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Abstract.  The influence of correlations on the critical tem- 
perature and density for the onset of superfluidity in nuclear 
matter is investigated within the scheme of Nozi~res and 
Schmitt-Rink [1]. For symmetric nuclear matter a smooth 
transition from Bose-Einstein condensation (BEC) of deuteron- 
like bound states at low densities and low temperatures to 
Bardeen-Cooper-Schrieffer (BCS) pairing at higher densities 
is described. Compared with the mean field approach a low- 
ering of the critical temperature is obtained for symmetric 
nuclear matter as well as for pure neutron matter. The Mott 
transition in symmetric nuclear matter is discussed. Regions 
in the temperature-density plane are identified where corre- 
lated pairs give the main contribution to the composition of 
the system, so that approximations beyond the quasi-particle 
picture are requested. 

PACS: 05.30.Fk, 21.65.+f, 74.25.Bt 

Superfluidity and superconductivity are macroscopic quan- 
tum phenomena occuring for fermion systems with attractive 
interaction. A usual framework for its microscopic descrip- 
tion is the BCS theory [2]. The BCS theory is a meanfield 
approach and describes the occurence of pairing correlations 
forming the condensate. This pairing becomes at the critical 
temperature identical with the special case of zero momen- 
tum bound states in the low density limit [1]. However, in the 
normal phase a meanfield theory is in general not capable to 
describe two-particle correlations, in particular bound states 
with finite momentum. This general problem applies also to 
nuclear matter. Nuclear matter has been treated within the 
BCS approach by several authors, see e.g., [3-5]. Of special 
interest with regard to two-particle correlations are the pair- 
ing in the 3Si channel (see, e.g., [6, 7]) and the deuteron for- 
mation (see, e.g., [8]). In the normal phase there are works 
on the improvement of the meanfield approach including 
bound states and on the composition of nuclear matter (see, 
e.g., [9, 10]). 

An attempt to include the influence of correlations on the 
critical temperature was proposed by Nozieres and Schmitt- 
Rink for electron-hole systems [1]. The authors calculate the 
onset of superfluidity as a function of the coupling strength 

in the framework of BCS theory. The results are combined 
with a simple extension of the virial expansion to obtain a 
density formula including correlations in the normal phase. 
A similar density formula for nuclear matter is given by 
Schmidt et al. [10]. In the weak coupling limit Nozihres and 
Schmitt-Rink find the ordinary BCS critical temperature. The 
other limit, the strong coupling, is characterized by the for- 
mation of non-interacting bosonic bound states which can 
undergo a Bose-Einstein condensation with the correspond- 
ing critical temperature. A smooth transition from strong to 
weak coupling is obtained. The open question how to treat 
correlations (fluctuations) and pairing (superfluidity) consis- 
tently has recently been addressed in a number of publica- 
tions [11-13]. 

Within this paper we want to study the relevance of 
the considerations of Nozihres and Schmitt-Rink applied to 
non-relativistic nuclear matter below saturation density. We 
consider a system of nucleons (protons, neutrons) interact- 
ing via a bare nucleon-nucleon interaction. The problem of 
the transition from strong to weak coupling is focussed in 
connection with the question of the validity of the quasi- 
particle picture. For symmetric nuclear matter as well as for 
neutron matter the occurence of correlated nucleons in the 
temperature-density plane is calculated to decide in which 
region a meanfield approach is justified and in which not. 
As a special topic the composition of the system along the 
critical temperature is considered. 

First we give a set of basic formulas we used in our 
model calculation and discuss the results afterwards. For 
convenience we put h, k• = 1. Two-particle properties in 
medium are described by a thermodynamic T-matr ix  gov- 
erned by a Bethe-Salpeter equation. The T-matr ix  can be 
represented in a partial wave decomposition. For the sake of 
simplicity we consider only uncoupled scattering channels 
c~. Introducing relative momentum k and total momentum 
K for two interacting fermions the two-particle T-matr ix in 
the respective channel reads 

T~(kK, k'K'; z) = V~(k, k') + ~ G(k, k") 
k " , K "  

• G~ K"; z) Tc, (k" K", k'K'; z) (1) 
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with the two-particle thermodynamic Greenrs function in 
quasi-particle approximation 

Q(kK) 
G~ z) - 

z - -  E 1  - -  E 2  " 

The medium effects enter via the Fermi function f (El)  = 
(exp((El - # I ) / T ) +  l) -1 in the angle-averaged Pauli block- 
ing Q(kK) = f d~ [1 - f(E1) - f(E2)] and via the self 
energy shifts v of the quasi-particle energies E1,2 = (k =t= 
K/2)2/2m + vl,2(kK). 
We take the quasi-particle self energy v(kK) in the rigid 
shift approximation as a constant ~ (see also [1] and [10]) 
which can be incorporated in an effective chemical potential 
#* = # - ~. Since we consider symmetric nuclear matter or 
pure neutron matter and fermions of the same nucleon mass 
m we do not need to introduce different chemical potentials 
for the species. 

In case of separable interaction the T-matrix can be writ- 
ten in an analytic form 

V,,(k, k) 
T,~(kK, kK; z) - 1 - Jc~(K, z) ' (2) 

with Ja(K, z) = E V~(k, k) G~ z) ,  
k 

and the angle averaged Pauli blocking in the rigid shift ap- 
proximation 

2roT e x p ( ( ( g +  k)2/2m _ #*)/T)+ 11 
Q(kK)=----~--ff- In ~ - k f i /2m tt*)/T) +-l J - . 

(3) 

A possible choice for the nucleon-nucleon interaction is a 
separable represention of the Paris potential [14]. To pro- 
duce first results we use a more simple rank=l poten- 
tial parametrized by Yamaguchi [15] which is separabel 
and attractive only. It takes into account S-wave scatter- 
ing (c~ = 1S0, 3S1) and depends on the relative momenta of 
the incoming and outgoing two particles and the coupling 
strength in the respective channel: 

Va(k, k') = - Ac, v( k )v( k!) 

with the formfactor 
l 

v(k)= kz+f12 , (4) 

where /3 = 1.4488 fm -1 is the inverse potential range, 
),~So=2994 MeVfm -1 and A3s~=4264 MeVfm -1 is the cou- 
pling strength in the singlet and in the triplet channel, re- 
spectivly. The parameters are fitted to the empirical nucleon- 
nucleon scattering phase shifts and the vacuum binding en- 
ergy of the deuteron (E ~ = -2.225 MeV) which occurs in 
the triplet channel. The coupling of the 3S1 to the 3Dl chan- 
nel is neglected. 

From the denominator of (2) we investigate the pole 
structure of the T-matrix. At real energies below the contin- 
uum edge of scattering states, given in rigid shift approxima- 
tion as Econt(K) = K2/4m + 20, a pole in the triplet channel 
is obtained which corresponds to an in-medium binding en- 
ergy Eb = Eb(#*, T, K)  of a deuteron-like bound state. Mea- 
suring Eb relative to the continuum edge the pole condition 
reads: 1 - Re J3s~ (K, z = Eb + Ecnnt(K)) = 0, or 

v(k)v(k) Q(kK) 
1 :  " (5 )  

k 

Since the rigid shift self energies of the continuum energy 
are compensated by the respective shifts of the quasi-particle 
energies in the denominator of G O in (5) we drop them 
for the calculations below. Due to the density and tem- 
perature dependent Pauli blocking the in-medium binding 
energy is shifted towards the continuum edge with increas- 
ing density until it merges the continuum edge (Eb --* 0). 
This is interpreted as a break up of the deuteron-like bound 
states [9]. The break up of bound states with total mo- 
mentum K = 0 defines a Mott density nmott(T) (see Mott 
line in Fig. 2a) which is determined from the condition: 
1 - Re J3s~ (K = 0, z = 0) = 0, and the density formula (7) 
(see below). 

Bound states with finite total momentum survive up 
to higher densities since the Pauli blocking is less effec- 
tive. From the pole condition, 1 - Re J~sx (K  = Kmott, z = 

K2mott/4m) = 0, one can define a so-called Mott momentum 
/(mott which is the lowest total momentum for the existence 
of a bound state at densities higher than the Mott density. 

For real energies above the continuum edge the scatter- 
ing of two nucleons in a dense medium can be expressed by 
means of in-medium scattering phase shifts 5a (for deriva- 
tion see [10]) 

cot ~a(K, T, #*, E)  

= 1 - Re J~(K, K2/4m + E + iO) (6) 

Im J~(K, K2/4m + E + iO) 

Effective binding energy, Mott momentum and in-medium 
scattering phase shifts are ingredients for the equation of 
state for the normal phase which is applicable until the crit- 
ical temperature for pairing given by (9) is reached. We use 
a density formula of a form given by Schmidt et al. [10] 
which was derived within a rigorous quantum statistical ap- 
proach by Matsubara Green's functions. In this so-called 
generalized Beth-Uhlenbeck formula [10] the total nucleon 
density splits into contributions due to free quasi-nucleons 
and correlated nucleons 

n to t (~ ,  T) = nfree(].z, T) + 2ncorr(#, T ) .  (7) 

This density formula goes beyond the usual quasi-particle 
equation of state since it explicitly takes into account the 
formation of two-nucleon correlations. For symmetric nu- 
clear matter the correlation contribution can be decomposed 
in a bound state density and a contribution due to scattering 
states, which reads for uncoupled channels [10] 

n~ee=4 E f (El)  , 
kl 

?~corr=Ttbound + nscatt 

=c~s~ E g(Eb(K, #*, T) + K2/4m) 
K>Kmot t  

-c3s, E g(K2/4rn) 
K > Kmott 

_Z/o K 
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Fig. 1. Composition of symmetric nuclear matter: percentage of correlated 
nucleons versus total density ntot at different temperatures, no(T) denotes 
the critical density where superfluidity sets in and the T-matrix approach 
breaks down 

1 
x E c~(6a - ~ sin(26a)) (8) 

a 

with 9(E) = ( e x p ( ( E - 2 # * ) / T )  - 1) -1 the Bose distribution 
function. Spin and isospin degeneration factors are explicitly 
given (ca = 3 for S-wave  channels). 

This expression corresponds to a density formula given 
by Nozi~res and Schmitt-Rink ([1], (23)) after integration by 
parts. However, (8) differs in the occurrence of an additional 
term �89 sin(26a) in the scattering contribution. The origin 
of this term is extensively discussed by Zimmermann and 
Stolz for the electron-hole system in excited semiconductors 
[16]. They point out that this term is needed to avoid double 
counting of the quasi-particle energy shift. Furthermore, at 
high densities the expression given by Nozi~res and Schmitt- 
Rink diverges as soon as the chemical potential becomes 
positive. This singularity is compensated if the quasi-particle 
picture is applied (see [10]). To avoid restriction to the low 
density case where the more simple density formula of [1] 
is applicable we use (8) instead which has been derived by 
Zimmermann parallel to the work of Nozibres and Schmitt- 
Rink and applied to nuclear matter by Schmidt et al. [10]. In 
contrast to a summation of ring diagrams for the scattering 
process of two free nucleons [1] the latter approach includes 
a propagation of nucleonic quasi-particles. 

From (8) the composition of nuclear matter, particularly 
the concentration of correlated nucleons, can be determined. 
Figure 1 shows for isothermes an increase of correlated nu- 
cleons with the density until a maximum is reached. Going 
to higher densities correlations are suppressed due to Pauli 
blocking without abrupt changes in the thermodynamic vari- 
ables. 

Plotting this results of the normal phase in the temperature- 
density plane we find the area with equal concentration of 
correlated nucleons (dashed lines in Fig. 2a). For each tem- 
perature a maximum of correlations can be found. Since 
bound states with finite total momentum and scattering cor- 
relations survive up to higher densities, the maximal percent- 
age of correlated nucleons is reached for densities above the 
Mott density (see Mott line in Fig. 2a). For densities below 
Mott density and temperatures near to the critical tempera- 
ture correlation contributions predominate the total density. 
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Fig. 2. a Temperature-density plane of symmetric nuclear matter showing 
lines of equal concentration of correlated nucleons 2ncorr/ntot (dashed). 
The Mott line indicates the break up of the deuteron-like bound states with 
/4 = 0. The critical temperature in the 3g 1 channel (bold) marks the onset 
of superfluidity, b The critical temperature in the 3S] channel (bold) is 
compared with the BCS estimate (thin) and the Bose-Einstein condensation 
curve (dashed) 

The equation of state (8) is valid only for temperatures 
above the critical temperature for the onset of superfluidity in 
nuclear matter. To find the critical temperature in dependence 
of the total density we use the Thouless criterion first and 
put the result into (8). The critical temperature Tc for the 
onset of pairing is given by the Thouless criterion if a pole 
at z = 2#* arises for the two-particle T-matrix at K = 0. 
For the T-matrix this pole condition reads: 1 - Re J ~ ( K  = 
O,T = Tc, z = 2#*)=O, or 

1 = Aa E v(k)v(k) tanh(4-~(k2/m - 2#*)) 

k k2/m -- 2#* 
(9) 

If  the pole corresponds to a two-body bound state [2#* = Eb, 
see (5)], the imaginary part of J~ vanishes and the Thouless 
criterion holds in given form. Furthermore, at this particular 
energy z = 2/~t* the imaginary part of J~ vanishes when it 
lies in the continuum of scattering states, because the Pauli 
blocking factor contained in G o in (1) vanishes in this case. 
Thus, the pole condition (9) for the onset of superfluidity 
holds for positive as well as negative values of 2it*. It co- 
incides with the solution of the BCS theory for vanishing 
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gap (for further discussion and influence of k-dependent 
Hartree-Fock self energy see [17, 18]). 

In our calculation the effective chemical potential #* is 
related to the total density via the equation of state (8). The 
bold line in Fig. 2a shows the critical temperature of the 
3S1 channel in symmetric nuclear matter plotted versus total 
density separating the normal and the superfluid phase. 

Figure 2b compares the critical temperature with two 
limiting cases. At higher densities we obtain coincidence 
with the BCS-limit. Tlie BCS estimate of the critical tem- 
perature can be obtained by taking only nfre~ in (7). At lower 
densities, especially below the Mott density, the critical tem- 
perature according to (9) is shifted towards the limit of Bose- 
Einstein condensation until it coincides with the critical tem- 
perature of an ideal boson gas of deuteron-like bound states 
with mass 2m and density of the bosonic bound states di- 
vided by the degeneracy factor c3s~ = 3 

Therefore, we consider the limit IZtot ~ 0 as the strong 
coupling limit while for high densities correlations are sup- 
pressed and the weak coupling or BCS-limit is approached. 
In the intermediate region a smooth transition between both 
limits is obtained. 

Superfluidity in asymmetric nuclear matter is expected to 
be realized in the interior of neutron stars. There are several 
papers considering the problem of superfluidity in neutron 
stars (see, e.g., [5, 19]) or the influence of the neutron excess 
in isospin asymmetric nuclear matter on the critical temper- 
ature [17]. 

Therefore, we apply our approach to the case of pure 
neutron matter as an approximation for neutron star matter. 
Since no bound states occur in the considered 1S0 neutron- 
neutron channel the generalized Beth-Uhlenbeck formula 
contains only free and scattering contributions 

ntot(/Z, T)=2 ~ f(Et) 
kl 

d l K ~ ~ ' -~g(Econt  + E )  

1 
x(&so - ~ sin(26~So)). (10) 

In Fig. 3 the critical temperature in the 1S0 channel for neu- 
tron matter is displayed versus total density. In the region of 
about 1/1000 to 1/100 of nuclear matter density no we obtain 
a slight lowering of Tc in comparison to the BCS estimate 
considering only free density contribution. The percentage of 
correlated nucleons is generally reduced compared to sym- 
metric nuclear matter. While for symmetric matter correla- 
tions are of main importance in the low density and low 
temperature region (see Fig. 2a) they disappear for neutron 
matter in the high and in the low density limit. This is due to 
the lack of bound states in neutron matter and clearly to be 
seen if we compare the composition at T = T~ in dependence 
of total density for both cases (Fig. 4). 

We calculated the composition and the critical tempera- 
ture for symmetric nuclear matter and neutron matter consis- 
tent with an equation of state which includes two-nucleon 
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Fig. 3. Temperature-density plane of pure neutron matter showing lines 
of equal concentration of correlated nucleons (dashed). The critical tem- 
perature in t h e  I S  0 channel (bold) marks the onset of superfluidity. For 
comparison the BCS estimate (thin) is presented 
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Fig. 4. Percentage of correlated nucleons along the curves of critical tem- 
perature (see Figs. 2a, 3) is compared for the triplet channel in symmetric 
nuclear matter and the singlet channel in neutron matter 

correlations. For the sake of simplicity we have considered a 
simple separable nucleon-nucleon potential. A more sophis- 
ticated calculation of correlation and pairing in hot nuclear 
matter should start from more realistic interaction potentials 
such as higher rank separable representation of the Paris po- 
tential in different channels. 

For the determination of the critical temperature we ap- 
plied the approach given by Nozi~res and Schmitt-Rink [1] 
to nuclear matter. In contrast to [1] where the inverse po- 
tential strength is varied for different densities we increase 
the total density for fixed coupling parameters to obtain the 
smooth transition from the strong coupling limit (BEC) of 
bosonic deuteron-like bound states to the weak coupling 
limit (BCS) of quasi-nucleons. To consider higher densities 
as well it was necessary to use an improved density formula 
basing on the quasi-particle picture [10, 16]. 

In conclusion, we point out that at definite regions in 
the temperature-density plane of nuclear matter two-nucleon 
correlations are of major importance. The critical tempera- 
ture for pairing as a function of density is modified if corre- 
lations are taken into account. In particular, this means that 
below the Mott density the BCS estimate is shifted towards 
the BEC limit. In these regions a quasi-particle treatment is 
not justified. 
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The Mott density is characteristic for the region where 
bound states disappear due to Pauli blocking. In this region, 
also the transition from Bose-Einstein condensation to BCS- 
pairing occurs. 

Evidently, the approach of Nozi~res and Schmitt-Rink 
to evaluate Tc as well as the presented approach is not very 
adequate in the region near and below the Mott transition 
where bound state formation is dominant. In addition to the 
modification of the equation of state, also the T-matrix has 
to be improved by considering the effect of blocking due 
to correlated states. Moreover, as denoted in [17] the Thou- 
less criterion can be generalized by considering two-particle 
propagators G O including correlations beyond the meanfield 
approach. A modification of the critical temperature in the 
region of the transition from strong to weak coupling is ex- 
pected. 

Better approximations to improve the presented approach 
[1, 10] need to include correlations in the G~ in 
a self-consistent way, see [11-13]. This can be based on an 
approach which considers the spectral function as a basic 
quantity instead of the picture of bound states and quasi- 
particles with sharp peaked energies [20]. 
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