such that
2. ED, 2,—x, and f(2,)—>w as n— .

If x is an essential boundary point of D, then there is some f&EB(D) with
a singularity at x. The question as to how “bad” this singularity can be is
partially answered by our next theorem; the example given at the end of this
paper has its origin in the same question.

14. THEOREM. Let x be an essential boundary point of the domain D. There
exists a function f & B(D) whose cluster set at x consists of the entire ¢losed unit
disc, although | f(z)| <1 for every z2&D.

Proof. Since the set of essential boundary points of D is perfect, there is
a sequence {x,.} of distinct essential boundary points such that x,>x and
xn—x as n— . Choose {7,} such that no two of the discs T'» = J(xn, 7.) inter-
sect and such that T, contains no point of the interior I of K if x, is not a
limit point of I. Let K,=KNJ (%, 7./3), let G, be the complement of K,,
and put d,=DN\J(x,, 7,/2). As usual, K denotes the complement of D.

We shall construct an increasing sequence {7} of positive integers, and
functions f, EB(G,,) (k=1, 2, 3, - - - ) such that

(i) |fu(®)| <1 for 2EGn, filx)=0;

(ii) for some sequence {z.-} of points in d,,, fr(2;)—1 as 1— o ;

(iil) |fu(2)| <27*1! for 3EGn,—Tay;

(iv) > v.|fiz)| <27%2 for 2ET,,,.

If x, is not a limit point of I, choose a nonconstant u,&B(G,) such that
sup |u,.(z)| =1 for 2&G,, hence also for 2&d,, since d, is dense in G,.

If x, is a limit point of I, choose y, &I such that Ixn—y,.l <r,/6, let p, be
the distance from y, to D, and set %,(2) =p./(3—a).

In either case, let us multiply #, by a suitable constant of modulus 1
so as to make u,(x) real, and let us define

un(z) - u"(x) .
1 — u(2)ua(2)

Then 9,EB(G,), |#.(2)| <1 in G,, and v.(x) =0; multiplying v, by a suitable
constant of modulus 1, we may further arrange it so that v,(2;)—1 for some
sequence {z,-} in d,.

Now take n#:=1, g1=v.. Having picked #4, - - -, nz and gy, « - -, g, take
k41> mi such that (iv) holds with g; in place of f; (this is possible since g;(x)
=0 and x;—x), and put giq1="0n; ;.

Finally, let fi = (gr)™*, where m; is a positive integer chosen large enough
for (iii) to hold. Then all of the conditions (i) to (iv) are satisfied.

2,(3) =
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Next, let E be a countable dense subset of the open unit disc, and let
{w.} be a sequence of complex numbers which contains every member of E
infinitely many times, with the additional requirement that I'w,,l <1-2—n,

The function

L

f(3) = X wefu(2) (z€ D)

k=1

has the desired properties. By (iii) and (iv) we have, for zEDNT,,

/@] < | 74@] + |wa] + 3 546
1 m+1

< 2wl —2-mp 32—kl 1,
m+1
If 26D —T,, for every m, then If(z)l < >27+1=1/2. Thus |f(z)| <1 for
every zED.
Finally, choose 2&d.,, such that | fm(2)— 1[ <2, Then

| f(2) — wa| <m§:2 | fx@) | + | wn]| - | fm(z) — 1] +i | fu(a) | < 2-m+.,

m+1

Thus every member of E is in C(f; x) ; since C(f;x) is evidently closed, the
theorem follows.

15. THEOREM. If D is a maximal domain, there exists a function fEB(D)
which has the boundary of D as its natural boundary.

Proof. Suppose, without loss of generality, that D contains the point at
infinity. Let {x.} be a countable dense subset of the boundary of D. The pre-
ceding theorem, applied to each x,, shows that there exist functions f,EB(D)
and points 2,ED such that ‘If,,(z)[ <1 in D, fu(x)=0, Ix,,—z,,[ <1/n,
fu(2s) =@, where a, is real and

i(l—an)<w.

ne=1

Define
_ it an_fn(z) .
fa) = g 1 — a.fu(2)

By a generalization of Schwarz’s lemma, for every closed subset C of D
there is a constant M <1 such that | f,,(z)] <M on C. For 2€C, we have

o) | 1+ M
1 — a.fu(3) 1-M

(1 — @),
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so that the product defining f(z) converges uniformly on C. Since f(z,) =0
and every boundary point of D is a limit point of the set {zn} , the theorem
follows.

16. An example. In view of Theorem 14, one may ask the following ques-
tion: given an essential boundary point x of the domain D and an arc L
which lies in D, except for one of its end points, which is at x, does there exist a
nonconstant function fEB(D) such that (a) f(z) does not converge as z—x
along L, or, (b) such that [ f(z)| tends to its maximum as z—x along L?

It can be shown that if for some x the answer to (b) is affirmative, the
same is true for (a). We shall give an example in which the answers to both
(a) and (b) are negative.

Let {an} be a sequence of distinct points on the positive real axis, con-
verging to zero. Choose {R,,} such that the discs J(a., R,) are mutually dis-
joint, let {c,,} be a sequence of positive numbers such that ¢, <1 and

0

da/(1—c) <

n=1
where €>0 is given, put 7,=cuR,, Va.=J(as,, r.), let K consist of the origin
and the union of the V,’s, and let D be the complement of K. Since every
boundary point of every V, is an essential boundary point of D and the set of
essential boundary points is closed, the origin is an essential boundary point
of D.

Let fEB(D), and suppose | f(2) | <1, f(»)=0. At almost all points of the
circumference C, of each V,, f(z) has well-defined nontangential boundary
values, so that the path of integration in the Cauchy integral formula can be
moved to C,. If we put

1
e == 19

271 c.t—2

dt (z & Vo),

then it is easily verified that

f) = 22 fal2),
n=1
the series converging uniformly in every closed subset of D. Moreover, if
2&G,, where G, is the interior of J(a,, R,), we have

n Cn
[ f-(3) | = =

n — Tn 1—c,

If G=UG.,, it follows that the series defining f(z) converges absolutely and
uniformly on the complement H of G. Thus f(2) is continuous on H, which
includes the origin, and l f(z)] <eon H.
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If L is now any arc in H, with one end point at the origin, then lim f(2)
exists as 2—0 along L, and does not exceed € in absolute value. This is so even
if the cluster set of f at 0 consists of the entire unit disc.
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