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1. Introduction

Coherence of polarized waves is an issue of very recent develop-
ment with plenty of promising possibilities. The inextricable mix-
ing of coherence and polarization allows the investigation of new
concepts and phenomena [1–6].

In this work we elaborate on the idea of a classical counterpart
of entanglement between spatial and polarization degrees of free-
dom for classical waves. More specifically, we focus on the relation
between classical entanglement, polarization, and several recently
introduced measures of coherence for vectorial waves.

Classical entanglement can be defined as the lack of separability
of the cross-spectral density tensor in spatial and polarization
components [7–10]. This definition fully mimics the quantum def-
inition in terms of lack of separability of the density matrix.

The properties and implications of classical entanglement are
fundamentally different from the ones that follow from quantum
entanglement [7–10]. More specifically:

(i) The classical entanglement to be considered here involves
different degrees of freedom of the same particle (so to
speak, since classically there are no light particles) instead
of entanglement between different particles.
ll rights reserved.
(ii) Classically there is no nonlocality since the entangled sub-
systems (space and polarization) cannot be spatially
separated.

(iii) Classically there is no measurement-induced collapse due to
particle indivisibility, so that there are no mutually exclusive
outcomes.

(iv) Finally, we will show that there is no definite relation
between classical and quantum entanglement, since every
cross-spectral density tensor can be derived both from
entangled and factorized quantum states.

Leaving aside these remarks, the definition of classical entangle-
ment is nevertheless meaningful, clear, and unambiguous. In this
regard we show that classical entanglement is clearly related with
some features of coherence between vectorial waves. Thus, the
analysis addressed in this work may be useful by translating re-
sults and concepts between the classical and quantum domains,
while providing a fruitful development of coherence for vectorial
waves.

The relation between coherence and entanglement has been
studied in previous works, such as [11–15], revealing some duality
relations similar to the ones we will find in Sections 3 and 4 below.
Nevertheless, there is a fundamental difference between these
works and the analysis addressed here. This is point (i) above, since
such previous works focus on quantum two-particle entanglement,
which manifests in two-point coincidence detection. The coher-
ence issues addressed in this work focus exclusively on single-par-
ticle interference that manifests on single-point independent
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detection. Moreover, the duality in [11] refers to entanglement in
one light source and coherence in a different source, while in Sec-
tions 3 and 4 below coherence and entanglement refer to the same
light wave.

In this regard we note that also for two-point coincidence
detection it has been studied to what extent classical light waves
can reproduce the results obtained with quantum entangled light
sources [9,10,16,17].

Moreover, the classical-optics analogy of quantum entangle-
ment has triggered some other interesting theoretical and
experimental tests of classical versions of quantum entanglement
[18–26].

2. Entanglement, factorization, and locality

We consider the spatial-frequency domain for transversal elec-
tromagnetic fields with two components Ex;y of frequency x at two
definite spatial points r1;2. For the sake of illustration we may con-
sider that they represent the electromagnetic field at the two small
apertures of a Young interferometer (see Fig. 1).

The cross-spectral density tensor C reads

Cj;k;a;b ¼ Cj;kðra; rbÞ ¼ EjðraÞE�kðrbÞ
� �

; ð1Þ

where the Latin indices j; k ¼ x; y refer to polarization components,
the Greek indices a;b ¼ 1;2 refer to space points, and the angle
brackets denote ensemble averages.

2.1. Quantum-classical analogy

Next we develop a formal analogy between classical optics and
quantum mechanics suggesting classical entanglement. For exam-
ple, a transversal field with nonfluctuating deterministic ampli-
tudes at two spatial points ejðraÞ, can be described by the four
dimensional complex vector

jwi / e ¼

exðr1Þ
eyðr1Þ
exðr2Þ
eyðr2Þ

0
BBB@

1
CCCA; ð2Þ

with cross-spectral density tensor

C ¼ eey / jwihwj: ð3Þ

This is to say that the classical state space is a four-dimensional
complex Hilbert space H.

Since C is Hermitian and nonnegative a fruitful quantum-classi-
cal analogy can be established by identifying C as a quantum den-
sity matrix q ¼ C=trC. Deterministic fields such as (2) are
represented by pure states, while fluctuating fields correspond to
mixed states.

The Hilbert space H can be described also by the tensor product
H ¼Hs �Hp of a pair of complex two-dimensional vector spaces.
The Hilbert space Hs describes the spatial variable and is spanned
by the abstract basis vectors ja ¼ 1;2is. The Hilbert space Hp de-
scribes the polarization variable and is spanned by the basis vec-
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Fig. 1. Transversal electromagnetic field at two spatial points.
tors jj ¼ x; yip. In the product basis the same state (2) can be
expressed as

jwi / e ¼
X
j¼x;y

X
a¼1;2

ejðraÞjais � jjip: ð4Þ

Throughout the paper we will focus on states of the form (2) and
(4), since they provide the most clear illustration of entanglement.

Alternatively, the same state space H can be described by the
direct sum of a pair of two-dimensional complex spaces as
H ¼H1 �H2. The vector space H1 describes the field state at
point r1 and is spanned by the basis vectors j1is � jj ¼ x; yip. The
vector space H2 describes the field state at point r2 and is spanned
by the basis vectors j2is � jj ¼ x; yip.

2.2. Subsystems

Concerning entanglement it is crucial to identify the two sub-
systems that may be in separable or entangled states. In this work
we focus on the factorization H ¼Hs �Hp in space and polariza-
tion subsystems.

2.2.1. Spatial subsystem
The spatial subsystem is obtained by removing the polarization

degrees of freedom, leading to the 2� 2 correlation matrix !s

!s;a;b ¼
X
j¼x;y

Cj;j;a;b ¼ Eyb � Ea

D E
; Ea ¼

ExðraÞ
EyðraÞ

� �
; ð5Þ

or

!s ¼
I1 ls

ffiffiffiffiffiffiffiffi
I1I2
p

l�s
ffiffiffiffiffiffiffiffi
I1I2
p

I2

 !
; ð6Þ

where E1;2 are the complex two-dimensional polarization vectors at
each point, I1;2 are the corresponding intensities

Ia ¼ hjEaj2i ¼ hjExðraÞj2i þ hjEyðraÞj2i; ð7Þ

and

ls ¼
Ey2 � E1
� �
ffiffiffiffiffiffiffiffi
I1I2
p ¼ trC r1; r2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trC r1; r1ð ÞtrC r2; r2ð Þ
p ð8Þ

coincides with the degree of coherence for vectorial electromag-
netic waves introduced in [1,2].

2.2.2. Polarization subsystem
The polarization subsystem is obtained by removing the spatial

degrees of freedom, leading to the 2� 2 correlation matrix !p

!p;j;k ¼
X
a¼1;2

Cj;k;a;a ¼ Eyk � Ej
� �

; Ej ¼
Ejðr1Þ
Ejðr2Þ

� �
; ð9Þ

or

!p ¼
Ix lp

ffiffiffiffiffiffiffi
IxIy

p
l�p

ffiffiffiffiffiffiffi
IxIy

p
Iy

 !
¼ C r1; r1ð Þ þ C r2; r2ð Þ; ð10Þ

where Ex;y are complex two-dimensional vectors associated to each
polarization component, Ix;y are the corresponding intensities

Ij ¼ hjEjj2i ¼ hjEjðr1Þj2i þ hjEjðr2Þj2i; ð11Þ

and lp is the polarization dual of ls

lp ¼
Eyy � Ex

D E
ffiffiffiffiffiffiffi
IxIy

p : ð12Þ

Since !p ¼ Cðr1; r1Þ þ Cðr2; r2Þ this is an average polarization state,
so that we may refer to it as representing mean polarization.
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2.3. Entanglement

Classical entanglement between polarization and space arises
when C is not separable. The cross-spectral density tensor C is sep-
arable when it can be expressed in the form

C ¼
X

m

!s;m � !p;m; ð13Þ

where !s;m and !p;m are 2� 2 Hermitian and non negative matrices
in the spatial and polarization spaces, respectively.

A simple example of separable state is

jwi / j1is þ j2isð Þ � jxip þ jyip
� �

; ð14Þ

where the polarization state is the same in both points r1;2.
An example of entangled state is

jwi / j1is � jxip þ j2is � jyip; ð15Þ

where the polarization state is different at each point r1;2.
We can appreciate that the duality entanglement/separability

amounts to be equivalent to inhomogeneous/homogeneous polar-
ization distribution.

2.4. Unitary, local, and nonlocal transformations

In the coherence and polarization context the symmetry prop-
erties under the action of transparent devices (i.e., lossless phase
plates and beam splitters) play a key role.

In our case, the transformations preserving total intensity are
the unitary transformations Uð4Þ : H!H implemented by 4� 4
unitary matrices UUy ¼ UyU ¼ I4, where I4 is the 4� 4 identity
matrix. This has different interesting subgroups.

2.4.1. Entanglement-local transformations Us � Up

In the language of entanglement, local transformations are
transformations that act on each subsystem independently. They
do not alter entanglement so we will refer to them as entangle-
ment-local to distinguish them from the space-local transforma-
tions defined below.

In our case the subsystems are described by the space Hs and
polarization Hp vector spaces. Thus entanglement-local unitary
transformations are of the form Us � Up where U‘ : H‘ !H‘; ‘ ¼
s; p, are 2� 2 unitary matrices. These transformations do not mod-
ify the entangled/separable nature of the field state, since they pro-
duce the same transformation of the polarization state at both
spatial points r1;2.

2.4.2. Space-local transformations U1 � U2

In classical optics local transformations usually refer to trans-
formations that change of the polarization state at each spatial
point r1;2 independently. They are of the form U1 � U2, where
Ua : Ha !Ha;a ¼ 1;2, are 2� 2 unitary matrices. We will refer
to them as space-local to distinguish them from the entangle-
ment-local transformations defined above.

It is worth noting that in general these are entanglement-non-
local operations since they can modify the polarization state at
each point r1;2 differently. For example the entangled state (15)
can be produced from the separable state (14) by placing suitable
half-wave plates at r1 and r2.

2.5. Factorization

In order to proceed further it is convenient to distinguish be-
tween two different meanings for the term factorization.

2.5.1. Classical factorization
By classical factorization we will refer to the property
EjðraÞE�kðrbÞ
� �

¼ ejðraÞe�kðrbÞ; ð16Þ

where ejðraÞ are nonfluctuating deterministic numbers. This is
equivalent to trðC2Þ ¼ ðtrCÞ2 and to the purity of the corresponding
density matrix q ¼ C=trC ¼ jwihwj, so that jwi is of the form (4).

This means that the field state has complete coherence and is
fully polarized according to every criterion assessing the amount
of coherence and polarization, with the only exception of the crite-
rion introduced in [1,2].

Throughout the paper we will focus on classically factorized
states since they provide the most clear illustration of
entanglement.

2.5.2. Quantum factorization
By quantum factorization we will refer to full statistical inde-

pendence between space and polarization. This is C ¼ !s � !p,
which is a particular case of separable C.
3. Entanglement and coherence

Next we present suitable measures of coherence and entangle-
ment analyzing their relationships. Coherence between vectorial
waves can be analyzed from different perspectives and accordingly
several measures of coherence have been introduced [1–6]. They
are not contradictory as far as they focus on different aspects of
the same phenomenon. This is reflected in their different symme-
try properties under basic groups of transformations in Section 2.4.

3.1. Entanglement measure

For classically factorized states (4) we can suitably asses the de-
gree of classical entanglement by the linear entropy [27]

�2 ¼ 2 1�
tr !2

j

� �
tr!j
	 
2

2
4

3
5; j ¼ s; p: ð17Þ

Both correlation matrices !s;p lead to the same � in the above for-
mula, as it can be seen by using the Schmidt decomposition for in-
stance [28]. Maximum classical entanglement � ¼ 1 occurs when
!s;p are proportional to the corresponding identity !j / Ij, such
as for the state (15). The minimum � ¼ 0 occurs when the subsys-
tems are in pure states so that trð!2

j Þ ¼ ðtr!jÞ2, such as for the state
(14).

This measure of entanglement is invariant under entanglement-
local transformations Us � Up, while lacks invariance under the
space-local ones U1 � U2.

3.2. Entanglement and global coherence

The global amount of coherence lg conveyed both by the spatial
and polarization degrees of freedom can be measured by the Hil-
bert–Schmidt distance between C and the 4� 4 identity matrix
I ¼ Is �Ip representing fully incoherent and fully unpolarized
light [6]

l2
g ¼

4
3

tr
1

trC
C� 1

4
I

� �2
" #

¼ 4
3

tr C2	 

trCð Þ2

� 1
4

" #
: ð18Þ

Maximum coherence lg ¼ 1 is equivalent to the classical factoriza-
tion in (16). Minimum coherence lg ¼ 0 is reached exclusively by
the quantum factorized separable state C / Is �Ip.

It can be appreciated that this measure of coherence is invariant
under the full Uð4Þ group. This includes the space-local transfor-
mations U1 � U2 that alter the amount of entanglement. For exam-
ple, maximum coherence lg ¼ 1 is equally reached by the
separable state (14) as well as by the entangled state (15) that
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are related by a U1 � U2 transformation. Thus there can be no def-
inite relation between classical entanglement and global
coherence.

3.3. Entanglement and Hilbert–Schmidt coherence

Focusing on the interference between two vectorial waves, a
convenient measure of coherence is provided by the Hilbert–
Schmidt norm of the cross-spectral density tensor

l2
HS ¼

tr C r1; r2ð ÞCy r1; r2ð Þ
� �

trC r1; r1ð ÞtrC r2; r2ð Þ : ð19Þ

This measure is invariant under the space-local U1 � U2 subgroup of
Uð4Þ. In particular, we have lHS ¼ 1 for all classically factorized
states, irrespectively of whether they are fully entangled ð� ¼ 1Þ
or completely separable ð� ¼ 0Þ. Thus, there cannot be definite rela-
tion with entanglement.

3.4. Entanglement and trace coherence

We have already noticed after (8) that the spatial-subsystem
coherence ls coincides with the degree of coherence for vectorial
electromagnetic waves lt introduced in [1,2] in terms of the trace
of the cross-spectral density tensor

ls ¼ lt ¼
trC r1; r2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trC r1; r1ð ÞtrC r2; r2ð Þ
p : ð20Þ

This is because lt is introduced in terms of the visibility of intensity
interference fringes fully disregarding polarization, which is equiv-
alent to consider just the reduced spatial subsystem.

At difference with previous coherence measures in this case
there is no invariance under space-local transformations U1 � U2

so there is room for finding meaningful relations between entan-
glement and coherence. Using (6), (10), and (17) we get

�2 ¼ 1� d2
j

� �
1� jljj

2
� �

; j ¼ s; p; ð21Þ

where

ds ¼
I1 � I2

I1 þ I2
; dp ¼

Ix � Iy

Ix þ Iy
: ð22Þ

In the quantum domain the quantities ds;p represent the a priori pre-
dictability of the location and polarization state, respectively, of the
photon [13,14,29–38]. Therefore, for classically factorized states
classical entanglement equals the product of unpredictability
1� d2

s;p and incoherence 1� jls;pj
2. For fixed ds;p we have that larger

jls;pj is equivalent to lesser classical entanglement and vice versa.
Finally we notice that the maximum of lt under U1 � U2 trans-

formations considered in [40] becomes by construction invariant
under U1 � U2, and thus insensible to entanglement.
4. Entanglement and polarization

We can further develop the above relation between entangle-
ment and subsystem coherence after noting that ls;p are not invari-
ant under the entanglement-preserving subgroup Us � Up. Thus we
look for a more universal relation between entanglement and
coherence by finding the maximum of ls;p under Us � Up

transformations.
For definiteness let us focus first on the spatial subsystem. In

such a case we can show that

P2
s ¼ 2tr

1
tr!s

!s �
1
2

Is

� �2
" #

¼ 2
tr !2

s

	 

tr!sð Þ2

� 1 ð23Þ
is the maximum degree of coherence jlsj achievable when arbitrary
Us � Up transformations are applied to the original fields. This is be-
cause !s is transformed as

!sðUsÞ ¼ trp UCUy
	 


¼ Us!sU
y
s ; ð24Þ

where trp means trace with respect to the polarization space. Then
it can be seen that

P2
s ¼

I1ðUsÞ � I2ðUsÞ½ �2 þ 4I1ðUsÞI2ðUsÞjlsðUsÞj2

I1ðUsÞ þ I2ðUsÞ½ �2
P jlsðUsÞj2: ð25Þ

The equality is reached for all Us when jlsðUsÞj ¼ 1 (so that Ps ¼ 1)
or when I1ðUsÞ ¼ I2ðUsÞ [6]. On the other hand, when det !s–0 we
get lsðUsÞ ¼ 0 for the transformation Us that diagonalizes !s.

Finally, from (17) and (23) it readily follows that for classically
factorized states it always holds:

�2 þ P2
s ¼ 1: ð26Þ

Note that both � and Ps are invariant under entanglement-local
transformations Us � Up.

A fully equivalent relation �2 þ P2
p ¼ 1 can be derived in terms of

the standard degree of polarization Pp defined in terms of the
coherence matrix !p (10) [39]

P2
p ¼ 2tr

1
tr!p

!p �
1
2

Ip

� �2
" #

¼ 2
tr !2

p

� �
tr!p
	 
2 � 1: ð27Þ

We recall that, since !p ¼ Cðr1; r1Þ þ Cðr2; r2Þ, we have that Pp rep-
resents a degree of mean polarization.

Incidentally, the above relations imply Ps ¼ Pp, so that after (25)
the degree of mean polarization Pp is the maximum trace degree of
coherence lt achievable under entanglement-local unitary
transformations,

jlt Usð Þj 6 Pp: ð28Þ

This provides a new perspective on the idea of coherence maximi-
zation by unitary transformations [40,41].

Finally we note that

Ps;p ¼
js1 þ s2j
I1 þ I2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
; ð29Þ

where sj; j ¼ 1;2 are the three Stokes parameters

sj;k ¼ tr rkC rj; rj
	 
� �

; ð30Þ

rk; k ¼ 1;2;3 are the Pauli matrices, and it holds that jsjj ¼ Ij.
The main conclusion of this section is that � and Ps;p are comple-

mentary features. This has a clear meaning in standard quantum
interferometry, since the space-polarization entanglement implies
that polarization stores knowledge about the path followed by the
photon. Thus, larger entanglement means larger path information,
which in turn unavoidably implies lesser visibility according with
complementarity [13,14,29–38].
4.1. Entanglement and mean polarization for arbitrary spatial domain

Finally let us generalize these results to the case when we con-
sider transversal electromagnetic fields defined on an arbitrary
spatial domain, instead on just two points r1;2. In such a case the
polarization subsystem becomes described by the 2� 2 correlation
matrix

!p ¼
Z 1

�1
d2rCðr; rÞ ¼ 1

2

X3

j¼0

hsjirj ð31Þ

where rj are the Pauli matrices, including r0 as the identity, and hsji
are the spatial averages of the Stokes parameters
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hsji ¼
Z 1

�1
d2rsjðrÞ: ð32Þ

Then from (17) it can be easily seen that

�2 þP2
p ¼ 1; P2

p ¼
hs1i2 þ hs2i2 þ hs3i2

hs0i2
; ð33Þ

where Pp is a degree of mean polarization that generalizes Pp in
(29) to arbitrary spatial distributions. This average is different from
other spatial averages of the degree of polarization [42].

5. Classical versus quantum entanglement

Next we show that there is no definite relation between classi-
cal and quantum entanglement. This is that any cross-spectral den-
sity tensor C can equally well correspond to entangled or separable
quantum states.

To show this we translate the fields EjðraÞ to the quantum do-
main in terms of the corresponding four independent commuting
complex-amplitude operators aj;a

EjðraÞ ! aj;a; ½aj;a; a
y
k;b� ¼ dj;kda;b: ð34Þ
5.1. Quantum separable

Let us consider the separable product of coherent state

jei ¼ jexðr1Þix;1jeyðr1Þiy;1jexðr2Þix;2jeyðr2Þiy;2; ð35Þ

where jejðraÞij;a are coherent states

aj;ajei ¼ ejðraÞjei: ð36Þ

The cross-spectral density tensor can be computed as

Cj;k;a;b ¼ hejayk;baj;ajei ¼ e�kðrbÞejðraÞ; ð37Þ

that reproduces the cross-spectral density tensor of any classically
factorized state. For example, for the classically entangled state
(15) this is

jei ¼ jeix;1j0iy;1j0ix;2jeiy;2; ð38Þ

where j0ij;a represents the vacuum state, while for the classically
separable state (14) this is

jei ¼ jeix;1jeiy;1jeix;2jeiy;2: ð39Þ
5.2. Quantum entangled

Let us consider the one-photon entangled quantum states

jwi /
X

j;a

ejðraÞj1j;ai; ð40Þ

where

j1j;ai ¼ j0ix;1 � � � j1ij;a � � � j0iy;2; ð41Þ

and j1ij;a is a one-photon state in the corresponding mode
ayk;bak;bj1ij;a ¼ dj;kda;bj1ij;a. The state (40) is clearly entangled in the
sense of lack of separability, although the entanglement between
one-photon and the vacuum may be controversial [43].

With these states we can get again the most general classically
factorized cross-spectral density tensor as in (37) since

aj;a

X
k;b

ekðrbÞj1k;bi ¼ ejðraÞjvacuumi; ð42Þ

with jvacuumi ¼ j0ix;1j0iy;1j0ix;2j0iy;2.
Thus, quantum entangled states can lead both to entangled and

separable cross-spectral density tensors. For example for the clas-
sically entangled state (15) this is exðr1Þ ¼ eyðr2Þ; eyðr1Þ ¼
exðr2Þ ¼ 0, while for the classically separable state (14) this is
ejðraÞ ¼ e for all j;a.
6. Conclusions

A suitable classical version of entanglement naturally arises in
the context of coherence for classical vectorial light. For classically
factorized states we have obtained the following results:

(i) There is no definite relation between classical entanglement
and global and Hilbert–Schmidt degrees of coherence.

(ii) There is a definite and meaningful relation between classical
entanglement and the trace degree of coherence.

(iii) There is a definite and meaningful relation between classical
entanglement and mean polarization. This extends also to
arbitrary spatial distributions.

(iv) The above relations mimic similar results in the quantum
domain although in a very different context.

(v) By examining the reduced spatial and polarization subsys-
tems we have found a suitable polarization counterpart of
the trace degree of coherence, and a suitable spatial counter-
part of the degree of mean polarization.

(vi) As a byproduct we have found that the degree of mean
polarization is the maximum trace degree of coherence
achievable via entanglement-local unitary transformations.

(vii) We have shown that there is no definite relation between
classical and quantum entanglement since every classically
factorized cross-spectral density tensor can correspond
either to quantum entangled or quantum separable states.
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