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1. INTRODUCTION

Longitudinal electrostatic space charge waves
(SCWs) in charge-neutralized electron flows play a key
role in beam–plasma interactions. Such waves are also
of fundamental importance in the processes occurring
in beam–plasma microwave oscillators and amplifiers
with long-term interaction and in plasma-based collec-
tive charged-particle accelerators.

Numerous experiments on SCWs in electron flows
that have recently been carried out in many laboratories
of the world (see, e.g., [1, 2]) force us to take a closer
look at the existing theory and to consider whether
everything has been done or whether there are some
unclarified and unresolved issues.

Today, it is generally recognized that the linear the-
ory of neutralized electron flows has been fully devel-
oped, and its description can be found in many mono-
graphs (see, e.g., [3, 4]).

The present status of the nonlinear theory is eluci-
dated in review [5], which was published as early as
1993 but reflects the current state of affairs in the theory
of nonlinear steady longitudinal SCWs, and the mate-
rial presented there was repeated in a recent textbook
[6] essentially without additional information.

According to [5, 6], the structure and dynamics of
nonlinear steady SCWs in charge-neutralized cold elec-
tron flows unbounded in the transverse direction has
been investigated in detail [7], the effect of the finite
transverse dimensions of an electron flow on the param-
eters of SCWs has been considered [5], and the effect
of the waveguide structure on the structure and stability
of SCWs has been examined too [8, 9]. In all of the
cited papers, the analysis was carried out using the

hydrodynamic approach, which is valid for cold elec-
tron flows.

Fenstermacher and Seyler [10] made an attempt to
consider SCWs in a warm electron flow by applying a
gas-dynamic approach. They described the flow by the
equation of state of an electron gas with the adiabatic
index 

 

γ

 

 = 2. It was noted (see also [5]) that this choice
of the 

 

γ

 

 value was not physically justified and was made
only for mathematical convenience in obtaining an ana-
lytic solution.

In recent years, substantial progress has been
achieved in the theory of nonlinear longitudinal electro-
static waves (specifically, ion acoustic plasma waves
[11] and dust acoustic plasma waves [12, 13]) in other
physical systems. In those papers, the problem of the
dynamics of nonlinear waves was solved using a gas-
dynamic approach in which the ion (or dust) plasma
component was treated as a gas and was described by
the adiabatic equation of state with an arbitrary adia-
batic index 

 

γ

 

. The objective of the present study, which
was stimulated by the results achieved in [11–13], is to
construct a theory of nonlinear steady SCWs in a
charge-neutralized electron flow using a gas-dynamic
approach in which the electrons are also treated as a gas
and are described by an adiabatic equation of state with
an arbitrary adiabatic index 

 

γ

 

. Here, as is usually done
in describing a collisionless plasma (see [14]), it is
assumed that there is enough time for the flow to relax
to a local thermodynamically equilibrium state due to
uncorrelated Coulomb interactions between electrons.

The paper is organized as follows. In Section 2, the
problem of the structure of a steady SCW is solved for
a transversely bounded neutralized electron flow at a
constant temperature (

 

γ

 

 = 1). The reason for consider-
ing this simplest case is twofold. First, this is interesting
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from a methodological standpoint because it makes
possible a detailed and comprehensive analysis of the
mathematical solution method. Second, the solution for
nonlinear isothermal SCWs in an electron flow is of
interest by itself; to the best of my knowledge, it was
not presented in the literature. Section 3 gives a com-
plete solution of the main problem of SCWs in a trans-
versely unbounded electron flow with an arbitrary adi-
abatic index 

 

γ

 

. In Section 4, the results obtained are
generalized to a transversely bounded electron flow. It
is everywhere assumed that the neutralizing back-
ground is immobile and the flow is collisionless. The
final section summarizes the main conclusions follow-
ing from an analysis of the solutions derived.

2. ISOTHERMAL SPACE CHARGE WAVES

Let us consider a transversely unbounded steady
uniform electron flow with the charge density 

 

ρ

 

0

 

 that
propagates along the 

 

x

 

 axis with the velocity 

 

v

 

0

 

 through
an immobile neutralizing background. We assume that
the magnetic field applied in the 

 

x

 

 direction is strong
enough to suppress the transverse electron motion.

We start with the following standard set of equations
for the electron velocity 

 

v

 

 in the flow, the electron
charge density 

 

ρ

 

, the electron gas pressure 

 

P

 

, and the
electric potential 

 

ϕ

 

:

 

(1)

(2)

(3)

 

where 

 

e

 

 and 

 

m

 

 are the charge and mass of an electron.
Assuming that the electron gas is isothermal, we substi-
tute the equation of state

 

(4)

 

into the equation of motion (2). We also introduce the
notation

 

(5)

 

and normalize the variables and quantities as follows:

 

(6)

∂ρ
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---------------+ 0,=
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With the equation of state (4) and relationships (5) and
(6), the basic equations become (hereafter, the primes
by the dimensionless variables are omitted)

 

(7)

(8)

(9)

 

We seek a solution to these equations in the form of
a steady SCW running with the velocity 

 

u

 

. To do this,
we introduce the new self-similar variable

 

(10)

 

with which the set of partial differential equations (7)–
(9) can be reduced to the ordinary differential equations

 

(11)

(12)

(13)

 

Continuity equation (11) and equation of motion (12)
can be simply solved by integration with allowance for
the conditions 

 

ρ

 

 = 1 and 

 

v

 

 = 1 at 

 

ϕ

 

 = 0:

 

(14)

(15)

 

Substituting solution (14) into solution (15), we
obtain the function 

 

ϕ

 

(

 

ρ

 

)

 

, which will play an important
role in the analysis to follow:

 

(16)

 

The plot of this function is represented by a curve hav-
ing a minimum. The function also should have a root at

 

ρ

 

 = 1, indicating that the unperturbed “electron flow +
neutralizing background” system is quasineutral. Fig-
ure 1 illustrates the dependence 

 

ϕ

 

(

 

ρ

 

)

 

 by two typical
plots, which are such that the quasineutrality point lies
on the right branch of one of the plots and on the left
branch of the second. The branches that intersect the
abscissa at other points are unphysical and should be
discarded; in Fig. 1, they are shown by dots.
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In order to determine the position of the minimum in
the function ϕ(ρ), we find its derivative and equate it to
zero:

(17)

As a result, we obtain

(18)

dϕ
dρ
------ ρ2τ u 1–( )2

–

ρ3
--------------------------------- 0.= =

ρmax

u 1–

τ
----------- for u 1>

1 u–

τ
----------- for u 1<

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

and

(19)

Note that, in expression (18) for the electron charge
density, we use the subscript max, because the density
is maximum at the point where the electrostatic poten-
tial is minimum. We will demonstrate this again later.

In what follows, we will need the expression for the
second derivative of function (16):

(20)

Figure 2 shows the dependence ϕmin(u) for a moder-
ate value of τ (τ = 0.2), i.e., for a warm electron flow.
We can see that the entire range of possible values of
the wave velocity u is divided into four subranges:

(i) 0 < u < 1 – ,

(ii) 1 –  < u < 1,

(iii) 1 < u < 1 + ,

(iv) 1 +  < u < +∞,

the first two of which correspond to a slow SCW
(SSCW), whereas the last two, to a fast SCW (FSCW).
The coordinates of the characteristic points of the
dependence ϕmin(ρ) are given in Fig. 2. One can readily
see how the dependence ϕmin(ρ) changes as τ increases.
For τ > 1, i.e., when the “electron flow + neutralizing
background” system can already be regarded as a
plasma with a slowly drifting hot electron gas, subrange
(i) disappears and the lower boundary of subrange (iv)
is greatly displaced rightward.

Let us now consider Poisson’s equation (13). Using
the rule for differentiating a composite function,

(21)

and taking into account expressions (17) and (20), we
reduce Poisson’s equation (13) to an autonomous sec-
ond-order differential equation for ρ(ξ):

(22)
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Fig. 1. Plots of the dependence ϕ(ρ) (16) for (1) u = 1.3 and
τ = 0.2 and for (2) u = 0.5 and τ = 0.2. The branches that are
discarded are shown by dots.
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The order of the equation can be lowered by making the
replacement p(ρ) = dρ/dξ. As a result, we arrive at Ber-
noulli’s equation

, (23)

in which the terms on the right-hand side are defined as

(24)

Using the solution to Bernoulli’s equation (see [15],
Section 1.1.5) and returning to the sought-for variable
ρ(ξ), we can write the general solution to Eq. (22) in
terms of two integration constants C1, 2:

(25)

Thus, we have obtained the general solution to the
problem of the wave structure in an isothermal electron
flow, with the integration constants C1, 2 being deter-
mined from the initial conditions corresponding to the
amplitude of the initial perturbation.

Figure 3 shows two examples of the structure of a
periodic SCW for the same values of the parameters u
and τ but for different amplitudes of the initial pertur-
bation. We can see that small perturbations evolve into
nearly periodic, almost sinusoidal waves, while large
perturbations grow into asymmetric waves with pro-
longed rarefaction and short compression phases. The
waves resulting from larger perturbations can even
break; in this case, steady solutions (25) do not exist.
The phase diagram of an SCW in Fig. 4 shows how
much the charge density profile ρ(ξ) departs from a
sinusoidal shape, i.e., how much closed phase trajecto-
ries departs from ellipses.

The maximum electron charge density in the com-
pression phase, ρmax, is easy to determine: it is exactly
equal to the amplitude given by formula (18). The min-
imum electron charge density in the rarefaction phase,
ρmin, was calculated numerically.

The results of numerical analysis are illustrated in
Fig. 5. We can see that, in subranges (ii) and (iii) of the
values of the velocity u, steady SCWs cannot exist and
that the steady waves in subranges (i) and (iv) are
SSCWs and FSCWs, respectively. The maximum val-
ues of the electron charge density in the compression
phase lie in the hatched regions above unity (i.e., above
the horizontal lines) and cannot exceed the value ρmax,
while the minimum values in the rarefaction phase lie
in the hatched regions below unity (i.e., below the hor-
izontal lines) and cannot be smaller than the value ρmin.
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We can readily see that the higher the temperature, the
gentler the slope of the straight lines (18), with a result-
ing decrease in the wave amplitude ρmax, and that
SSCWs cannot exist in a plasma with hot electrons (τ >
1). In the opposite limit τ  0, the hatched regions in
Fig. 5 merge and steady SCWs can have arbitrary
velocities u.

3. ADIABATIC SPACE CHARGE WAVES
Here, we consider adiabatic SCWs in an unbounded

steady uniform electron flow propagating against an
immobile neutralizing background. We make the same
physical assumptions as in the previous section and
also assume that the electron gas in the wave satisfies
not Eq. (4) but the adiabatic equation

(26)

where T0 is the unperturbed electron gas temperature.
For a thermal process, it is more justified to use this
equation than Eq. (4) because it eliminates questions of
external energy supply and energy sink for SCWs.

Keeping the notation and normalizing constants of
Section 2, we immediately write out the following basic
equations for the independent self-similar variable ξ,
which are analogous to Eqs. (11)–(13):

(27)

(28)

(29)

The solution to continuity equation (27) has the form
(14), and the equation of motion has the solution

(30)
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Substituting expression (14) into solution (30) yields
the dependence ϕ(ρ). For the allowed γ values, 1 ≤ γ ≤
3, the plot of the function ϕ(ρ) is similar in shape to that
in Fig. 1: it has a minimum and two rising branches, one
of which is discarded and, accordingly, is not shown
here.

The derivatives of the function ϕ(ρ) have the form

(31)

(32)

By analyzing formula (31), we can find ρmax and
ϕmin:

, (33)

(34)

The plot of the dependence ϕmin(u) is displayed in
Fig. 6, with the coordinates of the characteristic points
indicated. The dependence is similar to that in Fig. 2.

We transform Poisson’s equation (29) in the same
way as was done with Eq. (9). Specifically, using deriv-
atives (31) and (32), we convert it to an equation for
ρ(ξ):

(35)

This equation can in turn be reduced to Bernoulli’s
equation (23), in which the terms on the right-hand side
have the form
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Turning again to [15], we finally write the general
solution to Eq. (35):

(37)

where, for brevity, we have introduced the notation

(38)

(39)

(40)

(41)

(42)

Using the general solution just obtained, we can plot
the profiles of an SCW (see Fig. 7a) and investigate the
characteristic properties of the wave. Note that, now,
the electron gas temperature in the wave is not constant:
in the rarefaction phase, the electron temperature is
lower than the initial temperature, and in the compres-
sion phase, it is higher. The temperature profile in the

SCW was obtained by using the dimensionless adia-
batic equation of state T = τργ – 1. The phase diagram of
the SCW is presented in Fig. 8.

Figure 9, which shows possible minimum and max-
imum values of the electron density in an SCW, is qual-
itatively similar to Fig. 5. However, quantitatively, the
range of velocities u in which steady SCWs cannot
exist is broader by an amount equal to the adiabatic

index . Note that, in accordance with expression
(33), the upper boundary of the maximum values of the
electron charge density in the compression phase, ρmax,
is not a straight line, in contrast to that in Fig. 5.

4. ADIABATIC SPACE CHARGE WAVES
IN A TRANSVERSELY BOUNDED 

ELECTRON FLOW

Here, we consider SCWs in a transversely bounded
electron flow. We begin by noting that the basic electron
continuity equation and the basic equation of electron
motion have the same form as those in Section 3. This
is why all the conclusions of Section 3 that concern the
boundaries of the ranges of existence of SSCWs and
FSCWs, the maximum electron charge density, and the
potential and temperature in the wave remain valid, as
well as the plots shown in Figs. 6 and 9.

The problem in question differs from the previous
one only in the form of the dimensionless Poisson’s
equation, which now reads

(43)

where ∆⊥ is the transverse Laplace operator. Under cer-
tain conditions for the transverse dimensions of the

flow, we can approximately set ∆⊥ϕ ≈ – . Going
through the same sequence of mathematical transfor-
mations as in the previous section, we reduce Poisson’s
equation (43) to Bernoulli’s equation (23), in which the
terms on the right-hand side have the form

(44)

Now, we can easily solve Poisson’s equation, but the
resulting general solution is rather involved, so we do
not write it out here. An analysis of the solution shows
that the transverse wavenumbers of the steady SCWs

that can exist in a transversely bounded electron flow
are such that k⊥ < k⊥max, where k⊥max depends on the
parameters u, γ, and τ, as well as on the perturbation
amplitude. Figure 10 shows an example of the depen-
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dence k⊥max(u) for particular values of γ and τ and for
the maximum possible perturbation amplitude deter-
mined from Fig. 9.

For comparison, Fig. 7b displays the structure of an
SCW with the transverse wavenumber k⊥ = 1, calcu-
lated from solution (44) to Poisson’s equation (43) for
the same parameters and the same amplitude of the ini-
tial perturbation as those of a transversely unbounded
electron flow in Fig. 6a. We can see that, in the range of
the allowed transverse wavenumbers k⊥ < k⊥ max, the
only effect of the finite transverse dimensions of the
flow is to increase the wavelength of the SCW without
changing its shape.

5. CONCLUSIONS

In the present paper, the problem of the structure and
dynamics of nonlinear steady longitudinal SCWs in an
electron flow treated as a gas and described by an adia-
batic equation of state with an arbitrary adiabatic index
γ has been solved exactly and the solutions obtained
have been examined in detail (isothermal SCWs with
γ = 1 have been considered separately). The minimum
and maximum electron densities as functions of the
wave propagation velocity u have been determined. The
analysis has revealed the following characteristic fea-
tures of SCWs:

(i) there are two types of waves: SSCWs with veloci-

ties u < 1 –  and FSCWs with velocities u > 1 + ,γτ γτ
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and there are no SCWs with velocities within the range

1 –  < u < 1 + ;
(ii) the SCWs are asymmetric in shape: the devia-

tions of the electron charge density from its equilibrium
value in the compression and rarefaction phases are not
equal to one another, 1 – ρmin ≠ ρmax – 1;

(iii) in a hot electron flow such that γτ > 1, steady
SSCWs do not exist at all;

(iv) the transverse wavenumbers of the steady
SCWs that can exist in a transversely bounded electron
flow are bounded from above, k⊥ < k⊥ max; and

(v) in a transversely bounded electron flow, the
wavelength of the SCWs with transverse wavenumbers
within the range 0 < k⊥ < k⊥ max is longer than that of the
waves in a transversely unbounded flow.
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