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Laser-driven acceleration with Bessel beams
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The possibility of enhancing the energy gain in laser-driven accelerators by using Bessel laser beams is
examined. A formalism based on Huygens'’ principle is developed to describe the diffraction of finite power
(bounded Bessel beams. An analytical expression for the maximum propagation distance is derived and found
to be in excellent agreement with numerical calculations. Scaling laws are derived for the propagation length,
acceleration gradient, and energy gain in various accelerators. Assuming that the energy gain is limited only by
diffraction (i.e., in the absence of phase velocity slippagecomparison is made between Gaussian and Bessel
beam drivers. For equal beam powers, the energy gain can be increased by a fN&f%bp]Utilizing a Bessel
beam withN lobes, provided that the acceleration gradient is linearly proportional to the laser field. This is the
case in the inverse free electron laser and the inverse Cherenkov accelerators. If the acceleration gradient is
proportional to the square of the laser fiéddg., the laser wakefield, plasma beat wave, and vacuum beat wave
accelerators the energy gain is comparable with either beam prdi$d.063-651X97)13503-4

PACS numbd(s): 41.75.Cn

I. INTRODUCTION (i) the acceleration gradient is linearly proportional to the
laser field, and(ii) the acceleration distance is limited by
Laser-driven accelerators rely on the large intensities thadiffraction and not by phase detuniigr some other mecha-
can be achieved when laser beams are focused down to spusm), whereN is the number of transverse ringsbeg in
sizes on the order of several wavelengths17]. The asso- the Bessel beam. The specific example of the inverse Cher-
ciated gradients are typically much larger than th@00 enkov accelerator is examined in detail.
MV/m in proposed next-generatiot-band linacs. However, The mode structure of a laser beam can be altered using
a shortcoming of many of these schemes is that the interacommon optical elements, including holographically gener-
tion length over which the high intensity can be sustained isitted zone plate§23] and axicons[11,12,24-29 Notable
relatively short due to transverse spreadidiffraction). Ra- examples of such beams are the Bessel beam of arder
diation from a laser cavity is usually in the form of the fun- J,(k,r), wherek, is the transverse wave number ands
damental and higher-order Gaussian modes. For such a bedhe radial coordinate. Th&, beam has been the subject of
the Rayleigh length, i.e., the free-space scale length for difmuch theoretical and experimental analysis as a paradigm of
fraction, is given by what are referred to as ‘“diffraction-free” beani49]. In
reality any beam with finite transverse extent is subject to
Zrc= krglz, (1) spreading and the designation diffraction free is a misnomer.
Indeed, careful comparison of a Bessel beam with a Gaussian
wherer  is the minimum spot size of the beam at the focalbeam reveals that the latter has a better energy transfer ca-
point and A\=2m/k is the free-space wavelengfig]. In  pability [20-22.
vacuum or in a gaf4—13 acceleration can be achieved by — However, since Bessel beams are sharply peaked and
direct interaction of the axial component of the laser figjd ~have a large depth of field they may be more useful than the
with the particles, where is the propagation direction. Us- familiar Gaussian beams in certain applications. For ex-
ing V-E=0, the axial electric field is related to thdomi- ~ample, direct laser acceleration relies on the interaction of a
nanb transverse field, by JE,/9z=—V, -E, . For a Gauss- Particle with the axial electric field of the Ia;gr. The fgnda-
ian beam E,=O(Ey/kr,), whereE, is the transverse field mental Gaussian and tlﬂg beams are not efficient for direct
amplitude. The producE,Zg provides an estimate of the acceleration since there is no on-axis electric field associated

energy gain, assuming that the interaction is synchronoudVith either. HoweverE,(r=0)#0 for higher-order Gauss-

i.e., neglecting phase velocity slippage. ian and Bessel beams. Bessel beams have been created using
This paper addresses the scaling of and the maximizatio@Xicon lenses and, in particular, a zeroth-order Bessel beam

of the energy gain in various accelerators driven by laser¥/as used in channel guiding experimef28] and a radially

with two different transverse mode profiles. In particular, Polarized, first-order Bessel beam has been used in experi-

laser accelerators driven by Gaussian beams will be conihents on the inverse Cherenkov accelerat@.

pared to those driven by Bessel bedh8-22. The diffrac-

tion of Bessel beams is examined and an analytical expres- Il. BESSEL AND GAUSSIAN LASER BEAMS

sion for the maximum propagation distance is derived and

compared to numerical calculations. It is shown that a Bessel

beam can enhance the energy gain by a factdd'f com- In vacuum, the Cartesian components of the laser electric

pared to a Gaussian beam of the same power, provided th&eld, E; (i=X,y,z), satisfy the scalar wave equation

A. Ideal Bessel beams
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(V2+k2)E;=0, (2)  tained each rind®,= (c/4)E §/k? is approximately equal. In
essence, the ideal Bessel beams are the cylindrical equiva-
wherew=ck=2mc/\ is the laser frequency is the speed lents of plane waves.
of light, and E;~exp(—iwt) has been assumed. Letting
Ei=ReE;exp(kz—iwt), the laser field envelopk; satisfies B. Gaussian beams

the paraxial wave equatidi8 ) .
P quatiqus| It is useful to compare the Bessel beam solutions to the

A PN well-known Gaussian beam solutiof8]. The fundamental
Vi+2ik —]E=0, (3  Gaussian beam is given by
A~ ~ 2
where|JE;/dz| <|KEj| has been assumed. An exact solution E,=E, To exg —(1—ia) r—z—i tan ta|. (10)
of the paraxial wave equation is the fundamental Bessel I's s

mode[19-22
wherer =ry(1+a?)¥2 is the spot sizea=(z—2,)/Zg¢ is
EX: Eodo(k, r)exp — ikf z/2k), (4 proportional to the wave-front curvatung, is the minimum
spot size at the focal point=z,, and Zrg=kr3/2 is the
whereJ, is the zeroth-order Bessel functidfg is the peak Rayleigh length. Equationil0) is an exact solution to the
field amplitude, and, <k is the transverse wave number. paraxial wave equation, E3). The radially polarized, first-
The fundamental Bessel mode is peaked alongties and  order Gaussian mode is given by
the radius of the central lobe is given by=pg/k, , where

. . . . . 2
Poi is the first zero ofly. Associated with the transverse field = _ Mo PR A
is an axial field component which satisfi& E=0. For Er EOTgeX (1=ia) r2 2i tan e, (1D)
E,~Jo, however,E, is zero along =0.
For laser acceleration of particles in vacuum or in gasand the axial field component is
[4-13], a more useful laser field is a radially polarized, first- _ 5
order Bessel mode of the form - 2irgky r
z— k 2 1- (l Ia) r2
E, = EoJy(k, r)exp —ik?z/2k). (5) s °
1
In terms of its Cartesian components, Xex;:{ (1-ia) _Z 2i tan "« (12)
Ex=EoJa(k, r)exp( —ik? z/2k)coss, (68 Near the focal pointa=0) and along thez axis, the axial
- o _ wave number associated with this field is given by
Ey=EgJa(k, r)exp(—ik{z/2k)sine. (6b)  k,=k—2/Zgg. This corresponds to an axial phase velocity
The associated axial field component is vplc=1+2KkZgg. (13
A ik, Eq In vacuumo ,>c and particle slippage prevents acceleration

" (k—KZ/2k) “° Jo(k, r)exp(—ik?z/2k). (M to0 high energies, as is the case for a Bessel beam. The scale
R length over which the Gaussian beams diffract is the Ray-
Here, E,, Ey, and E are exact solutions to the paraxial leigh lengthZrs. The total power associated with the Gauss-
wave equation, Eq3). For the first-order Bessel beaf, is  ian beams is
maximum alongr =0 whereask, is zero. Hence, the first-
order Bessel beam described by E@9—(7) is well suited p ¢ f dr r|E |2_ f (14)
for acceleration of particles along theaxis. Notice that the 74 L
axial wave number for the above Bessel beams is
k,=k—k?/2k. This implies an axial phase velocity wheref,=1 for the fundamental andi,=1/2 for the first-
vp= w/k, given by order Gaussian beam.

_ 2
vplc=1+ K2 /2k2, 8 C. Nonideal Bessel beams

That is, the phase velocity exceedsand particle slippage Finite power, nonideal, Bessel beams can be created by

prevents acceleration to high energies in a single stage.  clipping the ideal beam with an aperture of radiusa [19—
Although the ideal Bessel beam solutions given by Eqs22]. A nonideal Bessel beam consists M&=a/r,=ak, /7

(4)—(7) do not diffract, they have infinite power. This is due ngs, with a total power given bjl times the power in a

to the fact thatly,~r ~ 2 for larger. The asymptotic form single ring,Pg=NPy, i.e.,

(k, r=>1) for the Bessel functions is given by Po~(ClI4)NE2 /k2 (15

Jn(k, 1)~ (2/mk, r)Y%codk, r—(2n+1)=/4]. (9

olar)=( r) thor=o i) © Roughly speaking, a nonideal Bessel beam consistingy of
An ideal Bessel beam consists of an infinite number of ringsings diffracts away sequentially starting with the outermost
(lobeg each having a radial width af,=/k, . Since the ring [20] The outermost ring diffracts after a distance
asymptotic width of each ring is the same, the power con—r ¢/\, the next ring diffracts after a distancer2/\, and
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directed towards the observation poiAtdenotes the surface

Gas Cell Laser area of the aperture, arif| ~exp(—iwt) has been assumed.
Re / The key dependence in E(L7) is the phase factor exi(R).
. In a cylindrical coordinate system and in the paraxial limit,
— — . Boam the binomial expansion

r24+r'2 rr’ ,
272 —?005(0—0) (18)

N

R=z1+

Axicon Interaction
Region, L .
© can be used in the exponent, wheré<r’?)/z?<1 has been

assumed. Here, the aperture is taken to be planar and at

FIG. 1. Schematic of the axicon focusing geometry used to cre-zlzoy the unit vectord points along the positive axis,

ate a line focus. At the midplane of the focus, the transverse profil%hiCh is the direction of propagation, artdand ¢ denote

of the laser field is a nonideal Bessel beam. The axicon focal pat-he azimuthal angle at the observatio,n point and at the aper-
rametergR,, L., and§,<1) are related to the Bessel beam param-ture respectively. Substituting this expansion into E)

eters (k, =7/ry, Lymax=2NZgg/m and N=alr,) by R.=L 6, . ) . 7 - R
~2a, k, =k, Le=2L 0y, andN=(R./\) 6. the field at the observation point to leading order is given by

~Nr 2/\. Hence, the maximum propagation distance of a 2z

_— .
so on until the innermost ring diffracts away after a distance I%i(r)z 5 k. ex;{ ikr ) jadr’r’fz i

Tz 0 0
nonideal Bessel beam consistingMfrings is[19,20 .

ik A
Xexp[ o7 [r'2—2rr'cog 6— 0’)]]Ei(r’,6’),

where Zga=kr 2/2= (7%2)k/k? is the Rayleigh length as- (19
sociated with the asymptotic width of an individual ring. whereEizReEi exp(ikz—iwt) and a circular aperture of ra-

More accurately, the analysis presented in Sec. lll givegjjysa has been assumed. In the limit of a cylindrically sym-

Lmax=(2/mNZgg=akik, . , metric field at the aperture surfadg(r’,0’)=E;(r’), the ¢’
Axicon lenses can be used to create nonideal Bess%tegral can be evaluated and E@9) reduces to

beamg12,29. A schematic for creating a radially polarized,

first-order Bessel beam is shown in Fig.[11,12,27,2& R k ikr2\ ra
Here a radially polarized beam is focused by an axicon lens Ei(r,z)= = exy{ E) J dr'r
of radiusR,, such that it crosses ttzeaxis at an angl@, and 0

forms a focal region of length .. A circularly symmetric ikr'2 Krr'
interference pattern develops along the focal region with a Xexr{ ) 0( )
radial field component given byE,=E.(2)J.(k r), 2z

where the field amplitud&.(z) depends on the laser inten- . . . . .
sity at the surface of the axicon. Assuming the field Compo_Equatlon(ZO) will be used to described the diffraction of a

nents have the form given by Eq&)—(7), the axicon focal Bessel beam that is incident on a circular aperture of radius
parametersR,, L., and 6.<1) are related to the Bessel a. Specmcally,' the propagatlon distance of the Bessel' beam
beam parametexk, = 7/, , L,.=2NZgo/m andN=alr,) \(/\rnll (l)))e determined by evaluating E@20) along thez axis
by Re=Lc0c=28, k; =kOc, Lo=2L may, andN=(R:/\)0; Consider the diffraction of a nonideal fundamental Bessel
beam, in which the field has been truncated by a circular
IIl. BESSEL BEAM DIFFRACTION aperture of radius. At the apertureE,(r')=EqyJo(k, r")

The scale length for diffraction of a nonideal Bessel beanfOr <@ Inserting this into Eq(20) gives
can be determined analytically using the scalar diffraction KE ikr2\ ra
theory based on Huygen_s' prlnc_lp_ﬂﬂa8]_. In this method the éx(f,z)z -0 exp{ _) f dr'r’
transverse beam profile is specified in the plane of an aper- 1z 2z | Jo
ture and the beam is propagated forward using an integral k2 Krp?
formulation with an approximate form for the Green’s func- ><exp(I i ) (l)‘] (k. r") (21)
tion. The solution to the wave equation, E8), for a laser 2z |70 z JTO
beam of frequencw=ck is given by the Kirchhoff integral
[18] Note that in the limita—co,

Lmax=NZgg, (16)

Ei(r’). (20

z

k i\ AR . ik?z
Ei(r)=ﬁfAdS’ 1+ﬁ ?exp(lkR)Ei(r’), Ex(a—x)=EyJo(k, r)ex oK

17

: (22)

which is the exact solution to the paraxial wave equation, Eq.
whereR=x—x’ is the position vector from the element of (3), describing the ideal fundamental Bessel beam,(&x.
surface integrationS' atx’ to the point of observatior, n Suppose now that the radius of the aperture is large but
is a unit vector that is normal to the plane of the aperture anfinite. Along thez axis, Eq.(21) can be written as
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£ r-00="5 ["ave— [“avr R
r=02z2)=-— r'r’— r'r a
X iz \Jo a (=) k,a=20
ikrrZ 15 [
xex;{? Jo(kir’). (23
A2
The firstr’ integral gives the ideal Bessel beam result, Eq. |[E| ' [ |
(22), evaluated at =0. To evaluate the second integral, the
asymptotic form for the Bessel function can be used,(2yg.
assumingk, a>1. Equation(23) can be written as o5 T
S (09— ikiz\  KEoF(2) 04
(r=02)=Eoexp = 5|~ oy 24 0 | ' |
0 0.2 0.4 0.6 0.8 1 1.2
where 7
LITHD(
Fo)= [ driTexpio.)+extio )], (259 : — '
: (®) koa=40
and
1.5
12 ar
(1 ’Z):Zi k.r ~ 7/ (25b) o

The integralF(z), Eq. (25), may be evaluated by observ-
ing that for sufficiently largea the ¢, term phase mixes
away and that the leading contribution comes from #he 05 [
term in the vicinity of the stationary phase point. The station-
ary pointr’ =r; wheredg¢_/dr' =0 is given byr;=k, z/k. If

r¢ lies outside the integration region,<<a, the integrand is 0 : '
highly oscillatory and the integral tends to phase mix to zero. 0 0.2 04 0.6 0.8 1 12
If r; lies within the integration regiom,;>a, the integral can %

be evaluated by expanding the phase aboutr’ =r;. The

leading order contribution to the integriélz) is given by
FIG. 2. Normalized field intensitfE,(z)|? for a zero-order

Bessel beam plotted along=0 as a function ofz/L . for (a)
, (26) k, a=20 and(b) k, a=40, as obtained from a numerical integration
of Eq. (21).

2’7Trf
F(Z):(d)”(rf

for ry>a azndI:O otherwise, where the double prime de-
notesf/&r . Hence, to leading order, the amplitude of the o5 the number of Bessel lobes increases, the amplitude of
laser field along the axis of propagation is given by the axial oscillations in the intensity tends to decrease and
ik27 ka the intensity terminates more sharplyzat L ..
f;x(r:o,z)onexr{_z_T() l—H(z— k_> . (27 Although this calculation has assumed a fundamental
1
where H(z—ka/k,) is the Heaviside step function. This

Bessel beam withE,~Jy(k, r), an identical result is ob-
tained for the radially polarized first-order Bessel beam with
demonstrates that the maximum propagation distance for §,~J1(I§Lr)_, as given by I_Eqs(5)—(7). T_h's is readily seen
Bessel beam passing through an aperture of radius is by considering the_dlffractlon of the axial component of the
first-order Bessel fieldg,~Jo(k, 1), Eq. (7). The above re-
L ma= kalk, =(2/7)NZgg, (28 sults Eqs(21)—(28) directly apply toE,~Jy(k,r).

112 -
) exp{i¢(rf)+i 7

wherer,=m/k, is the asymptotic width of a Bessel ring,

N=a/rb is the total nur_nber of _rings, grw@:kr%/Z is the. IV. LASER ACCELERATION OF PARTICLES

Rayleigh length associated with an individual Bessel ring.

This value forL 5, is in agreement with previous estimates  For a fixed total laser power, a Bessel laser beam can lead

[19,20. to enhanced energy gain in a laser-driven accelerator pro-
To verify the analytical results based on the method ofvided that(i) the accelerating gradief,. is linearly pro-

stationary phase, the field intensify, (z)|? is plotted along portional to the laser field amplitude afid) the acceleration

r=0 as a function of/L 5 in Fig. 2 for (a) k, a=20 and(b) distance is limited by laser diffraction and not phase detun-

k, a=40. These plots were obtained by numerically integrating (or some other mechanigmWhen these two conditions

ing the expression for the field given by E@1). The plots  are met, the energy gain can be enhanced by a factatgf

show that the field intensity falls off dramaticallyatL,,,,. @ whereN=a/r, is the number of rings in the Bessel beam.
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A. Ponderomotive accelerators Ly=(m/2)Zgs. For a Bessel beam,, is given by Eq.(8)

In many laser-driven accelerators, such as the laser wak@"dLq=(4/m)Zgg. Hence, in vacuum the effective accelera-
field accelerator, the plasma beat wave accelerator, and th" length will be limited toL,.=L4, even if the beam
vacuum beat wave accelerator, particle acceleration is the'0Pagates a distance longer thapn For a Gaussian beam
result of the ponderomotive force of the laser fields, i.e., theez=2Eo/Krg and Wg~(2Ey/krg)Zgg~Pg*“. For a J;
accelerating gradient is proportional to the square of the Iasé?’ef,gel beame,=k, Eo/k and Wg~(kEo/k,)Zrg~(Ps/
field amplitude E ,.~E2[1-5,8,1Q. In this case, there isno )~ - Thus
enhancement in the energy gain when a Bessel beam is used, - 12
as is evident by the following scaling laws. For a Gaussian We/Wo~(Pe/NPg) ™, S
beam undergoing vacuum diffraction, the acceleration dis- dth in for direct leration i b
tance is on the order of a Rayleigh lengthy Zgs. In terms and e energy gain for 1/|2rec accereration in vacuum wit be
of the total powerPG~E§r3, the energy gain scales as reduced by a factor oN~“ for the Bessel beam, assuming
Wg~LE, .~Pg. For aJ, Bessel beam, the total propaga- equal beam powers.
tion length is L~NZzg and the total beam power is

Pg=NP,~N Egr gl Hence,Wg~ NZRBEgN Pg. The ratios D. Inverse Cherenkov accelerator
of the energy gains scales as In the inverse Cherenkov acceleratt€A) [4,11-13, a
Wa /Wg~Pg /P, 29 background of neutral gas is introduced to control the phase

velocity of the laser field. Acceleration is the result of the

. axial component of a radially polarized first-order laser field.
where the subscrip® andG refer to the Bessel and Gauss- In a gas the dispersion relationrigs=ck, wheren>1 is the

ian beams, respectively. For equal beam powers, there is NRdex of refraction. TypicallyAn=n—1 is much less than

enhancement in the energy gain, assuming that the accelerl?r—1i : ;

. . R . ) : ty and proportional to the gas density. Hence, the phase

Eon d'Stache st“m'rtled by Idlfftractll_on of the drive laser velocity can be tuned by adjusting the gas density and phase
€ams and not by phase velocily slippage. synchronism can be achieved. For example, the axial phase

velocity of the Bessel beam of Eqg®)—(7) is given by
B. Inverse free electron laser

—1_ 2 2
On the other hand, consider the case of an accelerating vpfe=1—An+k /2K (32

gradient that is linearly proportional to the amplitude of the _ L )
transverse laser field ..~ E,. This is the case in the inverse FO @ highly relativistic electron, phase matching=c re-
free electron lasef14—17, in which acceleration results 9uires 2n=KkI/k".
from the ponderomotive force of the beat wave of the laser
field with the wiggler magnetic field, i.eE .~ (a,/¥)Eo,
wherea,, is the normalized wiggler magnetic field ands For a Gaussian beam of the form given by Ed4) and
the relativistic factor of the electron. For a Gaussian driver(12), the energy gain in the ICA can be calculated by inte-
W~EoZra~ToP¥2 For a J, Bessel driver, grating the axial electric field, Eq12), over —co<z<co. A
Wg~EgNZgg~rp(N PB)l/z. Hence, particle with relativistic factory moving at nearly constant
velocity v =c(1—-1/2 >1) along thez axis is subject to
Wg /W~ (ry/ro)(NPg/Pg)*2. B0  an eleg:/tri?: fie(ld givef)bgly> ) ’ J

1. Gaussian beam ICA

Uniform acceleration of the electron beam requires bgth (1—ia)?

andr, to be greater than the electron beam radius. Assuming E,(t=2/ve) =IE,g =7 exdi(Akz+ ¢g)], (33
ry=roandPs=Pg, the energy gain can be enhanced by the (1+a%)

use of a Bessel beam by a factordf? This assumes that
the acceleration distance is limited by the diffraction of the
drive laser beams and not by phase velocity slippage.

where E,o=2Ey/kry is the peak axial field amplitude,
Ak=k(An—1/2y?), a=2/Zxg, z=0 is the focal point, and
¢, is the phase of the electron at the focal point as deter-

_ o mined by the initial conditions. The energy gain is given by
C. Direct acceleration in vacuum

The above arguments assume that the acceleration length *
is limited only by the propagation distance of the laser beam ~ We= _qJ_de E(t=2ve),
and that phase synchronism is maintained by matching the
phase velocity of the accelerating wave to the velocity of the d

. . . . ® Z

electron beam. For direct acceleration in vacu#r9], in :qEzoSim%J —— > [(1— e®)cosAkz
which the particles are accelerated by the axial component of (1+a%)
the laser fieldE,.~E,), phase detuning will limit the accel-
eration length. The detuning length is defined as the distance
required for a particle to phase slip by one-half period with 5 _
respect to the axial electric field, i.&.4(v o ' —v , 1) =lw, =2mqEpAkZzexp(— AkZgg)singy, (34)
whereu, is the axial particle velocity. For a Gaussian beam,
the phase velocity is given by Eq@13) and the detuning for Ak=0 andWg;=0 for Ak<<0, whereq is the electron
length for a highly relativistic electron v(=c) is charge. The energy gain is maximum whendgirnl and

+2a sinAkZ],
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when AkZgg=1, i.e., An=1/kZgs+1/2y?, which mini- Bessel beam given by E¢f), the field reaches at maximum
mizes the effects of phase detuning. In this case, the maxdf |E,|,=(0.589Eqs at r=1.8/k, . Assuming equal peak
mum energy gain is given by intensities| E,| max=|Er|max implies
We=(2ma/e)ExZre=(2ma/€)Eqrg. (35 r2/r3=2.3P5/NPg. (42
Wo[MeV]=2.3Pg{ GW]. (36) Lg/Lg=1.2P5/Pg, (433

To enhance the energy gain it is necessary to increase the
laser propagation distance. A Gaussian laser beam can be
self-guided in a gas by a proper balancing of diffraction
nonlinear self-focusing, and plasma defocudifagOl.

E,g/E,g=0.7TNPg/Pg)2 (43b)

'Hence, for equal powers and equal peak intensities, the
propagation lengths are approximately equal for the two
beams and the peak accelerating gradient for the Bessel
beam is approximatel\N'? times larger than that for the
For a first-order Bessel beam of the form given by Egs.Gaussian beam. Furthermore, note that in the highly relativ-
(5)—(7), the amplitude and phase of the electric field is ap-istic  limit, the phase matching condition s
proximately constant over a total propagation length ofAn=k?/2k?=72/2k’r ¢ for the Bessel beam and
2L max» WhereL ., is given by Eq.(28). Hence, the maxi- An=1/kZyg=2/k?r3 for the Gaussian beam. For equal
mum energy gain can be estimated by the product of th@owers and intensities, E¢42) implies r 2/r 5=2.3/N. For
peak axial fieldE,o=k, E¢/k, Eq.(7), times the total propa- largeN this implies that phase matching with a Bessel beam

2. Bessel beam ICA

gation distance(4/mNZgg, i.e., requires much higher neutral gas densities than is required
with a Gaussian beam, which may impose technological dif-
Wg=2qEL max=2qaky. @7 ficulties.
Here it has been assumed that the electron remains phase
matched to the laser field, i.e. Ah=k?/k?+1/y?, as im- V. DISCUSSION

plied by Eq.(32). In terms of the total Bessel beam power,

. o The first-order limitation in any laser-driven accelerator
Pg=caE3/4xk, , the maximum energy gain is given by y

configuration is diffraction of the drive laser beams. The pos-

Wg=47q(NPg/c)Y2 (39) sibility of using Bessel laser beams to extend the acceleration

distance and enhance the energy gain has been examined. A
In practical units, formalism based on Huygens' principle has been developed
to describe the diffraction of nonideal Bessel beams, i.e., a

Wg[MeV]=2.2N"2PE{ GW]. (39  Bessel beam profile which has been truncated by an aperture

o . ) . of radiusa. Such a beam has a finite power and can be
This is in agreement with previous estimafes]. Hence, by  generated in the laboratory. An analytical expression for the
using a Bessel beam with rings, the energy gain can be maximum propagation distance was deriveldy,=(2/
enhanced by a factor 012 compared to a Gaussian beam )Nz, whereN=a/r, is the number of transverse lobes
with the same total power, in the Bessel beant,, is 2the asymptotic width of an indi-

2 vidual lobe, andZgzg=kr /2 is the Rayleigh length of an
Wg/We=(NPg/Pg)™* (40 individual lode. This analytical expression was verified by

It is also of interest to compare the effective acceleratio’Umerical calculations. _
lengthsL s and peak accelerating gradierisg ¢, where Comparlsons were made between accelerators driven by
(W=gE L)BG Le=(27/€)Zge and LB:(4/771)ZRB In Gaussian laser beams and those driven by Bessel laser

Z , G 1 .

beams. For equal beam powers, it was shown that the energy

particular, ; . ) ; X
gain using a Bessel beam is approximatii¥f times that
Lg/Lg=0.53N(ry/rq)?, (413 using a Gaussian beam provide tfiatthe accelerating gra-
dient is linearly proportional to the laser field afid) the
EzB/EzG:1-7(r0/rb)2(PB/N pG)UZ, (41b acceleration distance is limited by diffraction and not by

phase detuningor some other mechanigniThis is the case
Clearly, these ratios depend on the transverse dimensions fir the inverse Cherenkov acceleraiphased-matched ac-
the beams. For example, if equal powers and equal aperturegleration using d, beam in a gasand for the inverse free
are assumed, Pg;=Pz and r3=a0= Nr,, then electron lasefphase-matched acceleration resulting from the
Lg/Lg=0.5N"1 andE,/E,c=1.7N%?, ponderomotive interaction of & beam and a wiggler mag-

A more relevant constraint for the ICA is to assume thatnetic field. The inverse Cherenkov accelerator was analyzed
the peak intensities in the two beams are equal. If phasi detail. It was shown that for equal powers and equal peak
matching between the electron and the laser field is to bintensities, the acceleration length, peak accelerating field,
maintained in the ICA, ionization should be avoided, whichand energy gain scale dsg/Ls~1, E,g/E,c~N2 and
places a limit on the maximum intensity. For the first-orderwg/Wg~N*?2 respectively.

Gaussian beam given by E@.1), the field reaches at maxi- Scaling laws have been derived for other configurations as
mum of |Ex|maX=EOG/\/E at r=ry/v2. For the first-order well. Direct acceleration by thE, field in vacuum is limited
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by phase detuning, hence, there is no advantage in usingdiffraction. In addition, for all laser-driven plasma-based ac-
Bessel bean(in fact, the energy gain is reduced By, celerators, it appears possible to guide a laser beam large
assuming equal beam powgrBor cases in which the accel- distances(many Rayleigh lengthsusing a plasma density
erating gradient is proportional to the square of the laser fieléhannel[3,4,29,31,32 thus enhancing acceleration length
(e.g., the laser wakefield accelerator, the plasma beat wawghd the energy gain.

accelerator, and the vacuum beat wave accelgrator en-

ergy gain for both Gaussian and Bessel beam drivers scales

asW~P (independent olN), assuming an acceleration dis- ACKNOWLEDGMENTS
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