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Efficient method for calculating electronic states in self-assembled quantum dots

Mervyn Roy and P. A. Maksym
Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom

~Received 15 July 2003; published 9 December 2003!

It is demonstrated that the bound electronic states of a self-assembled quantum dot may be calculated more
efficiently with a harmonic-oscillator~HO! basis than with the commonly used plane-wave basis. First, the
bound electron states of a physically realistic self-assembled quantum dot model are calculated within the
single-band, position-dependent effective mass approximation including the full details of the strain within the
self-assembled dot. A comparison is then made between the number of states needed to diagonalize the
Hamiltonian with either a HO or a plane-wave basis. With the harmonic-oscillator basis, significantly fewer
basis functions are needed to converge the bound-state energies to within a fraction of a meV of the exact
energies. As the time needed to diagonalize the matrix varies as the cube of the matrix size this leads to a
dramatic decrease in the computing time required. With this basis the effects of a magnetic field may also be
easily included. This is demonstrated, and the field dependence of the bound electron energies is shown.

DOI: 10.1103/PhysRevB.68.235308 PACS number~s!: 73.21.La
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I. INTRODUCTION

Self-assembled quantum dots~SAQD’s! are fully quan-
tized atomlike systems in the solid state. Over the last dec
there has been a large amount of interest in these struct
mainly due to the potential for applications, for example,
quantum information processing and optoelectronic devic
Until recently, progress in the field was hampered by
need to study large ensembles of dots and consequently
erage dot properties. However, due to advances in exp
mental techniques it is now possible to study individual d
in detail. Photoluminescence experiments on single s
assembled dots can resolve the many-particle energy le
to within a fraction of a meV.1 Scanning tunneling
spectroscopy2 and magnetotunneling experiments3 have been
used to directly image the single-particle bound states wi
individual SAQD’s, while, most importantly, scanning tun
neling microscope images of cleaved quantum dots h
been used to provide detailed physical information on
shape, size, and composition profile of the dots.4 This addi-
tional information has demonstrated that the bound-s
wave functions of SAQD’s are significantly affected by t
physical dot structure. To calculate the single-particle en
gies to the accuracy now required by experiment, the de
of the physical dot structure and most importantly, the str
within each SAQD must be included in the calculation.

We propose an efficient method of calculating the el
tronic states in SAQD’s by expanding the SAQD state
terms of harmonic-oscillator~HO! functions. The motivation
being that the actual localized states of the dot may be
resented using fewer basis functions if the basis is alre
localized on the appropriate length scale. To our knowled
no other calculations of the bound-state wave functions
physically realistic SAQD models have been performed w
a HO basis. Instead most work has focused on the expan
of the SAQD states in terms of plane waves,5–7 or the solu-
tion of the discretized Schro¨dinger equation in real space8

Both these methods can be computationally expensive.
In this paper we calculate the bound states of a physic

realistic model of a SAQD. The calculation is perform
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within the single-band effective-mass approximation inclu
ing the position dependence of the effective mass and
effect of the strain field within the system. The boun
electron wave functions are calculated by exact diagonal
tion of the Hamiltonian. A comparison is then made betwe
the convergence of the calculation with a harmonic-oscilla
basis and the convergence with a plane-wave basis. We s
that the advantages of the harmonic-oscillator basis are t
fold. First, the bound-state energies are found to conve
much more rapidly with the HO basis. We demonstrate t
the ground-state energy may be calculated to within 1% w
only a few tens of HO states as compared to a few thous
plane-wave states. As the time taken to diagonalize anNbs

3Nbs matrix scales asNbs
3 this leads to a dramatic reductio

in the required computing time. Second, it is relative
straightforward to include the effects of magnetic fields
the calculation with the HO basis. In this paper we calcul
the field dependence of the bound-electron states betwe
and 20 T.

II. METHOD

A. The dot model

Throughout this work we use a dot model with dime
sions and composition identical to those measured by B
et al.4 using cross-sectional scanning tunneling microsco
The physical description of the dot provided by Brulset al. is
very detailed and is therefore used as an example of a typ
dot. The calculational methods described in this paper
however, completely general and may be used to calcu
the bound states within SAQD’s of arbitrary shape, size, a
composition profile.

The Bruls dot~see Fig. 1! is a square based truncate
pyramidal IncGa12cAs dot with an indium fraction varying
linearly fromc50.6 at the base of the dot toc51 at the top
of the dot. The SAQD rests on a 0.6-nm InAs wetting lay
and is surrounded by a GaAs matrix. The dot base is
318 nm2, the dot height is 5 nm, and the top surface h
dimension 10.6310.6 nm2. The origin of the coordinate sys
©2003 The American Physical Society08-1
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MERVYN ROY AND P. A. MAKSYM PHYSICAL REVIEW B 68, 235308 ~2003!
tem used is taken to be at the center of the IncGa12cAs dot
with the z direction defined as the growth direction. Thex
andy axes are aligned with the edges of the dot base. In
model the GaAs cap and substrate have height 30 nm an
entire heterostructure has a square base of 1403140 nm2.

The conduction-band offset between GaAs and InAs
taken to be 0.797 eV, with bulk electron effective masses
GaAs and InAs of 0.067mo and 0.023mo , respectively. To
obtain the relevant parameters in the IncGa12cAs material
we linearly interpolate the effective electron masses, and
culate the conduction-band offset in eV with an empiric
relation from Barker6

Vo521.178c10.381c2. ~1!

The composition and the conduction-band offset both v
with position.

B. Solution of the Schrödinger equation

To calculate the bound energy levels and the elect
wave functions we use the single-band effective-mass
proximation to the Schro¨dinger equation:

HC5EC,

@ 1
2 ~2 i\“1eA!M 21~2 i\“1eA!1V~r !#C5EC,

~2!

where M is the effective mass tensor andA is the vector
potential related to the magnetic field byB5“3A. V(r ) is
the electron confinement potentialV(r )5Vo(r )1Vc(r ),
whereVc(r ) is the contribution to the potential due to th
strain. The piezoelectric potential is not yet included in t
work, however we expect its inclusion to have no effect
the convergence rates investigated. The change in the a
lute energies of the bound states caused by the piezoele
potential is thought to be small.9

The lattice constant of InAs is 6.7% larger than that
GaAs, consequently the SAQD system is highly strain
The strain field affects the band gaps in the dot and subs
material, and hence alters the confinement potential and
effective masses throughout the heterostructure. The r
tions between the hydrostatic (eh) and biaxial (eb) strains
and the strained confinement potentials for electrons, he
holes (Vhh), and light holes (Vlh) are well documented in
the literature:10

FIG. 1. Schematic of the dot model investigated by Br
et al.
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Vc~r !5aceh~r !,

Vhh~r !5aveh~r !1
b

2
eb~r !,

Vlh~r !5aveh~r !2
b

2
eb~r !. ~3!

Then, given the strained potentials, the strained effec
electron masses may be evaluated from first-order pertu
tion theory,10

mz* ~r !5m*
Vc1Eg

GaAs2Vlh

Eg
,

mxy* ~r !5m*
~Vc1Eg

GaAs2Vhh!~Vc1Eg
GaAs2Vlh!

Eg~Vc1Eg
GaAs2 3

4 Vlh2 3
4 Vhh)

, ~4!

where m* , mz* , and mxy* denote bulk, perpendicular, an
in-plane effective masses, respectively.Vc and hence the cal
culated bound-state energies are specified with an en
zero at the GaAs conduction-band edge. Finally, in units
eV, the band gapEg and the deformation potentialsac , av ,
andb in IncGa12cAs are10

Eg50.41c11.52~12c!,

ac525.08c27.17~12c!,

av51.00c11.16~12c!,

b521.80c21.70~12c!. ~5!

Given the position-dependent confinement potentials
effective masses we can always solve Eq.~2! by expanding
the exact wave functionC in terms of an arbitrary set o
basis functionsc i and eigenvectorsai :

C5(
i

aic i , ~6!

and then diagonalizing the resultant Hamiltonian matrix.

C. Harmonic-oscillator basis

In cylindrical polar coordinates we may write the actu
single-particle states of the dot as a sum of harmon
oscillator functions:

C~r !5(
i

aic i

5 (
l i52 l max

l max

(
mi50

mmax

(
ni50

nmax

al imini
F l i

~f!Zmi
~z!Rni l i

~r !,

~7!

where theal imini
are expansion coefficients, and we ha

usedNbs5(2l max11)(mmax11)(nmax11) basis functions
to approximate the full single-particle wave function. Th
individual basis functions in Eq.~7! are given by
8-2
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EFFICIENT METHOD FOR CALCULATING ELECTRONIC . . . PHYSICAL REVIEW B 68, 235308 ~2003!
F l i
~f!5

1

A2p
eil if,

Zmi
~z!5S lz

2mimi !Ap
D 1/2

Hmi
@~z2zo!lz#e

2(z2zo)2lz
2/2,

Rni l i
~r !5S ni !l r

2

2u l i u~ni1u l i u!!
D 1/2

e2(1/4)r 2lr
2
~rl r !

u l i uLni

u l i uF1

2
r 2l r

2G .
~8!

In Eq. ~8!, Hmi
and Lni

u l i u are the Hermite and Laguerr

polynomials, respectively,11 andlz andl r are the reciprocals
of the respective length scales of the HO wave functions
the parallel and perpendicular directions. The length sc
and the offset parameterzo can be chosen to optimize th
rate of convergence of the HO calculation. Essentially
choose values ofl r , lz , and zo to give the ground
harmonic-oscillator basis function a similar spatial extent
the actual localized state of the dot. This is discussed fur
in Sec. III B. The values ofl r are taken to be independent
the magnetic field as the changes in length scales cause
fields of up to 20 T are less than 2% and therefore have l
effect on the convergence rate.

To diagonalize the Hamiltonian@Eq. ~2!# and solve for the
exact single-particle states we must calculate the matrix
ments of the Hamiltonian operator between individual H
states@Eq. ~7!#,

H ji 5E F l j
* Zmj

* Rnj l j
* ~Ho1HB!F l i

Zmi
Rni l i

rdrdfdz, ~9!

where we have split the Hamiltonian into a field-independ
and a field-dependent part,

Ho52
\2

2
“M 21

“1V~r !,

HB52
i\

2
“M 21eA2

i\

2
M 21A•“1

1

2
~eA!2M 21.

~10!

Equation~9! contains terms in which the differential op
erator acts on products of the inverse effective-mass te
and the basis states. In the present model the effective m
must be calculated numerically, it is therefore advantage
to integrate these terms by parts in order to rearrange
operator order. In this way, the terms containing the diff
ential operator may be written as products of the inve
effective-mass tensor and derivatives of the basis funct
which may be evaluated analytically. The derivative of t
HO function with respect tof is easily found, while ther
andz derivatives may be written in a form similar to that
the wave functions themselves by using recurrence relat
for the Laguerre and Hermite polynomials,11
23530
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dZmi

dz
5S lz

3

2mimi !Ap
D 1/2

$2miHmi21@~z2zo!lz#

2lz~z2zo!Hmi
@~z2zo!lz#%e

2(z2zo)2lz
2/2,

dRni l i

dr
5S ni !l r

4

2u l i u~ni1u l i u!!
D 1/2

e2(1/4)r 2lr
2
~rl r !

u l i u21H S u l i u12n

2
1

2
r 2l r

2DLni

u l i uF1

2
r 2l r

2G22~ni1u l i u!Lni21
u l i u F1

2
r 2l r

2G J .

~11!

The field-independent matrix elements are then given by

~Ho! j i 5E F \2

2mxy*

dc j*

dr

dc i

dr
1

\2

2mz*

dc j*

dz

dc i

dz

1c j* c iS \2l i l j

2mxy* r 2
1VD G rdrdzdf. ~12!

With the HO basis it is relatively easy to include the fiel
dependent terms by working in the circular gauge. In cyl
drical polar coordinates we have

A5~0,1
2 Br,0!, ~13!

and the matrix elements containing the three field-depend
terms are simply,

~HB! j i 5
eB

4 E c j* c iF eBr2

2mxy*
2

\~ l i1 l j !

mxy*
G rdrdfdz.

~14!

The terms (HB) i j have a very similar form to the matrix
elements of the field-independent Hamiltonian. The effe
of the magnetic field may therefore be included with litt
additional programming effort and CPU time.

D. Plane-wave basis

The Schro¨dinger equation may also be solved by expan
ing the actual wave function in terms of plane waves,

C~r !5(
i

aic i

5 (
l i52 l max

l max

(
mi52mmax

mmax

(
ni52nmax

nmax

al imini
~8LxLyLz!

21/2

3eiki•r, ~15!

where we have used a total number ofNbs5(2l max
11)(2mmax11)(2nmax11) states in the expansion, and a
now working in Cartesian coordinates so thatr5(x,y,z).
The plane-wave calculation is carried out with period
boundary conditions

k i5~nip/Lx ,mip/Ly ,l ip/Lz!, ~16!
8-3
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MERVYN ROY AND P. A. MAKSYM PHYSICAL REVIEW B 68, 235308 ~2003!
within a superlattice unit cell of dimension 2Lx32Ly
32Lz . The superlattice unit cell size affects both the co
verged values obtained for the bound-state energies and
rate of convergence of the calculation. This will be discus
in Sec. III C.

We must calculate the matrix elements of the Hamilton
in the plane-wave basis. Considering the field-independ
Hamiltonian and, again integrating by parts so that the
ferential operators only act on the basis functions, we fin

~Ho! j i 5~8LxLyLz!
21E F\2

2 S kxj
kxi

1kyj
kyi

mxy*
1

kzj
kzi

mz*
D 1VG

3ei (ki2k j )•rdxdydz. ~17!

III. COMPUTATION

The computational problem was split into three par
First we calculated the strained confinement potential
effective masses from Eqs.~1!, ~3!, and ~4!. We then found
the relevant matrix elements in the presence or absence
magnetic field and, finally, diagonalized the Hamiltonian.

The diagonalization was performed with theLAPACK li-
brary standard linear algebra routines. We optimized the
culation time for both the HO and the plane-wave calcu
tions by considering the symmetry properties of the dot. T
Bruls dot belongs to the symmetry groupC4v ; we, however,
use the irreducible representations of the more general s
metry groupC2v in order to block diagonalize the Hami
tonian into four blocks. Each block can then be diagonaliz
separately, reducing the time taken to fully diagonalize
matrix by up to a factor of 16. Moving from a description
this specific SAQD in terms of theC2v symmetry group to a
description in terms of theC4v symmetry group only reduce
the time taken to diagonalize the matrix by a factor of ab
1.6, at the cost of making the code less general. Both r
angular and square based dots belong to theC2v symmetry
group and so the methods used for blocking the matrix m
be applied to both types of SAQD’s.

A. Strain

We calculate the strain within the continuum elastic
approximation with a commercially available, finite eleme
model Abaqus. This model has already been demonstrate
provide an accurate representation of the strain within
cleaved dot.4 In this approximation, the system is complete
specified in terms of values for the Young’s moduli and Po
son ratios@85.3 Gpa ~GaAs!, 51.4 GPa~InAs! and 0.32
~GaAs!, 0.35~InAs!, respectively12# and the lattice mismatch
strain ~6.7%!. As usual we linearly interpolate to obtain th
relevant values in the IncGa12cAs material. In this paper we
are interested in the bound electronic states of an isol
SAQD. We therefore locate the Bruls dot at the center o
1403140365.6 nm3 block of semiconductor material and
when calculating the strain, apply periodic boundary con
tions to the edges of this block. This system is large eno
so that the strain within each dot is unperturbed by the ne
boring dots in the periodic lattice.
23530
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Figure 2 shows the confinement potential, and the e
tron effective masses as a function ofz through the center of
the dot. The characteristicz dependence of the confineme
potential and the effective mass comes mostly from the
ferences in composition, while the compressive hydrost
strain inside the dot reduces the electron confinement po
tial from the unstrained well depth of 0.797 eV. The InA
wetting layer is included as an integral part of this calcu
tion. Its effects on the confinement potential and effect
mass can be clearly seen in Fig. 2.

B. Harmonic-oscillator basis

To calculate thef integrals with the HO basis function
we use a fast Fourier transform with 8192 points. Thez and
r integrals are then calculated using Simpson’s rule o
nonuniform grid, with the highest point densities in the r
gions where the strained potential varies most rapidly. T
gives each matrix element to an accuracy of better t
0.05%

The rate of convergence of the harmonic-oscillator cal
lation can be improved by optimizingzo and the parallel and
perpendicular length scales of the basis states. This is d
by minimizing the energy of the ground harmonic-oscillat
state in the dot potential with respect to the HO length sca
and to the offset of the perpendicular HO states from
center of the dot,zo . For a given dot we search for the glob
minimum in Hoo(zo ,l r ,lz)5*co* Hcordrdzdf. In the
Bruls dot the minimum value ofHoo520.218 eV is ob-
tained with zo520.25 nm, 1/l r53.12 nm, and 1/lz
52.41 nm. Although the convergence rate is improved
optimizing these parameters, the rate is not critically dep
dent on the values chosen forzo , 1/l r , and 1/lz , and the
final converged values obtained for the bound-state ener
do not depend on the values chosen for these paramete
all. For example, varying the length scales by 10% chan
the value ofHoo by less than 0.1% and therefore gives litt
difference in the rate of convergence of the calculation.

C. Plane-wave basis

The optimum method to calculate the plane-wave ma
elements would appear to be a fast Fourier transform~FFT!.
However, using the linear grid required for a FFT it prov
impossible to calculate the integrals to the required accur
because of the large storage sizes required. At best we

FIG. 2. Left: Electron, heavy-hole and light-hole confineme
potentials plotted as a function ofz through the center of the dot
Right: Effective electron masses in units of the bare electron m
8-4
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EFFICIENT METHOD FOR CALCULATING ELECTRONIC . . . PHYSICAL REVIEW B 68, 235308 ~2003!
tained converged energies only accurate to within a few m
of the actual bound-state energies.

Instead of the FFT, we therefore used a Simpson’s r
routine to perform each of the integrals. The efficiency of
integration routine was improved by considering the symm
try properties of this particular SAQD: both thex andy in-
tegrals are symmetric and real. We estimate that, with
method, we are able to calculate the matrix elements to
accuracy of'0.2%.

The plane-wave calculation was carried out with perio
boundary conditions within a superlattice unit cell of dime
sion 2Lz32Ly32Lx . It was found that the rate of conve
gence and the converged energies vary according to the
size used. Typically, the smaller the box the faster the c
vergence, however, with smaller box sizes, the bound w
functions within each SAQD are perturbed by the neighb
ing dots in the periodic lattice. The converged energies
then smaller than those expected for an isolated SAQD.

These effects can be observed in a one-dimensional
culation. Figure 3 shows the calculated ground-state en
of electrons confined by the radially averaged confinem
potential as a function of the perpendicular box size. T
energies calculated with a basis of 200 plane-waves vary
less than 0.1% beyond a box size ofLz518 nm while the
convergence using 20 plane waves gets progressively w
at larger box sizes. At small box sizes the calculated grou
state energies are much smaller than those of an isol
SAQD. The inset to the plot shows the radially averag
confinement potential in eV referenced to the conducti
band offset in GaAs, and the negative of the charge den
of the converged ground-state calculated usingLz530 nm.
If the tail of the wave function overlaps the edges of the b
the energies converge to lower values than those for an
lated dot. In the three-dimensional calculation of the el
tronic states of the Bruls dot we use a box size ofLz
530 nm, Ly530 nm, andLx530 nm. However, larger box

FIG. 3. Inset: Variation in radially averaged confinement pot
tial ~eV! with z ~nm! ~solid line!. Negative of the charge density o
converged ground state in arbitrary units~dashed line!. Main figure:
Calculated ground-state energies for this potential as a functio
box size using 200 plane-waves~solid line! and 20 plane-waves
~dashed line!.
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sizes may be needed to reproduce the isolated dot result
the excited states which have a larger spatial extent than
ground state.

IV. RESULTS

A. Convergence properties

Using the HO basis we calculated the bound-state e
gies of the Bruls SAQD at zero magnetic field. With max
mum quantum numbers ofl max512, mmax520, nmax520,
and therefore a total number ofNbs511 025 harmonic-
oscillator functions in the basis set we found six bound sta
inside the dot. The energies of the bound states are give
Table I. The next two most tightly bound states were fou
to be degenerate and delocalized throughout the wet
layer at an energy of20.0295 eV relative to the conduction
band edge in GaAs. The delocalized states are easily ide
fied by examining the spatial extent of the calculated wa
functions.

Figure 4 shows the rate of convergence of each of

-

of

TABLE I. Comparison between the bound-state energies ca
lated with the harmonic-oscillator basis~left column! and with the
plane-wave basis~centre column!. The energies of the bound state
are given relative to the GaAs conduction band edge.

State Energy~eV! Energy~eV! Percentage difference
Nbs

HO511025 Nbs
pw518081 ~%!

1 20.2247 20.2234 0.6
2 20.1563 20.1564 0.1
3 20.1563 20.1564 0.1
4 20.0947 20.0960 1.4
5 20.0720 20.0726 0.8
6 20.0594 20.0606 2.0

FIG. 4. Rate of convergence of bound states as a function
number of HO basis functions included in the calculation. Solid l
~ground state!, dotted line~state 2!, points ~state 3!, dashed line
~state 4!, long dashed line~state 5!, dot dash line~state 6!. Horizon-
tal solid lines show energy differences of 0, 0.2 meV, and 1 m
between the converged energy and the energies calculated withNbs

basis functions.
8-5
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MERVYN ROY AND P. A. MAKSYM PHYSICAL REVIEW B 68, 235308 ~2003!
bound states of the Bruls dot. The plot shows the differe
in energy between the converged energy and the ene
calculated withNbs basis functions. This is the number o
basis functions before the matrix has been blocked. F
Fig. 4 we can see the total number of basis states require
obtain any given accuracy. For example, we can ob
ground-state energies within 1% of the converged ene
with only 24 HO basis states (l max50, mmax57, nmax52).
To calculate the ground-state energy to within 1 meV of
converged energy we need 324 basis states (l max54, mmax
58, nmax53). As we would expect, the excited states a
slower to converge but we can achieve 1 meV accuracy
all the bound states of the dot with only 1368 basis functio
in the expansion.

At zero field we also diagonalized the Hamiltonian in
plane-wave basis withNbs518 081, or maximum quantum
numbers ofl max520, mmax510, andnmax510 in thez,y,
andx directions, respectively. The energies obtained from
plane-wave calculation and the harmonic-oscillator calcu
tion typically agree to within a fraction of a percent~see
Table I!. Figure 5 shows the difference in the bound-st
energies calculated withNbs plane-wave states and those o
tained with 18 081 plane waves in the expansion. This fig
demonstrates that the excited states have clearly not
verged, even with a total of 18 081 basis functions. T
ground state is closer to convergence, but its energy is
decreasing by almost 0.05 meV with the addition of ex
in-plane states. To obtain a ground-state energy within 1%
the calculated energy found with 18 081 basis states we n
to include at least 3993 plane waves in the expansion (l max
516, mmax55, nmax55), while to achieve 1 meV accurac
and still retain theC4v symmetry of the dot we need t
include a total of 7435 plane waves. The plane-wave b
calculation is much slower to converge than the HO calcu
tion. We require at least a factor of 100 more states to ob
convergence to within'1%.

FIG. 5. Rate of convergence of bound states as a function
number of plane-wave basis functions included in the calculat
Solid line ~ground state!, dotted line ~state 2!, points ~state 3!,
dashed line~state 4!, long dashed line~state 5!, dot dash line~state
6!. Horizontal solid lines show energy differences of 0, 0.2 me
and 1 meV between the energy obtained with 18 081 basis s
and the energies calculated withNbs basis functions.
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The excited-state energies found with the plane-wave
pansion converge to values lower than those obtained f
the harmonic-oscillator calculation. This indicates that t
box size chosen (Lz5Ly5Lx530 nm) is too small to com-
pletely reproduce the case of an isolated dot. To empha
that the energies obtained from the plane-wave calcula
are critically dependent on box size, we recalculated the
lutions to the Schro¨dinger equation after setting the interd
distance in the periodic lattice to be equal to the dot dim
sion in each direction. This follows a prescription used
Barker7 to calculate the bound electron and hole states wit
a square based pyramidal dot of height 6 nm and base
312 nm2. With a superlattice unit cell of sizeLx

511.2 nm,Ly518 nm, Lz518 nm for the plane-wave cal
culation we obtain much more rapid convergence for
states in the Bruls dot. The ground-state energy was foun
be converged to within 1% of the exact energy with only
basis states. However the value obtained for this conver
ground state of20.2472 eV is over 20 meV lower than th
ground-state energy in an isolated dot.

B. Magnetic-field dependence

The bound-state energies for the Bruls dot were calcula
as a function of magnetic field from 0 to 20 T with 7497 H
states in the expansion to ensure an accuracy to within
meV for each of the bound states.

Figure 6 shows the field dependence of the lowest e
bound states. Because of the large interlevel spacing, typ
of self-assembled dots, the behavior with magnetic field
relatively simples. We observe crossings between state
~dashed line! and 8 ~dotted line! at 7.2 T, between states
and 6 at 13.1 T, and between states 6 and 7 at 18.8 T. We
easily identify crossings and anticrossings by keeping tr
of the particular block of the block diagonal Hamiltonia
from which each of the bound-state energies originates. S
8 ~dotted line!, one of a pair of degenerate delocalized sta
at 0 T, becomes bound within the dot above 8.5 T.

of
.

,
tes

FIG. 6. Field dependence of lowest eight energy states given
the exact diagonalization of the single-band Hamiltonian for
Bruls dot. Horizontal solid line shows the cut-off energy for th
wetting layer states.
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V. CONCLUSION

In summary we have demonstrated that the bound e
tronic states of a self-assembled quantum dot may be ca
lated more efficiently with a HO basis than with the com
monly used plane-wave basis.

We calculated the bound electron states within a ph
cally realistic model of a self-assembled quantum dot. T
single-band, position-dependent, effective-mass Hamilton
was diagonalized with a harmonic-oscillator basis and
plane-wave basis, and a comparison was made betwee
rates of convergence of the two calculations. It was fou
that the HO basis gave a much more rapid converge
Bound-state energies within 1 meV of the exact conver
energy were obtained with only 324 harmonic-oscillator b
sis functions, while, to achieve similar convergence with
plane-wave basis, we required at least 7425 plane-wa
This leads to an increase in the computer time neede
diagonalize the Hamiltonian matrix by a factor of appro
mately 123103. In both calculations there is also a signi
cant overhead involved in setting up the Hamiltonian ma
k-
,

N.

.
s.
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which is not affected by the choice of basis. The plane-wa
basis also has a second disadvantage: The energies obt
are critically dependent on the size of superlattice unit c
used. For example, within a superlattice box chosen to g
interdot separations equal to the dot dimension we obtai
similarly rapid convergence to the HO calculation, but en
gies which differed from the isolated dot energies by at le
10%.

In this paper we have also demonstrated that the effect
a magnetic field may be easily included when working w
the HO basis and have shown the field dependence of
bound states between 0 and 20 T.
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