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Effect of electric field on spin splitting in SiGe quantum wells �QWs� has been theoretically studied.
Microscopic calculations of valley and spin splittings are performed in the efficient sp3d5s* tight-binding
model. In accordance with the symmetry considerations, the electric field not only modifies the interface-
induced spin splitting but also gives rise to a Rashba-type contribution to the effective two-dimensional
electron Hamiltonian. Both the valley and spin splittings oscillate as a function of the QW width due to
intervalley reflection of the electron wave off the interfaces. The oscillations of splitting are suppressed in
rather low electric fields. The tight-binding calculations have been analyzed by using the generalized envelope-
function approximation extended to asymmetrical QWs.

DOI: 10.1103/PhysRevB.77.155328 PACS number�s�: 73.21.Fg, 71.70.Ej

I. INTRODUCTION

Understanding the details of semiconductor heterostruc-
ture electronic properties has been a key at each stage of
their applications in the field of information and communi-
cation technologies. Presently, there is a broad interest in
spin-dependent properties because they have a potential for
novel “spintronic” devices, and beyond, because they govern
for a large part the possible development of semiconductor-
based quantum information processing. Spin splitting of
electron dispersion relations arises from the combination of
spin-orbit coupling and inversion asymmetry. Besides the
contributions of bulk inversion asymmetry �BIA� first dis-
cussed by Dresselhaus in 1954 and the structure inversion
asymmetry �SIA� introduced by Rashba and co-workers,1,2

the existence of a contribution due to the breakdown of ro-
toinversion symmetry at an interface between two semicon-
ductors was first suggested by Vervoort et al. in the late
1990s.3,4 This “interface inversion asymmetry” �IIA� term
was further documented both by group-theoretical analysis,5

envelope-function calculations,4 and measurements of circu-
lar polarization relaxation in quantum wells �QWs� based on
various III-V semiconductors.6–8 However, in these cases,
the interface contribution appears in combination with BIA
and SIA. Pure IIA can exist alone or together with SIA in
heterostructures of centrosymmetric semiconductors such as
Si-Ge QWs. Previous works9 have established the symmetry
properties specific to this system where electrons lie in states
originating from the bulk Xz valleys. A general feature of
zone-edge conduction valleys in bulk materials is their de-
generacy �six for X valleys, four for L valleys� that gives rise
to strong valley coupling when they are folded onto the two-
dimensional Brillouin zone of a QW10–15 or mixed in a zero-
dimensional state in a Si quantum dot.16 Valley coupling is
another manifestation of the local, three-dimensional varia-
tions of crystal potential at semiconductor interfaces and
quantitative estimates require atomistic information which is
not available within the k ·p theoretical framework. Param-
eters describing valley coupling must be extracted from mi-
croscopic approaches such as ab initio calculations or mod-

eling using empirical parametrizations such atomistic
pseudopotentials or tight-binding approach. The valley cou-
pling strongly depends on the crystalline growth direction
and shows an oscillating behavior as a function of the num-
ber of monolayers forming the Xz-valley or L-valley quantum
well. It also depends on the overall symmetry of the quantum
well, and for this reason, it can be modified by an external
electric field. The spin splitting of in-plane dispersion rela-
tions in such systems results from the interplay of valley
coupling and spin-dependent terms in the electron Hamil-
tonian. The case of L-valley QWs formed in the GaSb-AlSb
system and grown along the �001� direction was first dis-
cussed in some details by Jancu et al.12 In that case, the
leading terms come from BIA invariants specific to the L
valleys in combination with the L-valley coupling. For Si-Ge
�001�-grown QWs, the interplay of IIA with Xz-valley cou-
pling was examined from the k ·p theory point of view and
semiquantitative estimates were discussed in the frame of
tight-binding calculations based on the sp3s* model.11 How-
ever, it is well known that this simple model cannot quanti-
tatively reproduce the properties of zone-edge valleys such
as effective masses and dipole matrix element. This difficulty
was solved in the late 1990s by the introduction of the ex-
tended basis sp3d5s* tight-binding model.17 More recently,
progress in the parametrization of this model has led to es-
sentially perfect description of the electronic properties of
bulk Ge �Ref. 18� and Si.19 In this work, we use the ad-
vanced tight-binding model in combination with the
envelope-function approach and calculate the conduction-
band spin splitting that results from the interplay of valley
coupling with the IIA and electric field effects in Si /SiGe
quantum wells.

II. POINT-GROUP SYMMETRY ANALYSIS

In the virtual-crystal approximation for SiGe alloys, an
ideal �001�-grown SiGe /Si /SiGe QW structure with an odd
number N of Si-atomic planes has the point-group symmetry
D2d which allows the spin-dependent term ���xkx−�yky� in
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the electron effective Hamiltonian, where �x, �y are the Pauli
spin matrices, k is the two-dimensional wave vector with the
in-plane components kx, ky, and x � �100�, y � �010�. Note that
the invariant form of the pure IIA contribution is identical to
that of the BIA or the Dresselhaus term in a QW; in this
sense, IIA can be considered as a generalized Dresselhaus
term. The QW structures with even N have the D2h point
symmetry containing the space-inversion center, the constant
� is zero, and the two-dimensional electronic states are dou-
bly degenerate. Under an electric field F= �0,0 ,Fz� applied
along the growth direction z, the symmetry of QW structures
with both odd and even numbers of Si monoatomic layers
reduces to the C2v point group and the spin-dependent
linear-k Hamiltonian becomes

H�1��k� = ���xkx − �yky� + ���xky − �ykx� , �1�

where the second contribution is the Rashba term �or the SIA
term�. In order to establish the parity of �, � with respect to
inversion of the electric field, we note that, in the D2d group,
the combination h�k�=�xkx−�yky as well as even powers of
Fz are invariants, while both the combination h��k�=�xky
−�ykx and odd powers of Fz transform according to the same
representation B2 �in notations of Ref. 20�. Therefore, for
structures with odd N, the coefficients � and � are, respec-
tively, even and odd functions of Fz. They can be presented
as

��Fz;odd N� = �0 + c�
�2�Fz

2 + c�
�4�Fz

4 + ¯ ,

��Fz;odd N� = c�
�1�Fz + c�

�3�Fz
3 + ¯ , �2�

where �0���0� and c�
�2n�, c�

�2n+1� are field-independent coef-
ficients. Similarly, for structures with even N, the linear-in-k
spin-dependent Hamiltonian can be presented in the form

H�1��Fz;even N� = Fz�C1h�k� + C2h��k�� , �3�

where C1, C2 are even functions of Fz. The above represen-
tation immediately follows if we take into account that, with
respect to operations of the D2h group, both h�k� and h��k�
transform in the same way as the component Fz does.

The aim of this work is to calculate and analyze the elec-
tric field dependencies of � and �. For this purpose, we use
the precise nearest-neighbor sp3d5s* tight-binding model17

and calculate valley and spin splittings in symmetrical QWs
in the absence and presence of an external electric field.

III. TIGHT-BINDING MODEL

To calculate electron subband splittings, we use the
sp3d5s* tight-binding theory elaborated by Jancu et al.17 It
perfectly reproduces band structure of indirect bulk semicon-
ductors, as well as electron effective masses, etc. In particu-
lar, the parametrization used in this work reproduces the
value k0=85% of the conduction-band minimum in Si, which
was considered as a challenge.21 Moreover, it is demon-
strated22 that the resulting spin splittings in conduction band
of semiconductors are well described in the whole Brillouin
zone. One of the main advantages of this method is a very
straightforward treatment of nanostructures.

In Ref. 11, we estimated the electron spin splitting in sym-
metrical SiGe QWs by using a less detailed sp3s* tight-
binding model, which allowed us to understand the main
qualitative features of spin splitting as well as to demonstrate
the observability of this effect in Si /SiGe heterostructures.

In the tight-binding model, the electron wave function is
written as a linear combination of atomic orbitals,23

��,r� = 	
n,�

Cn,����,r − rn� , �4�

where n enumerates the atoms in the structure and � runs
through the set of spinor orbitals at the nth atom. In the
sp3d5s* model, this set includes the orbitals s, p� ��
=x ,y ,z�, d� ��=yz, xz, yz, x2−y2, 2z2−x2−y2�, and s* mul-
tiplied by the spinors ↑ and ↓. We assume the basic orbital
functions to be orthogonal.24 Thus, the tight-binding Hamil-
tonian is presented as a multicomponent matrix and the
Schrödinger equation as an eigenvalue problem,

	
n�,��


�n,��H��n�,���Cn�,�� = ECn,�, �5�

where ��n,��= ��� ,r−rn�. The Hamiltonian matrix elements
depend on the relative position of atoms, rn−rn�, and chemi-
cal type of atoms n and n�. We use here the nearest-neighbor
approximation where the matrix elements differ from zero
only for neighboring atoms. The detailed procedure of con-
structing the tight-binding Hamiltonian can be found in Ref.
23. Strain effects can be included by scaling the matrix ele-
ments with respect to the bond-angle distortions and bond-
length changes.25

For the SiGe alloy, we use the virtual-crystal approxima-
tion in order to concentrate on the intrinsic structure symme-
try. Thus, we neglect all the effects of disorder. Tight-binding
parameters were optimized to carefully reproduce alloy band
structure. The strain in the relaxed structure is treated into
two ways. First, atomic positions used in calculations are
chosen by using Van de Walle’s model.26 We have also ap-
plied Keating’s valence force field model27 with the SiGe
parameters from Ref. 28 and found no difference between
the continuous and atomistic approaches.

In addition to the strain dependence of tight-binding pa-
rameters, we have modified the structure potential �see be-
low� with respect to experimentally observed Si /Si1−xGex
conduction-band offset.29,30 The valence band offset is not
derived from the present calculation; it is introduced as an
additional model parameter, which characterizes the inter-
face. This approach was found to give an excellent descrip-
tion of the band structure of ultrashort period Si /Ge super-
lattice in complete agreement with ab initio calculations.31

We treat an electric field in the tight-binding approach in
the following way:32 the diagonal matrix elements of the
tight-binding Hamiltonian are shifted due to the potential of
the applied electric field,


�n,��H��n�,��� = 
�n,��H��n�,���U=0 + U�rn�	nn�	���,

�6�

where U�r� is the electric potential energy.
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Since we are interested in the in-plane dispersion of free
electrons in a heterostructure, we impose periodical bound-
ary conditions in the interface plane �001�. Because of the
periodicity in the �100� and �010� directions, we can intro-
duce the in-plane wave vector k and, for a given value of k,
construct the tight-binding Hamiltonian with a discrete spec-
trum. For the sake of numerical simplicity, we also use peri-
odic boundary conditions along the growth direction �001�
taking the barrier layers thick enough to exclude the influ-
ence of their thickness on the calculated values of � and �. It
follows immediately from the band structure of silicon and
SiGe /Si /SiGe structure potential that, neglecting the valley
splitting, the electronic states with kx=ky =0 are fourfold de-
generate. We focus on the dispersion of the lowest conduc-
tion subband e1. The interface-induced valley mixing leads
to a splitting of the state �e1,k=0� into two spin-degenerate
states denoted �
� �upper subband� and ��� �lower sub-
band�. At nonzero k, each subband, �
� and ���, undergoes
the spin-orbit splitting described by Eq. �1� with the coeffi-
cients �� and �� for the valley-orbit split subbands ���. It is
instructive to rewrite Eq. �1� in the coordinate frame

x� � �11̄0�, y� � �110� as follows:

H�1��k� = ��� + ����x�ky� + ��� − ����y�kx�. �7�

Let us introduce the energy difference so
����k � �11̄0�� for the

states �� ,k � �11̄0�� with the spin polarized parallel and an-
tiparallel to �110� and so

����k � �110�� for the states
�� ,k � �110�� with the spin polarized parallel and antiparallel

to �11̄0�. The modulus of so
����k� gives the spin splitting of

the � subbands and the sign of so
����k� determines the rela-

tive position of the split spin sublevels. It follows from Eq.
�7� and the definition of so

����k� that the constants ��, ��

can be found from

�� = lim
k→+0

so
����k � �110�� + so

����k � �11̄0��
4�k�

,

�� = lim
k→+0

so
����k � �110�� − so

����k � �11̄0��
4�k�

. �8�

Also, it should be pointed out that, since the studied QWs
are quite shallow, the electron dispersion should be treated
with care. To avoid nonlinear effects, very small values of kx,
ky should be considered.

IV. RESULTS AND DISCUSSION

A. Numerical sp3d5s* model calculations: Unbiased structure

In order to test and improve our previous results, we cal-
culated valley and spin splitting in symmetrical Si QW with
Si0.75Ge0.25 barriers as a function of the QW width. For SiGe
composition, we used optimized tight-binding parameters
precisely reproducing realistic alloy band structure. The
strategy for parametrization of the Ge-Si alloy in a virtual-
crystal approximation is as follows: the parameters of Ge and
Si hydrostatically strained to the alloy parameter are first
calculated and linearly interpolated. The small remaining dif-

ferences with measured values are then corrected by fine
tuning of a few two-center parameters. For interface atoms,
we use linear combination of pure Si parameters and alloy.

Tight-binding parameters are optimized for bulk materi-
als. However, band offsets at the interfaces in the hetero-
structure are also important. For conduction-band offset, we
use Shäffler’s paper30 as a reference. Thus, we take a value
of 150 meV as a conduction-band offset for Xz-valley elec-
trons.

Figure 1 shows the zero-field results of calculation of �a�
the valley splitting v and �b� the constants �� for the
valley-split e1 subbands in a symmetrical single QW struc-
ture with odd-N Si-atomic planes sandwiched between the
thick Si0.75Ge0.25 barriers. The splittings as a function of N
exhibit oscillations, in agreement with Refs. 10–15. In Fig. 1,
X-shaped crosses depicted as vortices of the broken line rep-

FIG. 1. �Color online� �a� Valley splitting v as a function of N
in a Si1−xGex /Si /Si1−xGex �x=0.25� QW structure in the absence of
an electric field. Solid squares and vortices of the broken line rep-
resent the results of calculations by using the tight-binding method
and envelope-function approximation, respectively. �b� Spin-
splitting constants �� versus the number N of Si monoatomic layers
in the same system �odd N are taken in account only�. Spin splitting
is shown by solid and open squares �sp3d5s* tight-binding calcula-
tion, �− and �+, respectively� and X-shaped crosses �envelope-
function approximation�.
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resent the calculation in the envelope-function approxima-
tion �see below�. The broken line is drawn to guide the eyes.
Note that, in order to simplify comparison with the results
obtained by other authors, Fig. 1�a� illustrates the valley
splitting not only for the QW width region of 15–50 Å but
also for the region of 60–70 Å.

The results obtained in the framework of the advanced
sp3d5s* tight-binding model show considerable difference
with our previous estimates.11 The valley splitting is signifi-
cantly smaller; its value decreases by a factor of 3, whereas
the spin splitting increases almost six times �see below�. This
difference is not unexpected since a careful tight-binding
treatment of Si and its compounds is possible in the sp3d5s*

model only.
The previous theoretical values for valley splitting were

obtained by both tight-binding10,15 and pseudopotential
methods.13 Although the first two papers utilize the method
of calculation similar to that applied here, a straightforward
comparison is not possible due to different parametrizations
of the Si1−xGex alloy as well as different alloy compositions
�x=0.2 in Ref. 10 and 0.3 in Ref. 15� and conduction-band
offsets used. However, our results are in good agreement
with the both estimates. For example, for a QW containing
64 Si-atomic layers �32 monomolecular layers, 9 nm�, we
obtain for the valley splitting an �0.11 meV, while Refs. 10
and 15 present the coinciding values of �0.2 meV. Our
analysis shows that the valley splitting is quite sensitive to
the SiGe alloy parameters. By using the linear combination
of Si and Ge tight-binding parameters for the alloy, we could
reproduce the values of the valley splitting obtained by
Boykin et al.10

Comparison with Ref. 13 is more straightforward. Figure
1 in the cited paper shows dependence of the valley splitting
on the barrier Ge content for a 16 Si-atomic layer QW cal-
culated by the empirical pseudopotential method. In particu-
lar, for the Si0.75Ge0.25 /Si /Si0.75Ge0.25 QW, the valley split-
ting of about 2.5 meV was obtained,13 while our estimate is
3.7 meV. This is in a good agreement taking into account
that the two values are obtained in two completely different
approaches for quite narrow QWs where interface effects are
extremely important.

Figure 2 shows the valley and spin-splitting constants as a
function of the conduction-band offset for QWs with 31, 32,
33, 34, and 64 Si-atomic layers. The fifth structure is taken in
order to provide comparison with Refs. 10 and 15. In Fig. 2,
in addition to the tight-binding calculations, we present ana-
lytical results on valley and spin splittings in the framework
of the extended envelope-function approach. A detailed dis-
cussion of the analytical treatment is given in Sec. IV C.
Here, we only point out an excellent agreement between the
results for the splittings as a function of the QW width and
satisfactory description of the dependence of these splittings
on the band offset.

B. Numerical calculations in the presence of electric field

Figure 3 demonstrates the variation of spin-splitting con-
stants with the electric field Fz for the e1 valley-split sub-
bands. In accordance with symmetry considerations, the cal-

culations show that the spin splitting becomes anisotropic in
QWs with odd numbers of atomic planes and appears in
QWs with even numbers of atomic planes. The variation of
valley splitting is very weak and we do not present it here.

To determine the coefficients �� and ��, we performed
the tight-binding calculation of the spin splittings for the
electron wave vectors k � �110� and k � �11̄0� and then applied
Eqs. �8� to directly find the constants � and �. The electric
field is introduced as a shift of diagonal energies in the tight-
binding Hamiltonian. In accordance with Eq. �6�, we choose
electrostatic potential to be a linear function of z both inside
the QW and in the barrier areas near the interfaces. The area
of the constant electric field is extended deep into barriers in
order to neglect dependence of the splitting on the choice of
potential profile. Note that the field values in Fig. 3 are small
enough to avoid the tunneling of an electron from the QW
into the barriers.

At zero electric field, �=0 for arbitrary value of N and,
similarly, �=0 for even N. In this case, the spin splitting

FIG. 2. �Color online� �a� Valley and �b� spin splittings for the
lowest conduction subband versus the conduction band offset. �a�
The valley splitting calculated for five QWs with N=31���, 32���,
33���, 34���, and 64��� Si monoatomic planes. �b� The spin-
splitting constants �− ��,�� and �+ ��,�� for 31 ��,�� and
33��,�� Si-atomic layers. The fitting by using the extended
envelope-function approach is shown by corresponding lines.
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so�k� is independent of the azimuthal angle of the k vector.
However, with increasing the field, the diversity in values of
� and � for QWs with N=31, 32, 33, and 34 decreases.

The further discussion of spin splitting as a function of
electric field is continued in the next section. It suffices to
note here that for the low fields, the coefficients �� in QWs
with odd N are linear functions of Fz

2. In contrast, in QWs
with even numbers of atomic planes where the spin splitting
is absent at zero field, �� are proportional to Fz. We stress
that the field-induced change of �� �odd N� becomes com-
parable to the zero-field value of �� in quite weak fields
Fz�4�104 V /cm.

In the previous paper,11 we developed the extended
envelope-function model in order to demonstrate that the
spin splitting in macroscopically symmetrical QWs is fully
defined by interfaces. At nonzero electric field, two mecha-
nisms are possible, namely, the SIA and IIA mechanisms.
One of the goals of current research is to establish the most
important term in realistic QWs. To reveal carefully the com-
parative role of two mechanisms, we present analytical treat-

ment of results shown in Figs. 2 and 3 in the framework of
the envelope-function approach.

C. Extended envelope-function approach

Here, we propose an extended envelope-function
approach11 to describe the valley and spin splittings in the
presence of an external or built-in electric field. The electron
wave function is written as

��r� = eik�·���1�z��k0
�r� + �2�z��−k0

�r�� , �9�

where ��k0
�r�=e�ik0zu�k0

�r� is the Bloch function at the ex-
tremum points �k0 on the line  in the Brillouin zone. The
spinor envelopes �1, �2 in Eq. �9� are conveniently presented
as a four-component bispinor,

�̂�z� = ��1�z�
�2�z�  . �10�

The effective Hamiltonian acting on �̂�z� is written as a 4
�4 matrix consisting of the standard zero-approximation
Hamiltonian,

H0 =
�2

2
�−

d

dz

1

ml�z�
d

dz
+

kx
2 + ky

2

mt�z�
+ U�z� , �11�

which is independent of valley and spin indices, and an
interface-induced 	-functional perturbation,

H� = V̂L	�z − zL� + V̂R	�z − zR� . �12�

Here, ml and mt are the longitudinal and transverse electron
effective masses in the  valley of the bulk material, zL and
zR are the coordinates of the left- and right-hand-side inter-
faces, the potential energy U�z� is referred to the bottom of
the conduction band in Si and given by

U�z� = V�b�z� − eFzz ,

with V being the conduction-band offset, �b�z�=1 in the
SiGe barrier layers, and �b�z�=0 inside the Si layer. The

explicit form of the matrices V̂L,R obtained by using symme-
try considerations is presented in Ref. 11.

In the zero approximation, i.e., neglecting the valley-orbit

and spin-orbit couplings, V̂L,R=0, the bispinor is given by

�̂�z� = �c1

c2
��z� ,

where c1, c2 are arbitrary z-independent spinors and the func-
tion ��z� satisfies the Schrödinger equation,

H0��z� = E��z� . �13�

In the following, we take into consideration only the lowest
size-quantized electronic subband e1.

The next step is an allowance for the interface-induced
spin-independent mixing between the valleys k0 and −k0 de-
scribed by the matrices,

FIG. 3. �Color online� Spin-splitting constants �� and �� for
the lowest conduction subband versus the electric field Fz calculated
for four QWs with 31, 32, 33, and 34 Si monoatomic planes. Points
are calculated in the sp3d5s* tight-binding model. Lines represent
fitting by using the extended envelope-function approach.
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V̂R = � 0 �R

�
R
* 0

, V̂L = � 0 �L

�
L
* 0

 ,

where �R=�e−ik0a, �L=�*eik0a, a=zR−zL=Na0 /4 is the QW
width, a0 is the microscopic lattice constant, and � is a com-
plex coefficient.

In terms of the envelope ��z�, the matrix element of val-
ley mixing can be written as


1�H��2� = ������L
2 + �R

2�cos�k0a − ��� + i��L
2 − �R

2�

�sin�k0a − ���� , �14�

where ��� and �� are the modulus and the phase of �, �R,L are
the values of the envelope � at the right and left interfaces,
���a /2�, respectively. The valley-orbit split states have the
energy E�=E0� �
1�H��2��, where E0 is the eigenenergy of
Eq. �13�, so that the splitting is equal to

v = 2�
1�H��2�� = 2�����L
4 + �R

4 + 2�L
2�R

2 cos�2�k0a − ���� .

�15�

The bispinors for the upper �
� and lower ��� states are
given by

�̂�,s�z� =
1
�2
� cs

�e−i�Mcs
 , �16�

where cs is the spinor ↑ for the electron spin s=1 /2 and ↓ for
the electron spin s=−1 /2, �M is the phase of matrix element
�14�.

The tight-binding calculations show that the spin splitting
is much smaller as compared to the valley splitting v.
Therefore, the spin splitting can be independently considered
for the upper and lower valley-orbit split states �Eq. �16��.
The corresponding matrix elements are reduced to

Hss�
� �k;e1, � � = M1s,1s� � �Re�M1s,2s��cos �M

+ Im�M1s,2s��sin �M� , �17�

where the subscript indices 1, 2 enumerate the valleys k0,
−k0 and s, s�= �1 /2 are the spin indices, the components
M1s,1s�, M1s,2s� written as 2�2 matrices M11, M12 are related
to the similar 2�2 matrices VR,11, VL,11, VR,12, VL,12 by

M11 = �L
2VL,11 + �R

2VR,11, M12 = �L
2VL,12 + �R

2VR,12.

The spin-dependent contributions to VR,11, VL,11, VR,12, and
VL,12 are linear combinations of h�k� and h��k� �see Ref. 11�,

V̂R = � Sh�k� + S�h��k� �� + ph�k� + p�h��k��e−ik0a

��* + p*h�k� + p�*h��k��eik0a Sh�k� + S�h��k�  , �18�

and similar equation for V̂L with the coefficients interrelated
to �, S, S�, p, p� due to the mirror-rotation operation S4 �odd
N� or the inversion i �even N� which transforms the right-
hand-side interface into the left-hand-side one. Taking into
account the relation between coefficients entering the matri-

ces V̂R and V̂L and the notations of Ref. 11, we can write the
spin Hamiltonians �17� in the form of Eq. �1�, namely,

H�1��k;e1, � � = ��h�k� + ��h��k� . �19�

For the coefficients ��, �� describing the spin splitting of
the valley-orbit split subbands, we obtain

�� = ��R
2 − �− 1�N�L

2�S � �p�H���p� ,

�� = ��R
2 − �L

2�S� � �p��H���p�� . �20�

Here,

H���� = �R
2 cos�k0a − � + �� − �− 1�N�L

2 cos�k0a − � − �� ,

H���� = �R
2 cos�k0a − � + �� − �L

2 cos�k0a − � − �� ,

� = arg��L
2ei�k0a−��� + �R

2e−i�k0a−���� ,

the parameters S, S� describe the intravalley contributions to
the interface-induced electron spin mixing, and the param-

eters p= �p�ei�p and p�= �p� �ei�p� describe the spin-dependent
intervalley mixing. Oscillatory dependence of the valley and
spin splittings on the QW thickness a is caused by interfer-
ence of electron waves arising from intervalley reflection off
the left- and right-hand-side interfaces.

D. Comparison between tight-binding and envelope-function
approach

In the absence of an electric field, one has �L
2 =�R

2 ,
with �=0 for positive and �=� for negative values of
cos�k0a−���, and Eqs. �15� and �20� reduce to11

v = 4�L
2�� cos�k0a − ���� ,

with ��=��=0 for even N, and

�� = 2�L
2�S � ��p�cos�k0a − �p��, �� = 0,

for odd N, where �=ei�=sgn�cos�k0a−����. The curves in
Fig. 1 are calculated by using the following best-fit set of
parameters: ���=65 meV Å, ��=0.013�, �p�=4450 meV Å2,
�p=0.095�, and S=650 meV Å2.

Although tight-binding-model values of the coefficients in
the present work are quite different from the previous esti-
mates, the envelope-function approach proves its adequate
description of the valley and spin splittings as a function of
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the QW width. The analytical approach with merely five pa-
rameters perfectly fits the complex microscopic calculation.

Comparison of new results with the experimental data of
Wilamovsky et al.33 shows the better agreement. With the
necessary correction,34 the experimental results give �3.4
�10−13 eV Å for the spin-splitting constant �− in a
120-Å-thick QW. The tight-binding calculation in a structure
with 85 atomic layers of Si gives �−=2.1�10−13 eV Å with-
out electric field. Under applied electric field of 0.3 V Å,
we have obtained �−=4.1�10−13 eV Å and �−=1.1
�10−13 eV Å. The more detailed comparison should be done
with caution since effects of disorder and built-in electric
fields may have crucial influence. However, the coincidence
in an order of magnitude shows that our calculations agree
with the available experimental data.

According to Fig. 2, the description of dependence of spin
splitting on the band offset is not so perfect in the framework
of envelope-function approach. In fact, the variation in band
offset results in a complex �obviously nonlinear� behavior of
the parameters in the boundary conditions at the interfaces.

Figure 3 is the main result of this work and we discuss it
in more details. The agreement between the two approaches
seen in Fig. 3�a� shows that the extended envelope-function
approach catches the physics of spin splitting induced by the
applied electric field. Moreover, the fact that this agreement
takes place with no addition of a SIA term to Eqs. �20� shows
that in the system under study, the IIA contribution is domi-
nating by more than an order of magnitude. This result is in
line with the calculation of spin splitting of conduction sub-
bands in III-V heterostructures where the contribution pro-
portional to the average value of the electric field amounts
only a few percent of the interface contribution.35 It should
be noted that Eqs. �20� for �� contains only parameters
which can be extracted from Fig. 1, and, indeed, the curves
in Fig. 3�a� are calculated without additional parameters. Ad-
ditional fitting parameters used to describe Fig. 3�b� are as
follows: �p��=700 meV Å2, �p�=�, and S�=70 meV Å2.

In the high-field limit, �L�R / ��L
2 +�R

2�→0 so that either
�L

2 ��R
2 or �L

2 ��R
2 , and Eqs. �15� and �20� transfer to

v = 2���max��L
2,�R

2� ,

�� = 2 sgn�Fz
N+1��S � �p�cos��p − ����max��L

2,�R
2� ,

�� = 2 sgn�Fz��− S� � �p��cos��p� − ����max��L
2,�R

2� .

Since one of the interfaces becomes inaccessible to the elec-
tron, the oscillatory behavior vanishes in strong fields.

It should be stressed that the parity of the coefficients ��

and �� following from the above equations completely
agrees with the general symmetry considerations, �Eqs. �2�
and �3��. We also note that a monoatomic shift as a whole of
the QW position in the structure results in a sign inversion
for �� while the values of �� remain unchanged. Indeed,
taking into account that in the diamondlike lattice the nearest

neighbors lie in the �110� and �11̄0� planes, the monoatomic
shift is equivalent to a rotation of the coordinate frame
around the z axis by the angle � /2. Under this transforma-
tion, the combination h�k�=�xkx−�yky reverses its sign,
whereas h��k�=�xky −�ykx keeps unchanged.

V. CONCLUSION

The sp3d5s* tight-binding model has been used to calcu-
late the electron dispersion in heterostructures grown from
multivalley semiconductors with the diamond lattice, par-
ticularly, in the Si /SiGe structures. The model allows one to
quantitatively estimate the valley and spin splittings of elec-
tron states in the quantum-confined ground subband as well
as the electric field dependence of the spin splitting. In the
employed tight-binding model, this splitting is mostly deter-
mined by the spin-dependent mixing at the interfaces. As a
result, the coefficients describing the IIA term �or the gener-
alized Dresselhaus term� in unbiased QWs are oscillating
functions of the odd number N of Si monoatomic layers.
Under an electric field applied along the growth axis, a non-
zero Rashba term appears in QWs with both even and odd
Si-atomic layers. In small fields, the Dresselhaus term is lin-
ear in the structures with even N �D2h point group� and qua-
dratic in structures with odd N �D2d point group�. Thus, in
quite low fields about 10−4 V cm, the spin splitting becomes
anisotropic and oscillations as a function of the QW width
are suppressed. In addition to numerical calculations, an ex-
tended envelope-function approach is utilized to interpret the
results of tight-binding calculations. The inclusion of spin-
dependent reflection of an electronic wave at the interface
and interface-induced intervalley mixing permits one to de-
scribe quite well the numerical dependencies of the valley-
orbit and spin-orbit splittings upon the number of Si-atomic
planes and the electric field.
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