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Efficient method for calculating electronic states in self-assembled quantum dots
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It is demonstrated that the bound electronic states of a self-assembled quantum dot may be calculated more
efficiently with a harmonic-oscillatofHO) basis than with the commonly used plane-wave basis. First, the
bound electron states of a physically realistic self-assembled quantum dot model are calculated within the
single-band, position-dependent effective mass approximation including the full details of the strain within the
self-assembled dot. A comparison is then made between the number of states needed to diagonalize the
Hamiltonian with either a HO or a plane-wave basis. With the harmonic-oscillator basis, significantly fewer
basis functions are needed to converge the bound-state energies to within a fraction of a meV of the exact
energies. As the time needed to diagonalize the matrix varies as the cube of the matrix size this leads to a
dramatic decrease in the computing time required. With this basis the effects of a magnetic field may also be
easily included. This is demonstrated, and the field dependence of the bound electron energies is shown.
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[. INTRODUCTION within the single-band effective-mass approximation includ-
ing the position dependence of the effective mass and the
Self-assembled quantum dofSAQD'’s) are fully quan- effect of the strain field within the system. The bound-
tized atomlike systems in the solid state. Over the last decadelectron wave functions are calculated by exact diagonaliza-
there has been a large amount of interest in these structurén of the Hamiltonian. A comparison is then made between
mainly due to the potential for applications, for example, inthe convergence of the calculation with a harmonic-oscillator
quantum information processing and optoelectronic devicedasis and the convergence with a plane-wave basis. We show
Until recently, progress in the field was hampered by thdhat the advantages of the harmonic-oscillator basis are two-
need to study large ensembles of dots and consequently, af@ld. First, the bound-state energies are found to converge
erage dot properties. However, due to advances in experdhuch more rapidly with the HO basis. We demonstrate that
mental techniques it is now possible to study individual dotshe ground-state energy may be calculated to within 1% with
in detail. Photoluminescence experiments on single selfonly a few tens of HO states as compared to a few thousand
assembled dots can resolve the many-particle energy levef$ane-wave states. As the time taken to diagonalizéNgn
to within a fraction of a meV. Scanning tunneling X Npsmatrix scales afslgs this leads to a dramatic reduction
spectroscopyand magnetotunneling experimehigve been in the required computing time. Second, it is relatively
used to directly image the single-particle bound states withistraightforward to include the effects of magnetic fields in
individual SAQD’s, while, most importantly, scanning tun- the calculation with the HO basis. In this paper we calculate
neling microscope images of cleaved quantum dots havéhe field dependence of the bound-electron states between 0
been used to provide detailed physical information on theand 20 T.
shape, size, and composition profile of the dotis addi-
tional information has demonstrated that the bound-state
wave functions of SAQD’s are significantly affected by the Il. METHOD
physical dot structure. To calculate the single-particle ener-
gies to the accuracy now required by experiment, the details
of the physical dot structure and most importantly, the strain Throughout this work we use a dot model with dimen-
within each SAQD must be included in the calculation. sions and composition identical to those measured by Bruls
We propose an efficient method of calculating the elecet al? using cross-sectional scanning tunneling microscopy.
tronic states in SAQD’s by expanding the SAQD state inThe physical description of the dot provided by Bretsal. is
terms of harmonic-oscillatgiHO) functions. The motivation Vvery detailed and is therefore used as an example of a typical
being that the actual localized states of the dot may be repdot. The calculational methods described in this paper are,
resented using fewer basis functions if the basis is alreadijowever, completely general and may be used to calculate
localized on the appropriate length scale. To our knowledgethe bound states within SAQD's of arbitrary shape, size, and
no other calculations of the bound-state wave functions ofomposition profile.
physically realistic SAQD models have been performed with The Bruls dot(see Fig. 1 is a square based truncated
a HO basis. Instead most work has focused on the expansigyramidal InGa;_As dot with an indium fraction varying
of the SAQD states in terms of plane wave$pr the solu- linearly fromc=0.6 at the base of the dot to=1 at the top
tion of the discretized Schdinger equation in real spafe. of the dot. The SAQD rests on a 0.6-nm InAs wetting layer
Both these methods can be computationally expensive.  and is surrounded by a GaAs matrix. The dot base is 18
In this paper we calculate the bound states of a physically< 18 nn?, the dot height is 5 nm, and the top surface has
realistic model of a SAQD. The calculation is performeddimension 10.& 10.6 nnf. The origin of the coordinate sys-

A. The dot model
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Ve(r)=acen(r),

b
Vihn(r)=a,en(r) + Efb(r).

b
Vih(r)=a,en(r)— 5 €ey(r). ©)
FIG. 1. Schematic of the dot model investigated by Bruls " veh 2°°

etal. Then, given the strained potentials, the strained effective

electron masses may be evaluated from first-order perturba-
tem used is taken to be at the center of thgGim _.As dot  tion theory™®
with the z direction defined as the growth direction. Tke

andy axes are aligned with the edges of the dot base. In this Vet EgeA-V,

*
model the GaAs cap and substrate have height 30 nm and the m; (r)=m"* Eq '
entire heterostructure has a square base oK14M nnf.
The conduction-band offset between GaAs and InAs is (Ve+ EG*°= Vi) (Vo + ES 4=V
taken to be 0.797 eV, with bulk electron effective masses in ~ Mj,(r)=m* Gars 3 . ., (4
GaAs and InAs of 0.06%, and 0.02&,, respectively. To Eg(VetBEg™ = 4 Vin= 2 Vin)

obtain the relevant parameters in theGa, _As material — wherem*, m*, and m}, denote bulk, perpendicular, and
we linearly interpolate the effective electron masses, and calp_pjane effective masses, respectivaly.and hence the cal-

relation from Barket zero at the GaAs conduction-band edge. Finally, in units of
eV, the band gajk, and the deformation potentiatg , a,,
V,=—1.17&+0.381c?2. (1) andbin In.Ga _As are®

E,=0.41c+1.521—c),
The composition and the conduction-band offset both vary g & )

with position. a.=—5.0&—-7.1711-c¢),

B. Solution of the Schralinger equation a,=1.0c+1.161~c),

To calculate the bound energy levels and the electron b=-1.80c—1.7Q1-c). (5)
wave functions we use the single-band effective-mass ap-
proximation to the Schidinger equation: Given the position-dependent confinement potentials and

effective masses we can always solve Et).by expanding
the exact wave functioflV in terms of an arbitrary set of

HY=EW, basis functionsy; and eigenvectors; :

[2(—iAV+eA)M H(—iaV+eA)+V(r)]¥=EV, V=2 a, (6)
2 '
and then diagonalizing the resultant Hamiltonian matrix.

where M is the effective mass tensor amd is the vector
potential related to the magnetic field By=V X A. V(r) is C. Harmonic-oscillator basis
the electron confinement potentidl(r)=V,(r)+V(r),
whereV.(r) is the contribution to the potential due to the
strain. The piezoelectric potential is not yet included in this
work, however we expect its inclusion to have no effect on
the convergence rates investigated. The change in the abso-
lute energies of the bound states caused by the piezoelectric \If(r)zz a;
potential is thought to be small. !

In cylindrical polar coordinates we may write the actual
single-particle states of the dot as a sum of harmonic-
oscillator functions:

The lattice constant of InAs is 6.7% larger than that of Imax  Mmax Nmax
GaAs, consequently the SAQD system is highly strained. = > DD amn®(d)Zn ()R, (1),
The strain field affects the band gaps in the dot and substrate li=—Tmaxm=0m=0 """ ' "
material, and hence alters the confinement potential and the (7)

effective masses throughout the heterostructure. The rela-

tions between the hydrostatiey) and biaxial €,) strains Where thea, ., are expansion coefficients, and we have
and the strained confinement potentials for electrons, heawsed Nps= (2l a5t 1) (Mpaxt 1) (Nmaxt 1) basis functions
holes ), and light holes V) are well documented in to approximate the full single-particle wave function. The
the literature' individual basis functions in Eq7) are given by
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(11)

il ;
In Eq. (8), Hmi and Lni are the Hermite and Laguerre The field-independent matrix elements are then given by
polynomials, respectiveli}, and\, and\, are the reciprocals

of the respective length scales of the HO wave functions in %2 dyt dy, 42 dyt dy,
(Ho)ji= f

2m;y dr dr +2m; dz dz

the parallel and perpendicular directions. The length scales
and the offset parametey, can be chosen to optimize the
rate of convergence of the HO calculation. Essentially we
choose values of\,, \,, and z, to give the ground + ¢i(
harmonic-oscillator basis function a similar spatial extent to !
the actual localized state of the dot. This is discussed further
in Sec. Il B. The values of, are taken to be independent of ~ With the HO basis it is relatively easy to include the field-
the magnetic field as the changes in length scales caused Bgpendent terms by working in the circular gauge. In cylin-
fields of up to 20 T are less than 2% and therefore have littl@rical polar coordinates we have
effect on the convergence rate.

To diagonalize the HamiltonigEg. (2)] and solve for the A=(0,3Br,0), (13
exact single-particle states we must calculate the matrix ele- . - )
ments of the Hamiltonian operator between individual HOand the matrix elements containing the three field-dependent

stateg Eq. (7)], terms are simply,

21,
>tV
2mg, r

rdrdzde. (12

eBr? ﬁ(||+|1)

*
Xy

rdrd¢dz

B
L= *
Hji:J'(D'*jZ:lj :j|j(H0+HB)(D|iZmiRni|irdrd¢dz’ ©) (Ho)s 4 J i 2my,

(14)
where we have split the Hamiltonian into afield-independentrhe terms HB)ij have a very similar form to the matrix
and a field-dependent part, elements of the field-independent Hamiltonian. The effects
of the magnetic field may therefore be included with little
h2 additional programming effort and CPU time.
Ho=— = VMV +V(r),
D. Plane-wave basis

i% i% 1 The Schrdinger equation may also be solved by expand-
Hg=— ?VM “leA— ?M “IA.V+ E(eA)ZM L ing the actual wave function in terms of plane waves,

(10)
V(=2 &
Equation(9) contains terms in which the differential op- !
erator acts on products of the inverse effective-mass tensor Imax Mmax Nmax
and the basis states. In the present model the effective mass = > > > & mn (8LxLyL,) Y2
must be calculated numerically, it is therefore advantageous li==Tmax M==Mmax N="Nmay """
to integrate these terms by parts in order to rearrange the % aikir (15)
operator order. In this way, the terms containing the differ- ’
ential operator may be written as products of the inversavhere we have used a total number Of,¢=(2l.x
effective-mass tensor and derivatives of the basis functions- 1)(2m,, .+ 1) (2n,ax+ 1) States in the expansion, and are
which may be evaluated analytically. The derivative of thenow working in Cartesian coordinates so that(x,y,z).
HO function with respect tap is easily found, while the  The plane-wave calculation is carried out with periodic
andz derivatives may be written in a form similar to that of boundary conditions
the wave functions themselves by using recurrence relations
for the Laguerre and Hermite polynomiafs, ki=(nim/Ly,mm/Ly lim/Ly), (16)
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within a superlattice unit cell of dimensionL2x2L, 175 — 0.0
X 2L,. The superlattice unit cell size affects both the con- 15 | ] Zoort o
verged values obtained for the bound-state energies and the o — elections % 006 o
rate of convergence of the calculation. This will be discussed 2 975 [ - pheavy holes e R
. > g £ 005t m,
in Sec. Ill C. o5 | e 3
We must calculate the matrix elements of the Hamiltonian i T oM
in th_e plz_;me-wave ba_sis_. Consi_dering the field-independe_znt O T T o 10 20 T o 10 2
Hamiltonian and, again integrating by parts so that the dif- Z (nm) 2 (nm)

ferential operators only act on the basis functions, we find
FIG. 2. Left: Electron, heavy-hole and light-hole confinement

potentials plotted as a function afthrough the center of the dot.

72 [ ke ky +ky ky kg kg ; _ fthrot
L -1 - [ i i Right: Effective electron masses in units of the bare electron mass.
(Ho)ji=(8LyLyL,) 5 . —|+V
My m;
x & (i—K) Tdxdydz 17 Figure 2 shows the confinement potential, and the elec-

tron effective masses as a functionzthrough the center of
the dot. The characteristcdependence of the confinement
Ill. COMPUTATION potential and the effective mass comes mostly from the dif-
ferences in composition, while the compressive hydrostatic

Fi Tthe comlpu'ltazlodnatlL protble_m dwas ]f.’p“t 'nt? th:eet_plarts. train inside the dot reduces the electron confinement poten-
Irst we- calculate € strained continement potential aN@,) fom the unstrained well depth of 0.797 eV. The InAs

effective masses.from Eqel), .(3)’ and(4). We then found wetting layer is included as an integral part of this calcula-
the relevant matrix elements in the presence or absence of

magnetic field and, finally, diagonalized the Hamiltonian. tin. Its effects on the conﬁne_ment potential and effective
. L . : mass can be clearly seen in Fig. 2.
The diagonalization was performed with thepack li-

brary standard linear algebra routines. We optimized the cal-
culation time for both the HO and the plane-wave calcula- B. Harmonic-oscillator basis
tions by considering the symmetry properties of the dot. The
Bruls dot belongs to the symmetry gro@,, ; we, however,
use the irreducible representations of the more general sy
metry groupC,, in order to block diagonalize the Hamil-
tonian into four blocks. Each block can then be diagonalize
separately, reducing the time taken to fully diagonalize th
matrix by up to a factor of 16. Moving from a description of o
this specific SAQD in terms of th€,, symmetry group to a 0.05% . .

v The rate of convergence of the harmonic-oscillator calcu-

desc_rlptlon in terms_ of th@f‘v symmetry_ group only reduces lation can be improved by optimizirg, and the parallel and
the time taken to diagonalize the matrix by a factor of about . . o
erpendicular length scales of the basis states. This is done

1.6, at the cost of making the code less general. Both recg L . .
angular and square based dots belong toQhe symmetry y minimizing the energy of the ground harmonic-oscillator
. : state in the dot potential with respect to the HO length scales
group and so the methods used for blocking the matrix Ma%nd to the offset of the perpendicular HO states from the
be applied to both types of SAQD’s. Perp
center of the dotz, . For a given dot we search for the global
_ minimum in Hyo(zo A, \) = [ ¢ Hipordrdzde. In the
A. Strain Bruls dot the minimum value of,,=—0.218 eV is ob-

We calculate the strain within the continuum elasticitytained with z,=-0.25 nm, 1X,=3.12nm, and ¥,
approximation with a commercially available, finite element=2.41 nm. Although the convergence rate is improved by
model Abaqus. This model has already been demonstrated @ptimizing these parameters, the rate is not critically depen-
provide an accurate representation of the strain within alent on the values chosen fog, 1/A,, and 1A,, and the
cleaved dof. In this approximation, the system is completely final converged values obtained for the bound-state energies
specified in terms of values for the Young’s moduli and Pois-do not depend on the values chosen for these parameters at
son ratios[85.3 Gpa(GaAs, 51.4 GPa(InAs) and 0.32 all. For example, varying the length scales by 10% changes
(GaAs, 0.35(InAs), respectivelﬂzz] and the lattice mismatch the value ofH,, by less than 0.1% and therefore gives little
strain (6.7%99. As usual we linearly interpolate to obtain the difference in the rate of convergence of the calculation.
relevant values in the W&a _ As material. In this paper we
are interested in the bound electronic states of an isolated
SAQD. We therefore locate the Bruls dot at the center of a
140x 140x 65.6 nnt block of semiconductor material and,  The optimum method to calculate the plane-wave matrix
when calculating the strain, apply periodic boundary condi-elements would appear to be a fast Fourier transfdfR).
tions to the edges of this block. This system is large enouglowever, using the linear grid required for a FFT it proved
so that the strain within each dot is unperturbed by the neighimpossible to calculate the integrals to the required accuracy
boring dots in the periodic lattice. because of the large storage sizes required. At best we ob-

To calculate thep integrals with the HO basis functions
Ve use a fast Fourier transform with 8192 points. Ftend

r integrals are then calculated using Simpson’s rule on a
dmnuniform grid, with the highest point densities in the re-
egions where the strained potential varies most rapidly. This
gives each matrix element to an accuracy of better than

C. Plane-wave basis
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TABLE |. Comparison between the bound-state energies calcu-
-0.04 + T lated with the harmonic-oscillator bagieft column and with the
’ LT plane-wave basigentre columh The energies of the bound states
—0.042 | -7 are given relative to the GaAs conduction band edge.
g —0.044 | State EnergyeV) Energy(eV) Percentage difference
3 - o NHO=11025 NpPY=18081 (%)
S e i —i
° o 1 ~0.2247 ~0.2234 0.6
0048 7 04 2 ~0.1563 ~0.1564 0.1
-0.5
~0.05 -0 - : 3 —0.1563 —0.1564 0.1
I 4 —0.0947 —0.0960 1.4
—0.052 . : . . - -
0 0 20 20 20 o 5 0.0720 0.0726 0.8
box size in z (nm) 6 —0.0594 —0.0606 2.0

FIG. 3. Inset: Variation in radially averaged confinement poten-
tial (eV) with z (nm) (solid ling). Negative of the charge density of sizes may be needed to reproduce the isolated dot results for

converged ground state in arbitrary uriiieshed ling Main figure:  the excited states which have a larger spatial extent than the
Calculated ground-state energies for this potential as a function afjround state.

box size using 200 plane-wavésolid line) and 20 plane-waves
(dashed ling

IV. RESULTS
tained converged energies only accurate to within a few meV

of the actual bound-state energies. Using the HO basis we calculated the bound-state ener-

Instead of the FFT, we therefore used a Simpson's rulgjies of the Bruls SAQD at zero magnetic field. With maxi-
routine to perform each of the integrals. The efficiency of themum quantum numbers 6f,,,= 12, My ax= 20, Niax= 20,

integration routine was improved by considering the symmeand therefore a total number dfi,c=11025 harmonic-
try properties of this particular SAQD: both thxeandy in-  oscillator functions in the basis set we found six bound states
tegrals are symmetric and real. We estimate that, with thisnside the dot. The energies of the bound states are given in
method, we are able to calculate the matrix elements to afable I. The next two most tightly bound states were found
accuracy of~0.2%. to be degenerate and delocalized throughout the wetting

The plane-wave calculation was carried out with periodiclayer at an energy of 0.0295 eV relative to the conduction-
boundary conditions within a superlattice unit cell of dimen-band edge in GaAs. The delocalized states are easily identi-
sion 2L,X 2L, X 2L,. It was found that the rate of conver- fied by examining the spatial extent of the calculated wave
gence and the converged energies vary according to the bd¥nctions.
size used. Typically, the smaller the box the faster the con- Figure 4 shows the rate of convergence of each of the
vergence, however, with smaller box sizes, the bound wave
functions within each SAQD are perturbed by the neighbor- 0.003 m
ing dots in the periodic lattice. The converged energies are ?
then smaller than those expected for an isolated SAQD. ]

These effects can be observed in a one-dimensional cal-
culation. Figure 3 shows the calculated ground-state energy
of electrons confined by the radially averaged confinement
potential as a function of the perpendicular box size. The
energies calculated with a basis of 200 plane-waves vary by
less than 0.1% beyond a box size lof=18 nm while the
convergence using 20 plane waves gets progressively worse
at larger box sizes. At small box sizes the calculated ground-
state energies are much smaller than those of an isolated , , , ,
SAQD. The inset to the plot shows the radially averaged 0 2000 4000 6000 8000
confinement potential in eV referenced to the conduction- N
band offset in GaAs, and the negative of the- charge density FIG. 4. Rate of convergence of bound states as a function of
of the converged ground-state calculated uding 30 nm. . S : ' .

. . number of HO basis functions included in the calculation. Solid line

If the tail c_)f the wave function overlaps the edges of the bo,x'(ground state dotted line(state 2, points (state 3, dashed line
the energies converge to lower values than those for an isQsate 4, long dashed linéstate 5, dot dash line(state 6. Horizon-
lated dot. In the three-dimensional calculation of the electa solid lines show energy differences of 0, 0.2 meV, and 1 meV

tronic states of the Bruls dot we use a box sizelgf between the converged energy and the energies calculatedlygth
=30 nm,L,=30 nm, and.,=30 nm. However, larger box basis functions.

A. Convergence properties

0.002

0.001

Difference in energy (eV)

10000
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0.003 0
= 005 b 000 T ]
>
L 0002 b
2 S -01F ]
2 5
g g
£ 0.001 § -0.15 (
£
e ~0.2
0
: s - ~0.25 - s -
0 5000 10000 15000 0 5 10 15 20
N B (T)

bs

FIG. 5. Rate of convergence of bound states as a function of 'C- 6. Field dependence of lowest eight energy states given by
number of plane-wave basis functions included in the calculation"® €xact diagonalization of the single-band Hamiltonian for the
Solid line (ground statg dotted line (state 2, points (state 3, Brul; dot. Horizontal solid line shows the cut-off energy for the
dashed lingstate 4, long dashed linéstate 5, dot dash lingstate wetting layer states.

6). Horizontal solid lines show energy differences of 0, 0.2 meV,
and 1 meV between the energy obtained with 18 081 basis states The excited-state energies found with the plane-wave ex-
and the energies calculated with; basis functions. pansion converge to values lower than those obtained from

_ the harmonic-oscillator calculation. This indicates that the
bound states of the Bruls dot. The plot shows the differencgoy size chosenl(,= L,=L,=30 nm) is too small to com-

in energy between the converged energy and the energiegeiely reproduce the case of an isolated dot. To emphasize
calculated withNy,s basis functions. This is the number of yn5; the energies obtained from the plane-wave calculation
b(_313|s functions before the matrix has b‘?e” blocked. _Fronare critically dependent on box size, we recalculated the so-
Fig. 4we can see the total numher of basis states requwed. [ftions to the Schidinger equation after setting the interdot
obtain any given accuracy. Fc;r example, we can oblaityisiance jin the periodic lattice to be equal to the dot dimen-
ground-state energies within 1% of the converged *N€9%on in each direction. This follows a prescription used by

with only 24 HO basis states {.x=0, Myax=7, Nmax=2)- L
To calculate the ground-state energy to within 1 meV of theBarkel7 to calculate the bound electron and hole states within

converged energy we need 324 basis staltes,E4, My, a square bas_ed pyramidal dqt of he_ight 6 nm an_d base 12
=8, Nya=3). As we would expect, the excited states are<12 nnf. With a superlattice unit cell of sizel,
slower to converge but we can achieve 1 meV accuracy for- 11-2 nm,Ly=18 nm, L,=18 nm for the plane-wave cal-
all the bound states of the dot with only 1368 basis function$ulation we obtain much more rapid convergence for the
in the expansion. states in the Bruls dot. The ground-state energy was found to
At zero field we also diagonalized the Hamiltonian in abe converged to within 1% of the exact energy with only 91
plane-wave basis witiN,=18 081, or maximum quantum basis states. However the v_alue obtained for this converged
numbers ofl ya,= 20, My =10, andn,a=10 in thez,y, ground state of- 0.2472 eVis over 20 meV lower than the
andx directions, respectively. The energies obtained from th@round-state energy in an isolated dot.
plane-wave calculation and the harmonic-oscillator calcula-
tion typically agree to within a fraction of a percefdee o
Table ). Figure 5 shows the difference in the bound-state B. Magnetic-field dependence
energies calculated witNy, plane-wave states and those ob-  The bound-state energies for the Bruls dot were calculated
tained with 18 081 plane waves in the expansion. This figures a function of magnetic field from 0 to 20 T with 7497 HO
demonstrates that the excited states have clearly not costates in the expansion to ensure an accuracy to within 0.2
verged, even with a total of 18081 basis functions. ThemeV for each of the bound states.
ground state is closer to convergence, but its energy is still Figure 6 shows the field dependence of the lowest eight
decreasing by almost 0.05 meV with the addition of extrabound states. Because of the large interlevel spacing, typical
in-plane states. To obtain a ground-state energy within 1% off self-assembled dots, the behavior with magnetic field is
the calculated energy found with 18 081 basis states we negdlatively simples. We observe crossings between states 7
to include at least 3993 plane waves in the expansigg,( (dashed ling and 8(dotted ling at 7.2 T, between states 8
=16, Mpmax=5, Nmax—=5), While to achieve 1 meV accuracy and 6 at 13.1 T, and between states 6 and 7 at 18.8 T. We can
and still retain theC,, symmetry of the dot we need to easily identify crossings and anticrossings by keeping track
include a total of 7435 plane waves. The plane-wave basisf the particular block of the block diagonal Hamiltonian
calculation is much slower to converge than the HO calculafrom which each of the bound-state energies originates. State
tion. We require at least a factor of 100 more states to obtai8 (dotted ling, one of a pair of degenerate delocalized states
convergence to withir=1%. at 0 T, becomes bound within the dot above 8.5 T.
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V. CONCLUSION which is not affected by the choice of basis. The plane-wave

In summary we have demonstrated that the bound electzaS'S also has a second disadvantage: The energies obtained

tronic states of a self-assembled quantum dot may be calc@l—re critically dependent on the size of superlattice unit cell
lated more efficiently with a HO basis than with the com- sed. For example, within a superlattice box chosen to give

monly used plane-wave basis interdot separations equal to the dot dimension we obtained
y P : .similarly rapid convergence to the HO calculation, but ener-

We ca!cglated the bound electron states within a physi, ies which differed from the isolated dot energies by at least
cally realistic model of a self-assembled quantum dot. Th%o%

single-band, position-dependent, effective-mass Hamiltonian In this paper we have also demonstrated that the effects of

was dlagonallzgd with a harmolnlc-oscﬂlator basis and magnetic field may be easily included when working with
plane-wave basis, and a comparison was made between tfje

rates of convergence of the two calculations. It was foun € HO basis and have shown the field dependence of the
; e ound states between 0 and 20 T.

that the HO basis gave a much more rapid convergence.

Bound-state energies within 1 meV of the exact converged
energy were obtained with only 324 harmonic-oscillator ba-
sis functions, while, to achieve similar convergence with a We would like to thank Dr. S. P. A. Gill and Dr. F. Long of
plane-wave basis, we required at least 7425 plane-wavethe University of Leicester Engineering department for use-
This leads to an increase in the computer time needed tful discussions and advice on the strain calculations. This
diagonalize the Hamiltonian matrix by a factor of approxi- work was performed using the University of Leicester Math-
mately 12< 10°. In both calculations there is also a signifi- ematical Modelling Center’s supercomputer which was pur-
cant overhead involved in setting up the Hamiltonian matrixchased through the EPSRC strategic equipment initiative.
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