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Laser-driven acceleration with Bessel beams
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The possibility of enhancing the energy gain in laser-driven accelerators by using Bessel laser beams is
examined. A formalism based on Huygens’ principle is developed to describe the diffraction of finite power
~bounded! Bessel beams. An analytical expression for the maximum propagation distance is derived and found
to be in excellent agreement with numerical calculations. Scaling laws are derived for the propagation length,
acceleration gradient, and energy gain in various accelerators. Assuming that the energy gain is limited only by
diffraction ~i.e., in the absence of phase velocity slippage!, a comparison is made between Gaussian and Bessel
beam drivers. For equal beam powers, the energy gain can be increased by a factor ofN1/2 by utilizing a Bessel
beam withN lobes, provided that the acceleration gradient is linearly proportional to the laser field. This is the
case in the inverse free electron laser and the inverse Cherenkov accelerators. If the acceleration gradient is
proportional to the square of the laser field~e.g., the laser wakefield, plasma beat wave, and vacuum beat wave
accelerators!, the energy gain is comparable with either beam profile.@S1063-651X~97!13503-6#

PACS number~s!: 41.75.Cn
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I. INTRODUCTION

Laser-driven accelerators rely on the large intensities
can be achieved when laser beams are focused down to
sizes on the order of several wavelengths@1–17#. The asso-
ciated gradients are typically much larger than the;100
MV/m in proposed next-generationX-band linacs. However
a shortcoming of many of these schemes is that the inte
tion length over which the high intensity can be sustained
relatively short due to transverse spreading~diffraction!. Ra-
diation from a laser cavity is usually in the form of the fu
damental and higher-order Gaussian modes. For such a b
the Rayleigh length, i.e., the free-space scale length for
fraction, is given by

ZRG5kr0
2/2, ~1!

wherer 0 is the minimum spot size of the beam at the foc
point and l52p/k is the free-space wavelength@18#. In
vacuum or in a gas@4–13# acceleration can be achieved b
direct interaction of the axial component of the laser fieldEz
with the particles, wherez is the propagation direction. Us
ing “•E50, the axial electric field is related to the~domi-
nant! transverse fieldE' by ]Ez/]z52“'•E' . For a Gauss-
ian beam,Ez5O(E0/kr0), whereE0 is the transverse field
amplitude. The productEzZRG provides an estimate of th
energy gain, assuming that the interaction is synchron
i.e., neglecting phase velocity slippage.

This paper addresses the scaling of and the maximiza
of the energy gain in various accelerators driven by las
with two different transverse mode profiles. In particul
laser accelerators driven by Gaussian beams will be c
pared to those driven by Bessel beams@19–22#. The diffrac-
tion of Bessel beams is examined and an analytical exp
sion for the maximum propagation distance is derived a
compared to numerical calculations. It is shown that a Be
beam can enhance the energy gain by a factor ofN1/2 com-
pared to a Gaussian beam of the same power, provided
551063-651X/97/55~3!/3539~7!/$10.00
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~i! the acceleration gradient is linearly proportional to t
laser field, and~ii ! the acceleration distance is limited b
diffraction and not by phase detuning~or some other mecha
nism!, whereN is the number of transverse rings~lobes! in
the Bessel beam. The specific example of the inverse C
enkov accelerator is examined in detail.

The mode structure of a laser beam can be altered u
common optical elements, including holographically gen
ated zone plates@23# and axicons@11,12,24–29#. Notable
examples of such beams are the Bessel beam of orden,
Jn(k'r ), wherek' is the transverse wave number andr is
the radial coordinate. TheJ0 beam has been the subject
much theoretical and experimental analysis as a paradigm
what are referred to as ‘‘diffraction-free’’ beams@19#. In
reality any beam with finite transverse extent is subject
spreading and the designation diffraction free is a misnom
Indeed, careful comparison of a Bessel beam with a Gaus
beam reveals that the latter has a better energy transfe
pability @20–22#.

However, since Bessel beams are sharply peaked
have a large depth of field they may be more useful than
familiar Gaussian beams in certain applications. For
ample, direct laser acceleration relies on the interaction o
particle with the axial electric field of the laser. The fund
mental Gaussian and theJ0 beams are not efficient for direc
acceleration since there is no on-axis electric field associ
with either. However,Ez(r50)Þ0 for higher-order Gauss
ian and Bessel beams. Bessel beams have been created
axicon lenses and, in particular, a zeroth-order Bessel b
was used in channel guiding experiments@29# and a radially
polarized, first-order Bessel beam has been used in exp
ments on the inverse Cherenkov accelerator@12#.

II. BESSEL AND GAUSSIAN LASER BEAMS

A. Ideal Bessel beams

In vacuum, the Cartesian components of the laser elec
field, Ei ( i5x,y,z), satisfy the scalar wave equation
3539 © 1997 The American Physical Society
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3540 55B. HAFIZI, E. ESAREY, AND P. SPRANGLE
~¹21k2!Ei50, ~2!

wherev5ck52pc/l is the laser frequency,c is the speed
of light, and Ei;exp~2ivt! has been assumed. Lettin
Ei5ReÊiexp(ikz2 ivt), the laser field envelopeÊi satisfies
the paraxial wave equation@18#

S ¹'
212ik

]

]zD Êi50, ~3!

whereu]Êi /]zu!ukÊi u has been assumed. An exact soluti
of the paraxial wave equation is the fundamental Bes
mode@19–22#

Êx5E0J0~k'r !exp~2 ik'
2z/2k!, ~4!

whereJ0 is the zeroth-order Bessel function,E0 is the peak
field amplitude, andk'!k is the transverse wave numbe
The fundamental Bessel mode is peaked along thez axis and
the radius of the central lobe is given byr a5p01/k' , where
p01 is the first zero ofJ0. Associated with the transverse fie
is an axial field component which satisfies“•E50. For
Ex;J0 , however,Ez is zero alongr50.

For laser acceleration of particles in vacuum or in g
@4–13#, a more useful laser field is a radially polarized, fir
order Bessel mode of the form

Êr5E0J1~k'r !exp~2 ik'
2z/2k!. ~5!

In terms of its Cartesian components,

Êx5E0J1~k'r !exp~2 ik'
2z/2k!cosu, ~6a!

Êy5E0J1~k'r !exp~2 ik'
2z/2k!sinu. ~6b!

The associated axial field component is

Êz5
ik'E0

~k2k'
2 /2k!

J0~k'r !exp~2 ik'
2z/2k!. ~7!

Here, Êx , Êy , and Êz are exact solutions to the paraxi
wave equation, Eq.~3!. For the first-order Bessel beam,Ez is
maximum alongr50 whereasEr is zero. Hence, the first
order Bessel beam described by Eqs.~5!–~7! is well suited
for acceleration of particles along thez axis. Notice that the
axial wave number for the above Bessel beams
kz.k2k'

2 /2k. This implies an axial phase velocit
vp5v/kz given by

vp /c511k'
2 /2k2. ~8!

That is, the phase velocity exceedsc and particle slippage
prevents acceleration to high energies in a single stage.

Although the ideal Bessel beam solutions given by E
~4!–~7! do not diffract, they have infinite power. This is du
to the fact thatJ0,1;r21/2 for large r . The asymptotic form
~k'r@1! for the Bessel functions is given by

Jn~k'r !;~2/pk'r !1/2cos@k'r2~2n11!p/4#. ~9!

An ideal Bessel beam consists of an infinite number of rin
~lobes! each having a radial width ofr b.p/k' . Since the
asymptotic width of each ring is the same, the power c
el

s

is

.

s

-

tained each ringPb.(c/4)E 0
2/k'

2 is approximately equal. In
essence, the ideal Bessel beams are the cylindrical equ
lents of plane waves.

B. Gaussian beams

It is useful to compare the Bessel beam solutions to
well-known Gaussian beam solutions@18#. The fundamental
Gaussian beam is given by

Êz5E0

r 0
r s
expF2~12 ia!

r 2

r s
22 i tan21aG , ~10!

where r s5r 0(11a2)1/2 is the spot size,a5(z2z0)/ZRG is
proportional to the wave-front curvature,r 0 is the minimum
spot size at the focal pointz5z0 , and ZRG5kr 0

2/2 is the
Rayleigh length. Equation~10! is an exact solution to the
paraxial wave equation, Eq.~3!. The radially polarized, first-
order Gaussian mode is given by

Êr5E0

rr 0
r s
2 expF2~12 ia!

r 2

r s
222i tan21aG , ~11!

and the axial field component is

Êz.
2ir 0E0

krs
2 F12~12 ia!

r 2

r s
2G

3expF2~12 ia!
r 2

r s
222i tan21aG . ~12!

Near the focal point~a50! and along thez axis, the axial
wave number associated with this field is given
kz.k22/ZRG . This corresponds to an axial phase velocit

vp /c5112/kZRG . ~13!

In vacuumvp.c and particle slippage prevents accelerati
to high energies, as is the case for a Bessel beam. The
length over which the Gaussian beams diffract is the R
leigh lengthZRG . The total power associated with the Gaus
ian beams is

PG5
c

4 E
0

`

dr r uÊ'u25
c

16
E0
2r 0

2f g , ~14!

where f g51 for the fundamental andf g51/2 for the first-
order Gaussian beam.

C. Nonideal Bessel beams

Finite power, nonideal, Bessel beams can be created
clipping the ideal beam with an aperture of radiusr5a @19–
22#. A nonideal Bessel beam consists ofN.a/r b5ak'/p
rings, with a total power given byN times the power in a
single ring,PB.NPb , i.e.,

PB.~c/4!NE0
2/k'

2 . ~15!

Roughly speaking, a nonideal Bessel beam consisting oN
rings diffracts away sequentially starting with the outerm
ring @20#. The outermost ring diffracts after a distanc
;pr b

2/l, the next ring diffracts after a distance 2pr b
2/l, and
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55 3541LASER-DRIVEN ACCELERATION WITH BESSEL BEAMS
so on until the innermost ring diffracts away after a distan
;Npr b

2/l. Hence, the maximum propagation distance o
nonideal Bessel beam consisting ofN rings is @19,20#

Lmax.NZRB , ~16!

whereZRB5kr b
2/25(p2/2)k/k'

2 is the Rayleigh length as
sociated with the asymptotic width of an individual rin
More accurately, the analysis presented in Sec. III gi
Lmax5~2/p!NZRB5ak/k' .

Axicon lenses can be used to create nonideal Be
beams@12,29#. A schematic for creating a radially polarize
first-order Bessel beam is shown in Fig. 1@11,12,27,28#.
Here a radially polarized beam is focused by an axicon l
of radiusRc , such that it crosses thez axis at an angleuc and
forms a focal region of lengthLc . A circularly symmetric
interference pattern develops along the focal region wit
radial field component given byÊr5Ec(z)J1(k'r ),
where the field amplitudeEc(z) depends on the laser inten
sity at the surface of the axicon. Assuming the field com
nents have the form given by Eqs.~5!–~7!, the axicon focal
parameters~Rc , Lc , and uc!1! are related to the Besse
beam parameters~k'5p/r b , Lmax52NZRB/p, andN5a/r b!
by Rc.Lcuc.2a, k'.kuc , Lc.2Lmax, andN.(Rc/l)uc .

III. BESSEL BEAM DIFFRACTION

The scale length for diffraction of a nonideal Bessel be
can be determined analytically using the scalar diffract
theory based on Huygens’ principle@18#. In this method the
transverse beam profile is specified in the plane of an a
ture and the beam is propagated forward using an inte
formulation with an approximate form for the Green’s fun
tion. The solution to the wave equation, Eq.~3!, for a laser
beam of frequencyv5ck is given by the Kirchhoff integral
@18#

Ei~r !5
k

2p i EAdS8S 11
i

kRD n̂•R

R2 exp~ ikR!Ei~r 8!,

~17!

whereR5x2x8 is the position vector from the element o
surface integrationdS8 at x8 to the point of observationx, n̂
is a unit vector that is normal to the plane of the aperture

FIG. 1. Schematic of the axicon focusing geometry used to
ate a line focus. At the midplane of the focus, the transverse pr
of the laser field is a nonideal Bessel beam. The axicon focal
rameters~Rc , Lc , anduc!1! are related to the Bessel beam para
eters ~k'5p/r b , Lmax52NZRB/p, and N5a/r b! by Rc.Lcuc
.2a, k'.kuc , Lc.2Lmax, andN.(Rc/l)uc .
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directed towards the observation point,A denotes the surface
area of the aperture, andEi;exp~2ivt! has been assumed
The key dependence in Eq.~17! is the phase factor exp(ikR)
In a cylindrical coordinate system and in the paraxial lim
the binomial expansion

R.zF11
r 21r 82

2z2
2
rr 8

z2
cos~u2u8!G ~18!

can be used in the exponent, where (r 21r 82)/z2!1 has been
assumed. Here, the aperture is taken to be planar an
z850, the unit vectorn̂ points along the positivez axis,
which is the direction of propagation, andu and u8 denote
the azimuthal angle at the observation point and at the a
ture, respectively. Substituting this expansion into Eq.~17!,
the field at the observation point to leading order is given

Êi~r !.
k

2p iz
expS ikr 22z D E

0

a

dr8r 8E
0

2p

du8

3expH ik

2z2
@r 8222rr 8cos~u2u8!#J Êi~r 8,u8!,

~19!

whereEi5ReÊi exp(ikz2 ivt) and a circular aperture of ra
diusa has been assumed. In the limit of a cylindrically sym
metric field at the aperture surface,Êi(r 8,u8)5Êi(r 8), theu8
integral can be evaluated and Eq.~19! reduces to

Êi~r ,z!.
k

iz
expS ikr 22z D E

0

a

dr8r 8

3expS ikr 822z D J0S krr 8z D Êi~r 8!. ~20!

Equation~20! will be used to described the diffraction of
Bessel beam that is incident on a circular aperture of rad
a. Specifically, the propagation distance of the Bessel be
will be determined by evaluating Eq.~20! along thez axis
~r50!.

Consider the diffraction of a nonideal fundamental Bes
beam, in which the field has been truncated by a circu
aperture of radiusa. At the aperture,Êx(r 8)5E0J0(k'r 8)
for r<a. Inserting this into Eq.~20! gives

Êx~r ,z!.
kE0
iz

expS ikr 22z D E
0

a

dr8r 8

3expS ikr 822z D J0S krr 8z D J0~k'r 8!. ~21!

Note that in the limita→`,

Êx~a→`!.E0J0~k'r !expS 2
ik'

2z

2k D , ~22!

which is the exact solution to the paraxial wave equation,
~3!, describing the ideal fundamental Bessel beam, Eq.~4!.

Suppose now that the radius of the aperture is large
finite. Along thez axis, Eq.~21! can be written as

-
le
a-
-
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Êx~r50,z!.
kE0
iz S E

0

`

dr8r 82E
a

`

dr8r 8D
3expS ikr 822z D J0~k'r 8!. ~23!

The first r 8 integral gives the ideal Bessel beam result, E
~22!, evaluated atr50. To evaluate the second integral, t
asymptotic form for the Bessel function can be used, Eq.~9!,
assumingk'a@1. Equation~23! can be written as

Êx~r50,z!5E0expS 2
ik'

2z

2k D 2
kE0F~z!

iz~2pk'!1/2
, ~24!

where

F~z!5E
a

`

dr8Ar 8@exp~ if1!1exp~ if2!#, ~25a!

and

f6~r 8,z!5
kr82

2z
6S k'r 82

p

4 D . ~25b!

The integralF(z), Eq. ~25!, may be evaluated by observ
ing that for sufficiently largea the f1 term phase mixes
away and that the leading contribution comes from thef2

term in the vicinity of the stationary phase point. The statio
ary pointr 85r f where]f2/]r 850 is given byr f5k'z/k. If
r f lies outside the integration region,r f,a, the integrand is
highly oscillatory and the integral tends to phase mix to ze
If r f lies within the integration region,r f.a, the integral can
be evaluated by expanding the phasef2 aboutr 85r f . The
leading order contribution to the integralF(z) is given by

F~z!.S 2pr f
f9~r f !

D 1/2expF if~r f !1 i
p

4 G , ~26!

for r f.a and I.0 otherwise, where the double prime d
notes]2/]r 2. Hence, to leading order, the amplitude of t
laser field along the axis of propagation is given by

Êx~r50,z!.E0expS 2
ik'

2z

2k D F12HS z2
ka

k'
D G , ~27!

where H(z2ka/k') is the Heaviside step function. Thi
demonstrates that the maximum propagation distance f
Bessel beam passing through an aperture of radiusr5a is

Lmax5ka/k'5~2/p!NZRB , ~28!

where r b5p/k' is the asymptotic width of a Bessel ring
N5a/r b is the total number of rings, andZRB5kr b

2/2 is the
Rayleigh length associated with an individual Bessel ri
This value forLmax is in agreement with previous estimat
@19,20#.

To verify the analytical results based on the method
stationary phase, the field intensityuEx(z) u

2 is plotted along
r50 as a function ofz/Lmax in Fig. 2 for ~a! k'a520 and~b!
k'a540. These plots were obtained by numerically integr
ing the expression for the field given by Eq.~21!. The plots
show that the field intensity falls off dramatically atz5Lmax.
.

-

.

a

.

f

t-

As the number of Bessel lobes increases, the amplitud
the axial oscillations in the intensity tends to decrease
the intensity terminates more sharply atz5Lmax.

Although this calculation has assumed a fundamen
Bessel beam withEx;J0(k'r ), an identical result is ob-
tained for the radially polarized first-order Bessel beam w
Er;J1(k'r ), as given by Eqs.~5!–~7!. This is readily seen
by considering the diffraction of the axial component of t
first-order Bessel field,Ez;J0(k'r ), Eq. ~7!. The above re-
sults Eqs.~21!–~28! directly apply toEz;J0(k'r ).

IV. LASER ACCELERATION OF PARTICLES

For a fixed total laser power, a Bessel laser beam can
to enhanced energy gain in a laser-driven accelerator
vided that~i! the accelerating gradientEacc is linearly pro-
portional to the laser field amplitude and~ii ! the acceleration
distance is limited by laser diffraction and not phase det
ing ~or some other mechanism!. When these two conditions
are met, the energy gain can be enhanced by a factor ofN1/2,
whereN5a/r b is the number of rings in the Bessel beam

FIG. 2. Normalized field intensityuEx(z)u
2 for a zero-order

Bessel beam plotted alongr50 as a function ofz/Lmax for ~a!
k'a520 and~b! k'a540, as obtained from a numerical integratio
of Eq. ~21!.
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55 3543LASER-DRIVEN ACCELERATION WITH BESSEL BEAMS
A. Ponderomotive accelerators

In many laser-driven accelerators, such as the laser w
field accelerator, the plasma beat wave accelerator, and
vacuum beat wave accelerator, particle acceleration is
result of the ponderomotive force of the laser fields, i.e.,
accelerating gradient is proportional to the square of the la
field amplitude,Eacc;E0

2 @1–5,8,10#. In this case, there is no
enhancement in the energy gain when a Bessel beam is u
as is evident by the following scaling laws. For a Gauss
beam undergoing vacuum diffraction, the acceleration d
tance is on the order of a Rayleigh length,L;ZRG . In terms
of the total powerPG;E 0

2r 0
2, the energy gain scales a

WG;LEacc;PG . For aJ0 Bessel beam, the total propag
tion length is L;NZRB and the total beam power i
PB.NPb;NE0

2r b
2. Hence,WB;NZRBE 0

2;PB . The ratios
of the energy gains scales as

WB /WG;PB /PG , ~29!

where the subscriptsB andG refer to the Bessel and Gaus
ian beams, respectively. For equal beam powers, there i
enhancement in the energy gain, assuming that the acce
tion distance is limited by diffraction of the drive lase
beams and not by phase velocity slippage.

B. Inverse free electron laser

On the other hand, consider the case of an accelera
gradient that is linearly proportional to the amplitude of t
transverse laser field,Eacc;E0. This is the case in the invers
free electron laser@14–17#, in which acceleration result
from the ponderomotive force of the beat wave of the la
field with the wiggler magnetic field, i.e.,Eacc;(aw/g)E0 ,
whereaw is the normalized wiggler magnetic field andg is
the relativistic factor of the electron. For a Gaussian driv
WG;E0ZRG;r 0PG

1/2. For a J0 Bessel driver,
WB;E0NZRB;r b(NPB)

1/2. Hence,

WB /WG;~r b /r 0!~NPB /PG!1/2. ~30!

Uniform acceleration of the electron beam requires bothr 0
andr b to be greater than the electron beam radius. Assum
r b.r 0 andPG.PB , the energy gain can be enhanced by
use of a Bessel beam by a factor ofN1/2. This assumes tha
the acceleration distance is limited by the diffraction of t
drive laser beams and not by phase velocity slippage.

C. Direct acceleration in vacuum

The above arguments assume that the acceleration le
is limited only by the propagation distance of the laser be
and that phase synchronism is maintained by matching
phase velocity of the accelerating wave to the velocity of
electron beam. For direct acceleration in vacuum@4–9#, in
which the particles are accelerated by the axial componen
the laser field~Eacc.Ez!, phase detuning will limit the accel
eration length. The detuning length is defined as the dista
required for a particle to phase slip by one-half period w
respect to the axial electric field, i.e.,Ld(v e

212v p
21).p/v,

whereve is the axial particle velocity. For a Gaussian bea
the phase velocity is given by Eq.~13! and the detuning
length for a highly relativistic electron (ve.c) is
e-
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Ld.(p/2)ZRG . For a Bessel beam,vp is given by Eq.~8!
andLd.(4/p)ZRB . Hence, in vacuum the effective acceler
tion length will be limited toLacc5Ld , even if the beam
propagates a distance longer thanLd . For a Gaussian beam
Ez.2E0/kr0 and WG;(2E0/kr0)ZRG;PG

1/2. For a J1
Bessel beamEz.k'E0/k and WB;(kE0/k')ZRB;(PB/
N)1/2. Thus

WB /WG;~PB /NPG!1/2, ~31!

and the energy gain for direct acceleration in vacuum will
reduced by a factor ofN1/2 for the Bessel beam, assumin
equal beam powers.

D. Inverse Cherenkov accelerator

In the inverse Cherenkov accelerator~ICA! @4,11–13#, a
background of neutral gas is introduced to control the ph
velocity of the laser field. Acceleration is the result of th
axial component of a radially polarized first-order laser fie
In a gas the dispersion relation isnv5ck, wheren.1 is the
index of refraction. Typically,Dn5n21 is much less than
unity and proportional to the gas density. Hence, the ph
velocity can be tuned by adjusting the gas density and ph
synchronism can be achieved. For example, the axial ph
velocity of the Bessel beam of Eqs.~5!–~7! is given by

vp /c512Dn1k'
2 /2k2. ~32!

For a highly relativistic electron, phase matchingvp5c re-
quires 2Dn5k'

2 /k2.

1. Gaussian beam ICA

For a Gaussian beam of the form given by Eqs.~11! and
~12!, the energy gain in the ICA can be calculated by in
grating the axial electric field, Eq.~12!, over2`,z,`. A
particle with relativistic factorg moving at nearly constan
velocity ve.c~121/2g2! ~g@1! along thez axis is subject to
an electric field given by

Ez~ t5z/ve!5 iEz0

~12 ia!2

~11a2!2
exp@ i ~Dkz1f0!#, ~33!

where Ez052E0/kr0 is the peak axial field amplitude
Dk5k(Dn21/2g2), a5z/ZRG , z50 is the focal point, and
f0 is the phase of the electron at the focal point as de
mined by the initial conditions. The energy gain is given

WG52qE
2`

`

dz Ez~ t5z/ve!,

5qEz0sintf0E
2`

` dz

~11a2!2
@~12a2!cosDkz

12a sinDkz#,

52pqEz0DkZRG
2 exp~2DkZRG!sinf0 , ~34!

for Dk>0 andWG50 for Dk,0, whereq is the electron
charge. The energy gain is maximum when sinf051 and
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when DkZRG51, i.e., Dn51/kZRG11/2g2, which mini-
mizes the effects of phase detuning. In this case, the m
mum energy gain is given by

WG5~2pq/e!Ez0ZRG5~2pq/e!E0r 0 . ~35!

In terms of the total power, Eq.~35! can be written as

WG@MeV#.2.3PG
1/2@GW#. ~36!

To enhance the energy gain it is necessary to increase
laser propagation distance. A Gaussian laser beam ca
self-guided in a gas by a proper balancing of diffractio
nonlinear self-focusing, and plasma defocusing@4,30#.

2. Bessel beam ICA

For a first-order Bessel beam of the form given by E
~5!–~7!, the amplitude and phase of the electric field is a
proximately constant over a total propagation length
2Lmax, whereLmax is given by Eq.~28!. Hence, the maxi-
mum energy gain can be estimated by the product of
peak axial fieldEz05k'E0/k, Eq. ~7!, times the total propa-
gation distance,~4/p!NZRB , i.e.,

WB52qEz0Lmax52qaE0 . ~37!

Here it has been assumed that the electron remains p
matched to the laser field, i.e., 2Dn5k'

2 /k211/g2, as im-
plied by Eq.~32!. In terms of the total Bessel beam powe
PB.caE0

2/4pk' , the maximum energy gain is given by

WB.4pq~NPB /c!1/2. ~38!

In practical units,

WB@MeV#.2.2N1/2PB
1/2@GW#. ~39!

This is in agreement with previous estimates@11#. Hence, by
using a Bessel beam withN rings, the energy gain can b
enhanced by a factor ofN1/2 compared to a Gaussian bea
with the same total power,

WB /WG.~NPB /PG!1/2. ~40!

It is also of interest to compare the effective accelerat
lengthsLG,B and peak accelerating gradientsEzB,G , where
(W5qEzL)B,G , LG5(2p/e)ZRG, and LB5(4/p)ZRB . In
particular,

LB /LG.0.55N~r b /r 0!
2, ~41a!

EzB /EzG.1.7~r 0 /r b!
2~PB /NPG!1/2. ~41b!

Clearly, these ratios depend on the transverse dimension
the beams. For example, if equal powers and equal aper
are assumed, PG5PB and r 05a05Nrb , then
LB/LG.0.55N21 andEzB/EzG.1.7N3/2.

A more relevant constraint for the ICA is to assume th
the peak intensities in the two beams are equal. If ph
matching between the electron and the laser field is to
maintained in the ICA, ionization should be avoided, whi
places a limit on the maximum intensity. For the first-ord
Gaussian beam given by Eq.~11!, the field reaches at maxi
mum of uExumax5E0G /A2e at r5r 0/&. For the first-order
i-

he
be
,

.
-
f

e

se

n

of
res

t
se
e

r

Bessel beam given by Eq.~5!, the field reaches at maximum
of uEr umax5~0.58!E0B at r51.8/k' . Assuming equal peak
intensitiesuExumax5uEr umax implies

r b
2/r 0

2.2.3PB /NPG . ~42!

Inserting this into Eqs.~41a! and ~41b! gives

LB /LG.1.2PB /PG , ~43a!

EzB /EzG.0.77~NPG /PB!1/2. ~43b!

Hence, for equal powers and equal peak intensities,
propagation lengths are approximately equal for the t
beams and the peak accelerating gradient for the Be
beam is approximatelyN1/2 times larger than that for the
Gaussian beam. Furthermore, note that in the highly rela
istic limit, the phase matching condition i
Dn.k'

2 /2k25p2/2k2r b
2 for the Bessel beam an

Dn.1/kZRG52/k2r 0
2 for the Gaussian beam. For equ

powers and intensities, Eq.~42! implies r b
2/r 0

2.2.3/N. For
largeN this implies that phase matching with a Bessel be
requires much higher neutral gas densities than is requ
with a Gaussian beam, which may impose technological
ficulties.

V. DISCUSSION

The first-order limitation in any laser-driven accelerat
configuration is diffraction of the drive laser beams. The p
sibility of using Bessel laser beams to extend the accelera
distance and enhance the energy gain has been examin
formalism based on Huygens’ principle has been develo
to describe the diffraction of nonideal Bessel beams, i.e
Bessel beam profile which has been truncated by an ape
of radius a. Such a beam has a finite power and can
generated in the laboratory. An analytical expression for
maximum propagation distance was derived,Lmax5~2/
p!NZRB , whereN5a/r b is the number of transverse lobe
in the Bessel beam,r b is the asymptotic width of an indi-
vidual lobe, andZRB5kr b

2/2 is the Rayleigh length of an
individual lode. This analytical expression was verified
numerical calculations.

Comparisons were made between accelerators driven
Gaussian laser beams and those driven by Bessel
beams. For equal beam powers, it was shown that the en
gain using a Bessel beam is approximatelyN1/2 times that
using a Gaussian beam provide that~i! the accelerating gra
dient is linearly proportional to the laser field and~ii ! the
acceleration distance is limited by diffraction and not
phase detuning~or some other mechanism!. This is the case
for the inverse Cherenkov accelerator~phased-matched ac
celeration using aJ1 beam in a gas! and for the inverse free
electron laser~phase-matched acceleration resulting from
ponderomotive interaction of aJ0 beam and a wiggler mag
netic field!. The inverse Cherenkov accelerator was analy
in detail. It was shown that for equal powers and equal p
intensities, the acceleration length, peak accelerating fi
and energy gain scale asLB/LG;1, EzB/EzG;N1/2, and
WB/WG;N1/2, respectively.

Scaling laws have been derived for other configurations
well. Direct acceleration by theEz field in vacuum is limited
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by phase detuning, hence, there is no advantage in usi
Bessel beam~in fact, the energy gain is reduced byN1/2,
assuming equal beam powers!. For cases in which the acce
erating gradient is proportional to the square of the laser fi
~e.g., the laser wakefield accelerator, the plasma beat w
accelerator, and the vacuum beat wave accelerator!, the en-
ergy gain for both Gaussian and Bessel beam drivers sc
asW;P ~independent ofN!, assuming an acceleration di
tance limited by diffraction. For very intense lasers, ho
ever, there exists a highly nonlinear regime of the la
wakefield accelerator for whichEacc is linearly proportional
to the laser field@3,4#, hence, there may be an advantage
using a Bessel beam if the propagation distance is limited
o.

n

ns

-
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ys
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Y
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r
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diffraction. In addition, for all laser-driven plasma-based a
celerators, it appears possible to guide a laser beam l
distances~many Rayleigh lengths! using a plasma density
channel @3,4,29,31,32#, thus enhancing acceleration leng
and the energy gain.
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