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Freezing transition of hard hyperspheres
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We investigate the system ofD-dimensional hard spheres inD-dimensional space, whereD.3. For the fluid
phase of these hyperspheres, we generalize scaled-particle theory to arbitraryD and furthermore use the virial
expansion and the Percus-Yevick integral equation. For the crystalline phase, we adopt cell theory based on
elementary geometrical assumptions about close-packed lattices. Regardless of the approximation applied, and
for dimensions as high asD550, we find a first-order freezing transition, which preempts the Kirkwood
second-order instability of the fluid. The relative density jump increases withD, and a generalized Lindemann
rule of melting holds. We have also used ideas from fundamental-measure theory to obtain a free energy
density functional for hard hyperspheres. Finally, we have calculated the surface tension of a hypersphere fluid
near a hard smooth~hyper-!wall within scaled-particle theory.
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I. INTRODUCTION

In the last decades, our understanding of the freezing t
sition has greatly advanced@1,2#. Most of the success come
from the insight that the essential molecular mechanism
drives freezing can be understood in terms of different kin
of entropy@3#. This is demonstrated by ordering transitio
that purely entropy-driven hard-core particles exhibit. T
simple model of hard spheres, which has only the sph
packing fraction as thermodynamical parameter, has play
key role in a statistical description of freezing; for a rece
review see@4#. Computer simulations@5,6# have shown that
there is a first-order freezing transition from a fluid into
face-centered-cubic crystal at a packing fraction of arou
0.5 with a relative density jump across freezing of abo
10%. In two spatial dimensions~hard discs!, the precise na-
ture of freezing is still a matter of debate but there is rec
evidence from computer simulations that the transition is
accordance with the Kosterlitz-Thouless scenario@7#. The
thermodynamics of the one-dimensional model, namely, h
rods, can be calculated analytically@8# revealing that there is
no freezing transition at packing fractions away from clo
packing.

From a more theoretical point of view, it is interesting
study systems in spatial dimensionD higher than three. The
motivation to do so is twofold. First, the limit of infinite
dimension may lead to enormous simplifications allowi
sometimes even for an analytical solution of the thermo
namics, fluid structure, and phase transformations. Re
examples include the hypercube@9# and hypersphere@10#
fluid, the lattice plasma@11#, the Gaussian potential@12,13#
as well as systems with attractions@14,15#. The advantage in
high dimensions is that the third and higher virial coefficie
vanish asymptotically. Once the limitD→` is known, it
may serve as a reference system in order to include fi
dimensions in a perturbative analysis as a function of 1D,
see e.g., Refs.@13,16# for such discussions. Second, th
crossover between different spatial dimensions impo
physical consistency constraints on the theories. Underst
ing a fluid in different dimensions is important for construc
ing, e.g., density functionals explicitly. For hard spheres,
1063-651X/2001/65~1!/016108~9!/$20.00 65 0161
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proximate functionals can be obtained by imposing
correct crossover to reducedD. This idea was exploited par
ticularly in the construction of fundamental-measure dens
functionals@17,18# in dimensionsD52,3 @19–21#.

Systems composed of hard hyperspheres, being the n
ral extension of hard spheres to arbitrary spatial dimensi
D, have, therefore, been considered quite extensively.
limit of infinite dimensions was studied in relation to th
thermostatistics@10,22,24,23,13# and dynamics@25#. Fur-
thermore, the third and fourth virial coefficients have be
calculated for arbitrary dimensions@26#, and different fluid
state theories for the thermodynamics and structure propo
based either on an overlap volume approach@27#, the Percus-
Yevick @28#, mean spherical@29#, or hypernetted chain@30#
approximation. ForD54,5, a crystalline phase of hype
spheres has been studied with free-volume theory@31#, the
freezing transition has been examined by computer sim
tion @32#, and density functional theory@33#. Furthermore,
the demixing transition in a binary hypersphere mixture h
been discussed@34,35# on the basis of a Carnahan-Starlin
type equation of state@36,37#.

In this paper we investigate the freezing transition of h
perspheres inarbitrary dimension, which has not been ad
dressed until now. This aim requires a detailed descript
for the free energies of the fluid and solid state. For the fl
free energy, we use several methods such as the virial ex
sion, scaled-particle theory, fundamental-measure den
functional, and the Percus-Yevick liquid-integral equatio
All these approaches feature the exact second virial co
cient. For large dimensions, higher-order contributions
known to vanish, and consequently we obtain similar flu
free energies from all approaches. To access the free en
of the solid, we use the free-volume theory together w
geometric results about the close-packed density and
structure of so-called laminated lattices in high dimension
contrast to earlier approaches based on a fluid instab
analysis@13,23#, we obtain a first-order freezing transitio
even for high dimensions. We show that the freezing tran
tion preempts this Kirkwood-type second-order spinodal
stability of the fluid. The relative density jump across free
ing even increases with rising dimensionD. The Lindemann
©2001 The American Physical Society08-1
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REIMAR FINKEN, MATTHIAS SCHMIDT, AND HARTMUT LÖWEN PHYSICAL REVIEW E65 016108
parameter at melting is very robust with respect to a cha
of dimensionality such that the Lindemann rule of melti
can be carried over to arbitrary dimensions. As a side prod
of scaled-particle theory, we derive an analytical express
for the surface tension between a smooth hard~hyper-!wall
and a hard hypersphere fluid for anyD. Furthermore, we
develop a density functional for arbitrary spatial dimens
in the spirit of Rosenfeld’s fundamental-measure the
@17–21#.

The paper is organized as follows. In Sec. II, we brie
summarize mathematical properties of close-packing de
ties. The solid free energy is outlined in Sec. III. In Sec.
we describe different approaches to the fluid free ene
Section V is devoted to the construction of a density fu
tional for inhomogeneous hard hyperspheres. Results
freezing are presented in Sec. VI, and we finally conclude
Sec. VII.

II. HYPERSPHERES, LATTICES, AND CLOSE PACKING

The interaction between hard hyperspheres is pairw
and given by the potential

u~r !5H `, r ,2R

0, r>2R,
~1!

wherer is the Euclidian center-to-center separation inD di-
mensions andR denotes the hypersphere radius. Thermo
namical and structural properties of the hard hypersph
system are independent of temperatureT, which only sets the
energy scalekBT[1/b. The system’s only relevant param
eter is the number densityr, measuring the number of pa
ticles perD-dimensional volume. A suitable dimensionle
packing fraction is defined viah5rVD(R), whereVD(R)
5RDpD/2/G(11D/2) denotes theD-dimensional volume of
the hypersphere of radiusR andG(x) is the gamma function
To simplify the notation, we denote the volume of the u
sphere of radiusR51 as VD[VD(1). We also define the
(D21)-dimensional surface assD21(R)5DVDRD21.

Due to packing constraints,h has aD-dependent uppe
limit, which is the so-called close-packing fractionhcp . The
value of hcp is known in a mathematically rigorous sen
only in the casesD51,2,3, see e.g., Ref.@4#. While obvi-
ously hcp51 for D51, the close-packed configuration fo
D52 is a triangular lattice withhcp5p/(2A3)50.91 and a
face-centered-cubic lattice forD53 with hcp5p/(3A2)
50.74. The latter structure is degenerate with respect to
stacking sequence. For higher dimensions, there is Mink
ski’s lower bound and Blichfeldt’s upper bound@38# for hcp ,
such that

z~D !

2D21
<hcp<

D12

2 S 1

A2
D D

for D.1, ~2!

wherez(x) denotes the Riemann zeta function. The class
laminated lattices@38# is defined inductively and gives in
general high packing fractions. The numerical values ofhcp
are shown in Fig. 1 as a function ofD. In particular, for
D,25, their packing is close to the upper bound, Eq.~2!.
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Therefore, we restrict our investigation of the solid state
laminated lattices. However, as we shall show below,
general methodology can be applied to other crystals as w
provided their close-packing fraction is known.

III. FREE-VOLUME THEORY FOR THE SOLID STATE

We employ free-volume~or cell! theory in order to calcu-
late free energies of the solid state. This approach, see
@39#, was also discussed for arbitraryD recently in Ref.@31#.
Cell theory is based on the common partitioning of physi
space into Wigner-Seitz cells~WSC! of the lattice structure
under consideration. For hard spheres, no overlap betw
neighboring particles can occur, provided that each sph
stays completely within its WSC. Carrying out a partitio
sum where only this restricted set of configurations is tak
into account strictly underestimates the full~exact! partition
sum. In detail, leta denote the distance between near
neighbors. The boundaries of the WSC are the distancea/2
apart from the lattice site. The spheres are supposed to
completely within the WSC, such that each sphere cente
allowed to move only a distancea/22R from its lattice site
towards a neighboring site. We assume that the shape o
accessible~‘‘free’’ ! volume is the same as that of the WS
Then the free volume of each sphere scales with theDth
power of (a22R)/a, and we obtain

Vfree5VWSFa22R

a GD

. ~3!

If one relaxes the assumption of the same shape of f
volume cell and WSC, the real free volume is still larger th
Vfree. Let the free energy per particle bef s

exc1 f id, where the
ideal contribution isf id5 ln(h)21. One obtains a strict uppe
bound for the excess free energy per particle of the s
state

b f s
exc<12D lnF12S h

hcp
D 1/DG . ~4!

FIG. 1. Close-packing fractionhcp as a function of dimension-
ality D. Blichfeldt’s upper bound~dotted line!, Minkowski’s lower
bound~dashed line!, and the corresponding data for the laminat
lattices~symbols! are shown. Note the logarithmic scale forhcp .
8-2
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FREEZING TRANSITION OF HARD HYPERSPHERES PHYSICAL REVIEW E65 016108
Note that if one inserts a lower bound forhcp ~as, e.g., for
the laminated lattices considered in this paper! the resulting
expression is still an upper bound for the free energy.
alternative for obtaining an estimate of the free energy is
calculate the free volume of each sphere with all the ot
spheres kept fixed. This allows each sphere to move twic
far from its lattice site as in the former approach. Of cour
here one counts also forbidden configurations, so that
bounding property of the free energy is lost. However,
D53 this gives a more accurate, albeit empirical estimate
the exact free energy. For generalD, we obtain

b f s
exc'12D lnF12S h

hcp
D 1/DG2D ln 2. ~5!

IV. THEORIES FOR THE FLUID STATE

A. Virial expansion

Wyler, Rivier, and Frisch@24,10# have considered the
Mayer series of the hard hypersphere fluid, and have sh
that in the limit of infinite dimensionality, the virial expan
sion up to second order becomes asymptotically exact.
virial coefficients are defined by the expansion

bp5r1 (
n52

`

Bnrn, ~6!

where p is the pressure. The second virial coefficient
known analytically asB252D21VD(R). The expansion of
the excess free energy of the fluid state then reads

b f f
exc5

1

2
h2D1

1

2

B3

@VD~R!#2
h21O~h3!. ~7!

The third virial coefficientB3 can be expressed by a quadr
ture @24# that can be solved analytically in even dimensio
@26#. For odd dimensions we rely on a numerical solutio
Our results forB3 are shown versusD in Fig. 2. Although the
numerical value ofB3 is quite large asD→`, for smallh its
contribution to the free energy may become negligible. T
is indeed the case for the densities relevant for freezing
we will demonstrate below. We remark, however, that it
not proven that the virial expansion converges in the den
region important for freezing@40#. There is thus still the
possibility that the virial expansion does not describe
fluid state correctly. A similar situation exists in three dime
sions, where the convergence of the virial expansion
only be proven rigorously up toh'0.02 @40#. Numerical
evaluation of the expansion to seventh order, however, s
satisfactory results up toh'0.5.

B. Percus-Yevick integral equation

Integral equations provide a very successful description
fluids. For hard spheres, the Percus-Yevick closure@41# is
remarkably successful in three dimensions. One of its
pealing properties is that it can be solved analytically for t
system. Leutheusser generalized the solution to all odd
mensionsD52k11, k50,1,2, . . . @28# and solved the
01610
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equations explicitly forD51,3,5. We follow his approach
and treat the equations numerically for higher~odd! dimen-
sions. We use the Wiener-Hopf factorization of the struct
factor S(q)51/@Q̃(q)Q̃(2q)#, whereq is the wave vector
magnitude. HereQ̃(q) is a regular function, which can b
written as

Q̃~q!512~2p!krE
0

2R

Q~r !eikrdr. ~8!

It can be shown thatQ(r ) is a polynomial of order 2k in r of
the general form

Q~r !5~2R!2k(
n50

k

QnS r

2R
21D n1k

, 0<r<2R. ~9!

The system of integral equations can be reduced to a sys
of k11 algebraic equations for the unknownsQ0 , . . . ,Qk .
Two out of these equations are linear

~21!k52k!2kQk1r~2p!k~2R!2k11

3 (
n50

k

~21!n
Qn

~k1n11!
, k>0, ~10!

~21!k52~k21!!2k21Qk211r~2p!k~2R!2k11

3 (
n50

k

~21!n
Qn

~k1n12!
, k>1, ~11!

and the remainingk21 equations are nonlinear

Q(2n11)~0!5
1

2
r~2p!k~21!n11@Q(n)~0!#22r~2p!k

3 (
n50

n21

~21!nQ(n)~0!Q(2n2n)~0!,

0<n,k21, ~12!

FIG. 2. Various approximations for the third virial coefficien
B3 as a function of dimensionD. Shown is the exact result, as we
as the results from scaled-particle theory~SPT!, density-functional
theory ~DFT!, and Percus-Yevick theory~PY!.
8-3
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REIMAR FINKEN, MATTHIAS SCHMIDT, AND HARTMUT LÖWEN PHYSICAL REVIEW E65 016108
whereQ(k)(0) denotes thekth derivative ofQ(r ) at r 50.
We solve Eqs.~10!–~12! numerically. As the effort quickly
increases with rising dimension@we are faced with (D
11)/2 coupled equations#, we restrict ourselves toD<33.
The functionQ(r ) provides us with all the necessary info
mation about the thermodynamics of the fluid state, as
related to the contact value of the pair distribution functi
g(r ) of the hyperspheres via

g~2R1!5~21!k11Q(k)~2R!/~2R!2k, ~13!

which in turn determines the free energy via the virial rou
@28,41#

bp/r5112D21hg~2R1!. ~14!

The second virial coefficient determined in this way is ex
for any dimension. Formally expanding the solution into
power series with respect toh, we obtain the third virial
coefficient numerically. As can be seen in Fig. 2,B3 obtained
in this way slightly overestimates the exact result.

C. Scaled-particle theory

The key idea of scaled-particle theory~SPT! @42# is to
insert a spherical test particle of variable radius into a b
fluid of hard spheres. The test particle is gradually expan
to the same size as the other spheres. One then obtain
free energy by thermodynamic integration of the virial equ
tion. The key function by which all other properties can
expressed isG(r ), which is the contact value of the pa
distribution function between test particle and the oth
spheres, if the radius of the test particle equalsr 2R.

In what follows, we generalize the SPT~which was origi-
nally developed forD53) to arbitrary dimensions. The
probability p0(r ) of a spontaneous appearance of a cav
large enough to hold the test particle of radiusr is directly
connected to the work required in making it. This probabil
is equivalent to the probability of finding a spherical spa
with radiusr unoccupied. By elementary statistical reason
such as inD53 @42#, one obtains a relation betweenp0 and
G(r ), which is

1

p0~r !

dp0~r !

dr
52rsD21~r !G~r !. ~15!

If the cavity is so small that at most one sphere fits insi
i.e., r<R, the probability of finding this cavity unoccupied
clearly p0(r )512rVDr D. Therefore,

G~r !5
1

12rVDr D
for r<R. ~16!

Next we consider a cavity with radiusR,r ,2R/A3. Then
two, but not three spheres fit into the cavity. We have
correct for double-counting pairs, and obtain

p0512rVDr D1E E
cavity

g~r 1 ,r 2!dr 1dr 2 ~17!
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r2

2 E
0

2r

g~r 8!Vr~r 8!sD21~r 8!dr8, ~18!

whereg(r1 ,r 2) is the hypersphere pair distribution functio
and r 85ur 22r 1u; furthermore Vr(r 8) denotes the overlap
volume of two spheres with radiusr at a distancer 8. We will
restrict ourselves in the following to odd dimensionsD
52k11. From g(r )50 for r ,2R it follows that p0 is k
11 times continuously differentiable atr 5R. SinceG(r )
follows from p0(r ) by differentiation@see Eq.~15!#, G(r ) is
k times continuously differentiable atr 5R. Since we know
the exact behavior ofG(r ) for r ,R, the firstk derivatives of
G(r ) at r 5R are also known.

A further constraint onG(r ) is obtained by noting tha
G(`)5bp/r @42#. Equating with the virial expression fo
the pressure yields

11
1

2
2DhG~2R!5G~`!. ~19!

Together with thek11 values of the derivatives we have g
k12 constraints onG(r ). Next we expandG(r ) into a series
in 1/r ,

G~r !511a01 (
i 51

k11
ai

~r /R! i
. ~20!

This involvesk12 unknownsai , which must be chosen to
fulfill

1

12h
511a01 (

i 51

k11

ai , ~21!

(
i 51

k11

ai~21! j
~ i 1 j 21!!

~ i 21!!
5h~11a0!

D!

~D2 j !!

1h(
i 51

k11

ai

~D2 i !!

~D2 i 2 j !!
,

~22!

a05
1

2
2DhS 11a01 (

i 51

k11

ai2
2 i D . ~23!

The first two sets of equations~21! and ~22! are linear and
can be used to express thea1 , . . . ,ak11 in terms ofh and
a0. The last Eq.~23! can then be turned into a quadrat
equation fora0, which can be solved analytically. The non
linear equation~23! has to be solved numerically. Froma0
52111/G(`) we obtain directly the pressure@see Eq.
~19!# and the equation of state. Decomposing the equatio
state into a power law expansion with respect to density,
get the second and third virial coefficients. The second vi
coefficient is exact. The third virial coefficient is shown as
function of spatial dimensionD in Fig. 2. As in Percus-
Yevick theory it is larger than the exact value.

It is possible to obtain the surface tensiong between a
hard hypersphere fluid and a hard~hyper! planar wall via
8-4
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SPT. In order to accessg, we consider the work required t
form a cavity with a very large radiusR, which can be ex-
pressed as

W~r !5pVD~r !1g̃sD21~r !. ~24!

The quantityg̃ is connected to the physical surface tensiong

via the relationg5g̃1pR, compare, e.g.,@43#. The prob-
ability p0(r ) of observing a fluctuation containing such
cavity is further given by@10#

p0~r !5exp@2bW~r !#. ~25!

Hence, one finally obtainsg as a function ofD andh as

g5
kBTD

sD21~R!
hS 11a02

a1

D21D , ~26!

which we will discuss as a function ofD in Sec. VI.

V. DENSITY-FUNCTIONAL THEORY

Density-functional theory~DFT! has been very successf
in describing inhomogeneous fluids in three dimensions@2#.
It provides in principle a concept unifying the fluid and so
state within a single approach. For hard spheres, one par
lar approximation, the Rosenfeld functional, has the rema
able property of describing both the fluid state and the s
state very well incorporating the limit of close-packing co
rectly @44#. Within the Rosenfeld functional, or fundamenta
measure theory, the nonlocal dependency of the excess
energy F of the densityr is treated via averages of th
density over the sphere volume, surface, and other fun
mental geometric measures@18#. The Rosenfeld functiona
may be formulated in such a way that it gives the corr
zero-dimensional crossover@19,20#. The thermodynamics o
a hard sphere system inside a cavity so small, that at m
one sphere fits into it can be solved exactly. One obtains
excess free energy@19,20#

bF (D50)@r#5w0~N!5N1~12N!ln~12N!, ~27!

where 0<N<1 denotes the average number of particles
side the cavity. The same free energy is obtained from
Rosenfeld functional, if an external potential correspond
to the walls of the cavity is introduced. This provides a s
tematic way of deriving a similar DFT in arbitrary dimen
sions@21#. In the sequel we will work this out explicitly.

The general functionalF@r# is assumed to be a sum o
terms of the form

bF @r#5F1
(D)@r#1F2

(D)@r#, ~28!

F1
(D)@r#5E dr w1@h~r !#E dR1wD~R12r !r~R1!,

~29!

F2
(D)@r#5E dr w2h~r !E dR1E dR2

3wD~R12r !wD~R22r !PD~R1 ,R2!. ~30!
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Here h(r )5*dr 8 r(r 8)Q(R2ur 8Àr z) is the local packing
density andwD(R1)51/sD21(R)d(R2uR1u) is a measure
over the surface of the sphere. The integral ker
PD(R1 ,R2), therefore, couples densities averaged over
sphere surface. In order to make this functional unique
consider cavities of increasing complexity. These cavities
sketched in Fig. 3. A simple cavity capable of holding
sphere in just one place will uniquely determinew1(h) and
thus F1

(D)@r#. It turns out, however, that the exact free e
ergy is not reproduced in a slightly more complicated cav
that can hold a sphere at either of two places. The requ
ment that the functional should give the analytically know
value even in this case uniquely determines the functio
form of w2(h) and PD(R1 ,R2). This procedure has bee
invented~for D53) in @21#.

The simplest cavity is spherical, and just large enough
hold one sphere. The single particle density must then
r(r )5Nd(r ). The local packing densityh(r ) equals N
within a sphere of radiusR and vanishes outside. Introducin
the quantityhR1e(r )5NQ(R1e2ur u), we can write

F1
(D)@r#5E dr w1@h~r !#

1

sD21~R!

]

]e
hR1e~r !ue50

5
1

sD21~R!

]

]eE dr F@hR1e~r !#Ue50

5
1

sD21~R!

]

]e
F~N!VD~R1e!U

e50

5F~N!, ~31!

with F denoting the integral ofw1. Comparing this with the
correct zero dimensional limit, one gets

F1
(D)@r#5E dr w1@h~r !#E dR1wD~R12r !r~R1!,

~32!

with w1(h)[]w0(h)/]h52 ln(12h).
Consider another cavity withr(r )5N1d(r2r1)1N2d(r

2r2),N5N11N2<1, andr 125ur12r2u<2R. For this kind
of cavity the first termF1

(D) of the free energy functiona
derived above does not give the correct free energyw0(N)
but

FIG. 3. Geometry of the two cavities used to derive the fr
energy functionalF@r#. Indicated are the possible positions of th
sphere (r 1 or r 2) and the local packing fractionh(r ) within the
respective region.
8-5
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F1
(D)@r#5w0~N!2j~r 12!@w0~N!2w0~N1!2w0~N2!#,

~33!

j~r 12!512
1

sD21~R!

]

]e
VR1e~r 12!ue50

512
VD21

DVD
~D21!I D22~a!, ~34!

I D~a!5E
0

a

sinD~w!dw, ~35!

R cos~a!5r 12/2. ~36!

VR1e(r 12) denotes the overlap volume of two spheres
radiusR1e at a distancer 12, see the sketch in Fig. 4.

We next determine the second contributionF2
(D)@r# so

that the deviation of the free energy from the exact ze
dimensional limit is corrected for. We obtain

F2
(D)@r#5E dr w2@h~r !#E dR1wD~R12r !r~R1!

3E dR2wD~R22r !r~R2!P~R1 ,R2!, ~37!

with

j~r 12!512
VD21

DVD
~D21!I D22~a!, ~38!

PD~r 12!5
j~r 12!D

2VD
2 r 12

2

VD21RD~D21!sinD23~a!cos~a!

for r 12<2R, ~39!

w2~h!5
]w1~h!

]h
5

1

12h
. ~40!

This completes the prescription of our functional. In pri
ciple, one could go further, and consider cavities that enfo
d density distributions composed of three or mored spikes.
Indeed in the caseD53 @21#, up to three d spikes were
considered. One might speculate that up toD d spikes should

FIG. 4. Geometrical interpretation ofVR(r 12) as the overlap
volume of two spheres of radiusR with distancer 12.
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be necessary inD dimensions. Due to the geometrical com
plexity, we have not followed this~albeit desirable! route in
the present work.

For the homogeneous phase the integrals in Eq.~40! can
be evaluated analytically. One obtains for the excess
energy per particle

f f
exc5w1~h!1

1

2
hw2~h!~2D22!, ~41!

which we will also use as an estimate for the fluid free e
ergy. Expanding into a power series with respect toh, one
obtains

f f
exc5

1

2
2Dh1

1

2
~2D21!h21O~h3!, ~42!

hence, the correct second virial coefficient is reproduced
our density functional. The third virial coefficient is show
versusD in Fig. 2. It is significantly smaller than the exa
result. We attribute this failure to the restricted set of cavit
considered.~Note that inD53 threed spikes are needed t
get B3 correctly.! However, our functional has all terms tha
are important near close packing inD53 @44#, and we be-
lieve that this holds also forD.3. We further emphasize
that this functional has much more predictive power than j
giving the equation of state of the fluid. In principle, it cou
further be used to derive structural fluid correlations and
homogeneous situations including freezing. We have
considered such applications here but leave them for fu
studies.

VI. RESULTS AND DISCUSSION

With the theories described above, we calculated freez
melting coexistence densities using Maxwell’s double ta
gent construction. We find a first-order freezing transiti
occurring at densities well below close packing. In Fig. 5,
plot the coexisting fluid (h f) and solid (hs) packing frac-
tions obtained by using either third-order virial expansion
scaled-particle theory for the fluid and free-volume theo
with unfixed neighbors@Eq. ~4!# for the solid as a function of
dimensionD. Close-packing fractionshcp are included for
comparison. It might seem from this graph that the fluid a
solid coexisting densities are not affected very much by
variation of the close-packed density with dimension but t
is due to the logarithmic density scale.

We note that the coexistence densities do only dep
weakly on the particular solid state theory for largeD. If the
virial expansion up to third order is used for the fluid fre
energy~Fig. 5!, a freezing transition shows up forD.11. On
the other hand, Percus-Yevick, scaled-particle and dens
functional theory~all of which are more reliable for smalle
dimensionalities! result in a freezing transition at anyD>3.
We have compared our theoretical results to computer si
lation data in the special casesD53,5 @32#, ~see Table I!. For
D55, we find reasonable agreement within the statisti
error of the simulation.

The agreement between the different fluid state theo
becomes better with increasing dimensionality. This is
pected, since the virial expansion becomes exact forD→`
and all our approaches reproduce the exact second viria
8-6
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efficient. The relative density jump in the coexistence den
ties, (hs2h f)/hs , is plotted against dimension in Fig. 6
This quantity approaches its maximal value of unity for lar
D. That implies that the transition is strongly first order. O
the basis of our data we conclude thaths /hcp→0 and
h f /hs→0, for largeD.

Let us discuss the relation of this theory to a perturbat
analysis based on the Kirkwood spinodal instability of t
fluid. A second-order freezing transition was predicted@23#
in the case of first taking the limitD→` and then taking the
thermodynamical limit. For finiteD the instability density
has been worked out explicitly by Frisch and Percus@23# as

h'0.871~e/8!D/2D1/6e1.473D1/3
. ~43!

Bagchi and Rice@13# found the same functional dependen
on D, but a different prefactor such that

h'0.239~e/8!D/2D1/6e1.473D1/3
. ~44!

These densities are compared to our fluid coexisting de
ties based on the virial expansion and free-volume theor
Fig. 7. Ourh f are smaller than the instability densities. Th
implies that the fluid instability is preempted by first-ord
freezing at all high dimensions such that the Kirkwood

TABLE I. Results for the coexistence densitiesh f ,hs for small
dimensionalityD53 and 5 obtained from cell theory~CT! with
fixed and unfixed neighbors compared to simulation results.
estimated the simulation values forD55 from the results given in
Ref. @32#.

D Method h f hs hcp

3 CT, unfixed 0.74048
CT, fixed 0.562138 0.601772
simulation 0.494 0.545

5 CT, unfixed 0.27353 0.348053 0.465258
CT, fixed 0.202184 0.258753

simulation@32# '0.19 '0.29

FIG. 5. Fluid (h f) and solid (hs) coexistence packing fraction
and the close packing fractionhcp of the corresponding laminate
lattice versus dimensionD.
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stability only applies for a metastable fluid. This has inde
been suggested in a recent paper by Frisch and Percus@16#,
where relevant diagram resummations are carried out be
taking the limitD→` resulting in a prior spinodal. The au
thors suggest that ‘‘at a density less than that of the Ki
wood, a first-order transition intervenes.’’ Provided the vir
expansion approaches exactness~as assumed in the instabi
ity analysis of Refs.@13,24#! @45#, our analysis indicates a
first-order phase transitions for large dimensions, because
free-volume theory provides a strict upper bound for t
solid free energy~see Sec. III!, which means that the rea
coexisting fluid density can only be smaller than in our c
culation. As an aside, we apply the same analysis to h
hypercubesand find a qualitatively different result. The in
stability densities as calculated analytically by Kirkpatri
@9# are smaller than the coexisting densities obtained fr
our analysis. This implies that for hard hypercubes the fl
instability can be real. Of course, this system is qualitativ
different form hard hypersheres. The close-packing fract
of hard hypercubes is unity, independent of dimension,
the fluid is anisotropically ordered due to the fixed orien
tions of the particles. Apparently, this makes it easier for
solid to step in via a second-order phase transition.

The Lindemann parameter is defined viaL

e

FIG. 6. Relative jump in coexistence densities (hs2h f)/hs ver-
sus dimensionD.

FIG. 7. Comparison of the freezing densitiesh f from different
theories against the Kirkwood instability density obtained by Fris
and Percus@Eq. ~43!# and Bagchi and Reiss@Eq. ~44!#.
8-7
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5A^(DrW)2&/a as the ratio between the root-mean-square
placement of a particle in the solid and the lattice constana.
Three-dimensional crystal melting is accompanied by a L
demann parameter of roughly 0.1. We test this rule@46#
within our theory for arbitraryD in Fig. 8. Free-volume
theory, where we assume a constant density profile within
free volume cell, can be used to estimateL. We have used
approaches with both unfixed and fixed nearest neighb
The main effect of using the fixed nearest neighbors
proach is a doubling of the available space for the sphere
each direction. If the coexistence densities were the sa
the difference inL between the fixed and unfixed approa
would be a factor of 2. However, if the approach with t
fixed nearest neighbors is used, the solid coexistence de
tieshs change slightly, leading to a differenta in L. Data for
L at coexistence are presented in Fig. 8. For the fluid state
have used the virial expansion. The difference inL between
the approaches using unfixed and fixed nearest neighbor
nearly a factor of 2. Within cell theory the Lindemann p
rameter at coexistence does not vary dramatically from
threshold value of 0.1, valid in three dimensions, and it
rather insensitive to the dimensionality. The data forL ob-
tained within the fixed neighbor approach show that the
sult is stable~up to a trivial factor of 2! with respect to a
different solid state theory. Thus the crude melting rule a
holds in higher spatial dimensions. The Lindemann criter
is thus pretty robust. Note that it is also valid forD52,
provided the relative mean-square displacement@47# is used.
Furthermore it holds inD53 even for interfacial freezing
@48# and freezing of polydisperse spheres both in equilibri
and nonequilibrium@49#.

We finally show, as a side product, the wall-fluid tensi
g of hard hyperspheres, as given by Eq.~26!. In Fig. 9, we
plot g for a fixed scaled packing fractionh5222D versus
dimensionality D. This packing fraction is close to bul
freezing. For this choice of parameters,g increases withD.
Note that in three dimensions, the scaled-particle expres
was found to be in very good agreement with compu
simulations@43# and density-functional studies@50# for any
packing fraction up to freezing.

FIG. 8. Lindemann parameterL at melting as a function of
dimensionD.
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VII. CONCLUSIONS

In conclusion, we have studied the fluid and solid fr
energies for hard hyperspheres. We have generalized sc
particle theory to arbitrary dimensions and solved t
Percus-Yevick liquid integral equation theory numerically
odd dimensions up toD533. We have further proposed
free energy density functional for an inhomogeneous h
hypersphere fluid for arbitrary dimension. Assuming lam
nated lattice structures for the solid, we have used fr
volume theory for the solid that provides a strict upper bou
to the free energy. As a result, we find a first-order freez
transition where the density jump approaches the solid co
istence density asD grows. We have shown that this firs
order freezing transition preempts the second-order K
wood spinodal instability of the fluid.

We point out that computer simulations are needed
D.3 in order to improve the statistics of the simulatio
done for D54,5 @32# and to explore the fluid-solid phas
boundaries forD.5. The numerical effort for such simula
tions, however, increases rapidly with dimension, as
number of particles in a hypercubic box~with periodic
boundaries! increases significantly withD.

It would also be interesting to access hypersphere free
by the unifying concept of density functional theory. Th
fluid free energy was derived in this paper. To get the so
free energy, one could use an ansatz based on Gaussian
sity peaks centered on a~laminated or any other! lattice and
minimize the free energy with respect to the width of t
peaks and the lattice structure. One could further extract
wall-fluid and wall-solid surface tensions from DFT. W
leave these problems for further studies.
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FIG. 9. Reduced surface tensionbgsD21(2R) according to
scaled-particle theory as a function of the dimensionD at the re-
spective densityh54/2D, which is close to freezing.
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@50# B. Götzelmann, A. Haase, and S. Dietrich, Phys. Rev. E53,

3456 ~1996!.
8-9


