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1. INTRODUCTION

Two methods for producing high-current ion beams
(HCIBs) by linear accelerators—linacs—are now being
considered for applications in inertial confinement
fusion (ICF) [1–3]. The first method is based on linear
resonance accelerators with storage rings, and the sec-
ond, on induction linacs. The advantages of the first
method are high acceleration rate (1–5 MeV/m) and
high efficiency (up to 30%). The final ion energy should
be as high as 100 GeV. The accelerated ions are accu-
mulated in storage rings and are then passed into com-
pression rings, which shorten the pulse duration. The
pulse should be compressed in time by a factor of more
than 

 

10

 

4

 

.
The method based on a vacuum induction linac

(LIA) [1, 2, 4–7] implies the simultaneous acceleration
of 16 to 120 (depending on the particular scheme) ion
beams in quadrupole lenses, where they are focused in
the transverse direction. During the acceleration, the
number of ion beams becomes smaller because some of
them are merged into one. The final ion energy should
be on the order of 10 GeV with an energy content on the
order of 10 MJ, the pulse duration being several tens of
nanoseconds. The advantages of this approach are that
the LIA can operate at a high repetition rate, can accel-
erate high-current beams of ions of almost any species
with a high efficiency (more than 30%; see, e.g., [7]),
and provides a simple and natural way to shorten the
current pulse duration during the acceleration process
(so there is no need for additional operations to amplify
the current pulse by compressing it in time). Another
approach to using an LIA to generate HCIBs from ions
with velocities much lower than the speed of light is to
utilize not vacuum systems for transporting beams—
quadrupoles and solenoids—but collective focusing

techniques in which the space-charge forces of an ion
beam are neutralized by electrons [2, 8–13] and the
electron current is suppressed by the magnetic insula-
tion of the accelerating gaps [14]. In such an LIA with
charge- and current-neutralized HCIBs in a magneti-
cally insulated accelerating gap, the ion current during
acceleration can be as high as tens of kA. For ICF pur-
poses, this means that the final ion energy can be low-
ered to several hundreds of MeV, while keeping the
required energy content of the beams on the target
unchanged [2]. In addition, there is no need for storage
complexes on multistage compression of the ion cur-
rent pulses.

Since the linacs under consideration are axisymmet-
ric, the well-known mechanism for transporting a
charge- and current-neutralized ion beam (NIB)
through a magnetic barrier [15] does not operate
because the azimuthal polarization electric field cannot
arise.

The mechanism for charge and current neutraliza-
tion of an HCIB by an electron beam in an axisymmet-
ric accelerating gap was proposed and investigated in
[14, 16–18], in which a study was made of the electron
and ion dynamics in a cusp magnetic field geometry in
the presence of a constant accelerating electric field in
the single-particle approximation and also of the effect
of the electric and magnetic self-fields of the electron
and ion beams on their passage through a cusp and on
the magnetic insulation. The physical meaning of the
mechanism for charge and current neutralization of a
tubular HCIB in a magnetically insulated accelerating
gap is as follows: the neutralization is provided by a
specially injected electron beam, which drifts through
the cusp in a self-consistent azimuthal magnetic field
and a self-consistent electric field that arises from
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a slight radial separation between the ion and electron
beams.

Let us briefly outline the conditions for transporting
and accelerating an HCIB through an axisymmetric
system with magnetic insulation. The external mag-
netic field has a cusp axisymmetric configuration,

 

(1)

 

where 

 

r

 

 is the transverse coordinate, 

 

z
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 [0, 

 

L
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 is the
longitudinal coordinate, 

 

L

 

 is the cusp length, 
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 = 

 

π

 

/
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0

 

is the external magnetic field, and 
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0
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 are
modified Bessel functions. Let a tubular electron beam
and tubular ion beam of the same cross section and the
same current density 
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(where 

 

q

 

 is the
charge of a particle, 

 

n

 

 and 

 

V

 

 are the particle density and
velocity, and the subscripts 

 

e

 

 and 

 

i

 

 stand for electrons
and ions) be injected into a system with cusp external
magnetic field (1) and a longitudinal accelerating elec-
tric field 

 

E

 

z

 

. In order for an electron beam to drift
through the gap for ion acceleration and, accordingly,
to neutralize the charge and current of an HCIB, the
electron energy 

 

ε

 

0

 

e

 

 should be low enough that the elec-
tron gyroradius is less than the characteristic cusp
length 

 

L

 

 (the drift condition), on the one hand, and, on
the other, it also should be higher than the energy lost
by the electrons in passing through the gap (the condi-
tion for the ion beam not to be “loaded” with the elec-
tron beam):

 

(2a)

 

Here, 

 

m

 

e

 

 is the mass of an electron, 

 

c

 

 is the speed of
light, and 

 

a

 

 is the beam radius.
In cusp geometry, the presence of a longitudinal

electric field gives rise to azimuthal electron drift with
the velocity 

 

V

 

ed

 

ϕ

 

. The drift in turn changes the 

 

H

 

r

 

 and

 

H

 

z

 

 components of the magnetic field (1) in the system:
the longitudinal motion of charged particles excites the

azimuthal magnetic field . Since their gyroradius is
small, the injected electrons moving along the magnetic
surfaces determined by the injection conditions tend to
go away from the ions moving along straight trajecto-
ries. The resulting slight radial separation between the
electron and ion beams produces the radial electric

field . In the radial electric and azimuthal magnetic
fields, the electrons drift in the longitudinal direction.
The electron drift velocity 

 

V

 

edz

 

 is quadratic in the ion

beam density (since  and  are proportional to 

 

n

 

i

 

).
This velocity will be close to the velocity 

 

V

 

i

 

 of the
HCIB—a condition that provides not only the current
neutralization of the ion beam but also its charge neu-
tralization because the electron and ion currents are the
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Ẽr H̃ϕ

 

same—only when the current of the injected electron
beam is sufficiently high. It should be noted that a sys-
tem utilizing electron and ion beams such that the elec-
tron and ion currents are the same and the drift velocity
of the electron beam is close to the ion velocity has an
additional advantage—it ensures that the efficiency of
the induction section creating the accelerating electric
field is high throughout the entire pulse: under these
conditions, the section operates in an idle mode
because the total current is nearly zero. The external
magnetic and accelerating electric fields satisfy the
equations 
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 = 0; conse-
quently, for the self-consistent magnetic and self-con-
sistent radial electric fields, we obtain the following set
of equations:

Usually, a tubular beam has a thin wall (
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) and
its radius is small in comparison with the cusp length
(
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). From the second equation in the set, we can
find that the magnetic field excited by the azimuthal
electron drift is much weaker than the external cusp
magnetic field when the initial density of the electron
beam satisfies the inequality
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From Poisson’s equation we can see that, when the
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, is
close to the ion velocity 

 

V

 

i

 

, the charge of an HCIB is
neutralized essentially completely and the self-consis-

tent longitudinal electric field  is weak. In this case,
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The equation for the magnetic field  yields the
following estimate for its maximum strength near the
radius a:

In order for the drift velocity of the electron beam to
be close to the ion beam velocity Vi within the entire
accelerating gap, the density of the ion beam and its
thickness should satisfy the inequalities

(3)

where Ωi = qiH/(mic) and ωi =  are the ion
gyrofrequency and ion Langmuir frequency, respec-
tively. The first of conditions (3) implies that the current
of the transported ion beam should be sufficiently high.
The second of the conditions shows how strong the
self-consistent fields should be. That a high-current
NIB can be transported and accelerated under the above
conditions was demonstrated numerically in [16–18].

In the present paper, we report the results of numer-
ical particle simulations of the transport and accelera-
tion of a tubular HCIB through several magnetically
insulated accelerating gaps. The ion beam is neutral-
ized by an accompanying electron beam. The simula-
tions involve solving a complete set of Maxwell’s equa-
tions. We show that a high-current NIB can be trans-
ported through one to five cusps. We find that, when
conditions (2) and (3) fail to hold, the neutralizing elec-
tron beam is lost, so an HCIB cannot be transported. We
determine how the quality of the distribution function
of an HCIB at the exit from the accelerator is related to
the energy of the accompanying electron beam. We also
analyze how the injection of additional high-current
electron beams into the cusps affects the energy spread
of the ions in the accelerated beam and the beam diver-
gence at the exit from the accelerator.

2. MATHEMATICAL MODEL

The self-consistent dynamics of beam–plasma sys-
tems in external electromagnetic fields is described by
relativistic Vlasov equations or (when collisions are
important) Boltzmann equations for the distribution
functions of electrons, ions, and (if necessary) neutrals
and also by Maxwell’s equations. Numerical particle
simulations are based on repeating the computational
procedure of (a) integrating the Vlasov equations along
the characteristics,

(4)

where the electric and magnetic fields E = E + Eext and
B = B + Bext are a superposition of the given and self-
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consistent fields, r is the position vector of a particle,
and p and v are its momentum and velocity; (b) calcu-
lating the charge and current densities, ρ(r, t) and j(r, t),

where fs(p, r, t) is the distribution function of the parti-
cles of species s; and (c) solving Maxwell’s equations

(5)

(6)

A computational cycle in the particle simulation
method consists in the following. The positions of the
particles are calculated at discrete times tn in a continu-
ous space of coordinates and velocities,

, and the fields are calculated at dis-

crete points on a spatial mesh at discrete times,

. The positions of macropar-

ticles in the phase space {vi , ri} at the initial time t = 0
are specified. At each time step Δt, the charge and cur-
rent densities on the mesh are calculated from the
known macroparticle distribution with the help of a cer-
tain weighting technique, {vi , ri}  {ρj , jj}. Max-
well’s equations are solved in order to determine the
field distributions {Ej , Bj} on the mesh from the charge
and current densities {ρj , jj} calculated at the preceding
time step of the computational procedure, {ρj , jj} 
{Ej , Bj}. The forces acting on each macroparticle are
calculated by applying the corresponding weighting
technique, {Ej , Bj}  Fi . The equations of motion
are integrated and the new velocities and coordinates of
the macroparticles are determined, Fi  { , ri}. It is
checked whether the macroparticles cross the bound-
aries of the computation region. If they do, then they are
either excluded from computations or introduced in the
corresponding scenario of the interaction with the wall
as (a) particles reentered into the computation region,
e.g., according to the elastic reflection laws, or as (b)
injected secondary particles. This time step of the
numerical procedure also models the injection of beam
particles into the computation region. And finally, if
necessary, a Monte Carlo scenario is sampled that
involves collisions among the particles and their colli-
sions with neutrals as well as their appearance, disap-
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pearance, and scattering [19–23]. The computational
cycle—one time step—is thus completed.

The particles and fields are sequentially shifted in
time as is shown in Fig. 1. The positions of the particles
and their velocities are shifted in time by half a time
step. This shift is motivated by the method chosen for
discretizing equations of motion (4)—a leap-frog cen-
tered explicit difference scheme of second-order accu-
racy. The integration over time is carried out by using
the Boris scheme [24], which is stable for ω0Δt < 2,
where ω0 is the characteristic frequency of the problem.
In our simulations, we had ω0Δt � 1.

Maxwell’s equations (5) are discretized in space and
time and are solved by a leap-frog explicit finite-differ-
ence scheme [25]. The fields E are calculated at the
centers of the boundaries of the computational cells at
the times t = nΔt, and the magnetic fields are calculated
at the centers of the faces of the cells at the times t =
(n + 1/2)Δt. The scheme is of second-order accuracy in
space and time. It is stable for uniform meshes provided
that the Courant–Levi condition is satisfied: Δt ≤

, where Δxm is the spatial step, with m

being the coordinate index. The scheme for solving

1
c
--- 1

Δxm( )2
----------------

m∑⎝ ⎠
⎛ ⎞

1
2
---–

Eqs. (5) numerically does not generally ensure that the
charge is continuous. The reason is that, in our particle-
in-cell (PIC) simulations, the charge and current densi-
ties are calculated independently, using a bilinear
weighting. This is why, in earlier papers [16–18], the
potential component of the electric field was corrected
by the Boris method (see, e.g., [24]). This approach
requires that Poisson’s equation be solved within the
entire computation region. A more effective technique
for correcting the potential component of the electric
field—the one that does not involve solving Poisson’s
equation—is the Langdon–Marder method [26].
Mardahl and Verboncoeur [27] showed that both of the
methods give essentially the same accuracy. An effec-
tive tool for increasing the computational speed is also
provided by charge-conserving schemes for calculating
the current density on a mesh [28–30]. The algorithms
described above—in particular, those for solving the
equations of motion and Maxwell’s equations and for
correcting the potential component of the electric field
on the basis of Langdon–Marder method, as well as the
charge-conserving scheme for calculating the current
density on a mesh—were implemented into the easily
modifiable and extendable object-oriented PIC code
XOOPIC [30]. The results of numerical experiments
reported below were obtained by using the charge-con-
serving scheme for calculating the current density on a
mesh [30]. As for computations in which the potential
component of the electric field was corrected based on
the Langdon–Marder method, they were carried out for
several versions of the input parameters and their
results were used as test ones.

3. SIMULATION RESULTS

Figure 2 shows the axial cross section of the single-
cusp accelerating structure under simulation, external
magnetic field configuration (1), and the regions where
the beams are injected. The length of the system is zL =
0.05 m and its radius is rL = 0.1 m. The first one-third
of the system is the drift space, the second one-third is
the accelerating gap (in the second half of which an
additional electron beam can be injected), and the third
one-third is the drift space. A tubular magnetized elec-
tron beam and tubular unmagnetized ion beam are con-
tinuously injected into the system from the left. The
minimum radii of the electron and ion beams are the
same, as well as their maximum radii, rmin = 0.0189 m
and rmax = 0.0205 m, the current densities at the time of
injection being equal to one another. The multicusp sys-
tems to be simulated are formed by connecting addi-
tional cusps from the right. The outer boundaries of the
system are perfectly conducting metal walls. The parti-
cles that come into contact with the metal boundaries
are excluded from computations. Hereafter, linear
dimensions are in m, magnetic fields are in units of
10 kG, electric fields are in V/m, and particle energies
are in eV.

tn tn+1

vn–1/2 vn+1/2rn rn+1 t
jn–1/2

Bn–1/2

ρn jn+1/2 ρn+1

En+1Bn+1/2En

Fig. 1. Schematic of the leap-frog (alternative-direction)
integration method. The charge densities ρ, electric fields E,
and electrostatic potentials Φ are calculated on the same
time layers tn as the particle coordinates r. The current den-
sities j and magnetic fields B are calculated on the same

time layers  as the particle velocities v.t
n

1
2
---+

r

zzL

rL

rmax

rmin

B0

Fig. 2. Configuration of the lines of the external magnetic
field and regions of injection of a tubular electron beam and
tubular ion beam, as well as an additional electron beam,
into the computation region.
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Figure 3 illustrates the results of numerical simula-
tions of the transport (Ez = 0) of a high-current tubular
NIB through a single cusp under conditions (2) and (3).
Figures 3a and 3b show the electron and ion distribu-
tions in the {r, z} plane. Figures 3c and 3d show the
fields in which the electrons accompanying the ion
beam drift, specifically, the azimuthal component of the
self-consistent magnetic field, Bϕ(r, z), and the radial
component of the self-consistent electric field, Er(r, z).
From Fig. 3a we can see that most of the electrons
accompanying the ion beam penetrate into the second
half of the cusp. But at the center of the cusp, some
beam electrons are lost, so the space charge of the ion
beam in the second half of the cusp is slightly unneu-
tralized and the ion beam becomes wider there
(Fig. 3b). For comparison, Fig. 4 presents the results of
simulating the transport of a low-current NIB through a
single cusp when conditions (2) and/or (3) fail to hold.
In this case, the self-consistent field components Bϕ and
Er are far weaker than those in the previous case and the
electrons cannot drift into the second half of the cusp,
with the result that the electron beam is lost and the ion
beam in the second half becomes wider.

Transport conditions (2) and (3) can be violated
when the radii of the beams injected into the cusp are
changed. Figure 5 illustrates the results of simulating
the transport of a high-current tubular NIB through

three cusps. The physical parameters of the problem are
the same as those in Fig. 3, except for the number of
cusps (three versus one) and the beam injection radii: in
Figs. 5a and 5b, the radii rmin and rmax are decreased by
0.25rmin (conditions (2) and (3) are satisfied) and, in
Figs. 5c and 5d, these radii rmin and rmax are increased
by rmin (conditions (2) and/or (3) are violated). Figures
5a and 5b show a situation similar to that with transport
through a single cusp: as high-current ion and electron
beams are transported simultaneously through three
cusps, some of the beam electrons are lost at the center
of each cusp, so the space charge of the ion beam
becomes unneutralized and the ion beam becomes
wider. When conditions (2) and/or (3) fail to hold, the
transport is impossible (see Figs. 5c, 5d).

Figures 6a, 6c, and 6e illustrate the results of simu-
lating the transport of a high-current NIB through four
cusps, and Figs. 6b, 6d, and 6f demonstrate the results
of simulating the transport through five cusps. The
physical parameters of the problem are the same as
those in Fig. 3. From Figs. 6e and 6f, which show the
ion distribution functions Fi(ε, r) over energy and over
the transverse coordinate at the right boundaries of the
(e) fourth and (f) fifth cusps, we can see that the main
group of the ions escaping from the last (fifth) cusp is
concentrated around the beam injection radius. An
analysis of the distribution functions Fi(ε, r) for the
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Fig. 3. Transport of a high-current NIB through a single cusp: (a) electron and (b) ion distributions in the {r, z} plane (with r and z
being the transverse and longitudinal coordinates, respectively); (c) azimuthal component of the self-consistent magnetic field,
Bϕ(r, z); and (d) radial component of the self-consistent electric field, Er(r, z). The parameters are H0 = 47 kG, ve0 = 0.85c, vi0 =

0.21c, and ne0 = 7 × 1019 m–3.
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cases of the transport through one to five cusps shows
that, as the number of cusps through which an NIB is
transported is increased, the quality of Fi(ε, r)
decreases insignificantly.

Figure 7 illustrates the results of numerical simula-
tions of the transport and acceleration of a high-current
NIB through three cusps. Shown are the electron
(Figs. 7a–7c) and ion (Figs. 7d–7f) distribution in the
computation region as well as the ion distribution func-
tions Fi(ε, r) at the right boundary of the third (last)
cusp (Figs. 7g–7i).

Figures 7a, 7d, and 7g refer to the case in which a
high-current ion beam injected into the computation
region at the velocity vi0 = 0.285c is accompanied by

an electron beam injected at the initial velocity ve0 =

0.8c, the accelerating field being zero. At the instant of
injection, the current densities of the ion and electron
beams are the same and conditions (2) and (3) are sat-
isfied. As in the numerical cases illustrated in Figs. 3
and 6, some electrons of the neutralizing beam are lost
in each cusp (Fig. 7a), so the ion beam becomes slightly
unneutralized. From Figs. 7d and 7g we can see that,
after the passage through the three cusps, the ion beam
is slightly divergent and monoenergetic with a kinetic
energy of 40.6 MeV. Figures 7b, 7e, and 7h illustrate
the results of simulating the acceleration of this high-
current NIB through three cusps. The physical parame-
ters of the problem are the same as those in Figs. 7a, 7d,
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Fig. 6. Transport of a high-current NIB through (a, c, e) four and (b, d, f) five cusps: (a, b) electron and (c, d) ion distributions in
the {r, z} plane and ion distribution functions Fi(ε, r) (r = x · rL/128) over energy and over the transverse coordinate at the right
boundaries of the (e) fourth and (f) fifth cusps. The physical parameters of the problem are the same as in Fig. 3.
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and 7g, except for the field Ez within the accelerating
gaps, which is now 460 MV/m. From Fig. 7b we can
see that, although the accelerating field, which deceler-
ates the electrons, is strong, the neutralizing electron
beam drifts in the self-consistent fields together with
the ion beam, accompanying the latter through all the
three cusps. In this case, as in the case without an accel-
erating electric field, some of the beam electrons are
lost in each cusp and the energy required for the elec-
trons to overcome the electric field accelerating the ions

is drawn from the kinetic energy of the ion beam—an
effect that influences the quality of the ion distribution
function at the right boundary of the third cusp
(Fig. 7h). From Fig. 7h we can see that the ion energy
distribution function at this boundary, although nonmo-
noenergetic, contains a large group of ions accelerated
to an energy of 63.7 MeV. It should also be noted that,
as is seen from Figs. 7e and 7h, the ion distribution func-
tion over the transverse coordinate does not degrade
substantially. The results presented in Figs. 7c, 7f, and 7i
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Fig. 7. (a, d, g) Transport and (b, e, h; c, f, i) acceleration of a high-current NIB through three cusps: (a–c) electron and (d–f) ion
distributions in the {r, z} plane and (g–i) ion distribution function Fi(ε, r) (r = x · rL/128) at the right boundary of the third cusp.

The parameters are H0 = 47 kG, vi0 = 0.285c, ne0 = 7 × 1019 m–3, rmin = 0.0142 m, and rmax = 0.0158 m, the injection velocity of the
electron beam and the accelerating field being (a, d, g) ve0 = 0.8c and Ez = 0, (b, e, h) ve0 = 0.8c and Ez = 460 MV/m, and (c, f, i)
ve0 = 0.99c and Ez = 460 MV/m.
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were calculated for a higher injection velocity of the
electron beam, ve0 = 0.99c, the remaining parameters
being the same as in Figs 7b, 7e, and 7h. From Fig. 7i
we can see that the ion energy distribution function at
the right boundary of the third cusp is essentially
monoenergetic, with an energy of 63.7 MeV.

It has been shown above that, during the transport
and acceleration of a high-current NIB, some electrons
are lost in each of the cusps, so the ion beam becomes
unneutralized. In addition, the electrons drifting in the
self-consistent fields should overcome the electric field
accelerating the ions. If the kinetic energy of the elec-
trons is low, then they draw the required energy from
the ion beam, with the result that the ion energy distri-
bution function becomes wider. In order for the high-
current NIB not to become unneutralized and the
energy distribution function of the accelerated ions not
to degrade substantially, it is necessary to inject an
additional cold electron beam into each of the cusps.
Figure 8 illustrates the results of simulating the acceler-
ation of a high-current NIB through three cusps with
the additional injection of a cold electron beam into

each cusp (see also Fig. 2). The parameters of the prob-
lem corresponding to Figs. 8a, 8c, and 8e are the same
as those in Figs. 7b, 7e, and 7h, the only difference
being that an additional electron beam, identical to the
main (original) electron beam, is injected into each
cusp. The parameters of the problem corresponding to
Figs. 8b, 8d, and 8f are the same as those in Figs. 7c, 7f,
and 7i, the only difference being the same: an additional
electron beam, identical to the main electron beam, is
injected into each cusp. From Figs. 8e and 8f we can see
that the quality of the ion energy distribution function
is far higher than that in the case without injection of
additional electron beams: the accelerated ions are
essentially monoenergetic, with an energy of 63.7 MeV.
From Figs. 8e and 8f we can also see that the higher the
energy of the neutralizing electron beams, the better the
radial focusing of the accelerated ion beam.

4. CONCLUSIONS

In the present paper, we have reported results of
numerical particle simulations of the transport and
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acceleration of a tubular HCIB, accompanied by a neu-
tralizing electron beam, through several magnetically
insulated accelerating gaps. The simulations involve
solving Maxwell’s equations and relativistic equations
of particle motion. We have demonstrated that a high-
current NIB can be transported through one to five
cusps. We have shown that, when conditions (2) and/or
(3) fail to hold, the neutralizing electron beam is lost
and a high-current ion beam cannot be transported. We
have established that the quality of a high-current ion
beam at the exit from the accelerator can be substan-
tially improved by increasing the energy of the accom-
panying electron beam. We have also shown that, by
injecting additional high-current electron beams into

the cusps, the accelerated ion beam can be made more
monoenergetic and its divergence at the exit from the
accelerator can be reduced.
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