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Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dot
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The pure dephasing of the optical polarization and the corresponding line shape of absorption spectra in
small quantum dots due to the interaction of the exciton both with optical and acoustic phonons is calculated.
By restricting ourselves to the exciton ground state we obtain a model which is known to be exactly solvable.
We study the temperature dependence and the influence of a static electric field. The spectra exhibit strongly
non-Lorentzian line shapes including a sharp zero-phonon line. Optical phonons lead to phonon sidebands
which may acquire a finite width due to the dispersion of the phonon branch; the width increases with
decreasing dot size. Acoustic phonons both due to deformation potential and piezoelectric coupling lead to a
broad background in the spectra which is strongly temperature dependent. Typical features of the spectra are
qualitatively well reproduced by a perturbative approach based on one-phonon processes. Multiphonon pro-
cesses, however, give significant contributions in particular in the case of acoustic phonons. Lateral or vertical
electric fields lead to an increasing efficiency of the polar interaction mechanisms while deformation potential
interaction is much less influenced.

DOI: 10.1103/PhysRevB.65.195313 PACS number~s!: 73.21.La, 78.40.Fy, 63.20.Kr
o

re
b
r

ic

h
ar
io
he

n-
nl
wi
ro
y
ch
ca
n
t

as

e
d
d

Th

lti
be
a
at

m
ne
,

in-
s,

om
er-
gle
few
al
s
ots

n

cent
um
t.
sis
ab-
on

s

m-
tive
ify
d-
nd
ld

ing
nd
ts.
ince
nt

ave

ey
I. INTRODUCTION

The optical excitation of a semiconductor quantum d
structure, like any other semiconductor structure, with
short coherent light pulse results in the creation of a cohe
superposition of valence- and conduction-band states. Su
quently, this phase coherence decays due to various inte
tion mechanisms of electrons and holes. For many appl
tions such as optoelectronic devices~see, e.g., Ref. 1! a good
knowledge of the dephasing is of utmost importance. T
holds most prominently if semiconductor quantum dots
to be used as basic building blocks for quantum informat
processing2–8 where the operation completely relies on t
presence of coherence.

In systems of higher dimensionality like bulk semico
ductors or quantum wells the dephasing is typically mai
associated with transitions between different states, i.e.,
thermalization, energy relaxation, or recombination p
cesses. These processes require at least approximatel
conservation of energy between initial and final state whi
in the case of a continuous electronic spectrum, usually
be easily satisfied. In quantum dots, however, the electro
spectrum is discrete and this condition is much harder
fulfill. For the case of carrier-phonon interaction this h
resulted in the prediction of aphonon bottleneckin the
relaxation.9,10 The dephasing of optical transitions, on th
other hand, is not restricted to such real transitions; instea
is well known11 that also virtual transitions which do not lea
to a change of occupations contribute to the dephasing.
contribution is customarily calledpure dephasing. Due to the
large separation between energy levels and the resu
strong reduction of real phonon-mediated transitions
tween these states it is of particular importance in sm
quantum dots at elevated temperatures where it domin
with respect to the recombination process.12,13

Quantum dots behave in many aspects similar to ato
with a spectrum which can to a large extent be desig
artificially. This fact, together with the ability of integration
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makes them very attractive for applications in quantum
formation theory. The main difference compared to atom
however, is the coupling of the electronic degrees of freed
to the lattice which typically results in much faster decoh
ence times. Experimentally, typical dephasing times of sin
quantum dots have been found to be in the range from a
tens of picoseconds14–16at low temperatures down to sever
hundreds of femtoseconds17 at room temperature. By mean
of four-wave-mixing spectroscopy on an ensemble of d
even dephasing times of more than 600 ps at 7 K have been
observed recently.18 With respect to this behavior quantum
dots are more similar toF centers in solids which have bee
investigated over several decades.19,20Therefore it is not sur-
prising that many approaches that have been used in re
years for the theoretical study of dephasing in quant
dots12,21,22are based on models introduced in that contex

In this contribution we present a comprehensive analy
of pure dephasing and the corresponding line shape of
sorption spectra due to the interaction with different phon
modes~acoustic and optical! and by different mechanism
~deformation potential, piezoelectric, polar optical! which
will be treated both separately and in combination. By co
paring the exact results with those obtained by a perturba
treatment of carrier-phonon interaction we clearly ident
the role of multiphonon processes. In particular we will a
dress the role of a static electric field both in vertical a
lateral direction for the dephasing. Due to the electric fie
the exciton may acquire a finite dipole moment; the result
dipole field then induces level shifts in a neighboring dot a
thus leads to an effective coupling of different quantum do
This phenomenon has recently become of great interest s
it allows for a conditional coherent dynamics and differe
implementations based on vertical2 or lateral8 fields have
been proposed to realize basic quantum gates.

Several aspects of pure dephasing in quantum dots h
been studied in the past. Schmitt-Rinket al.21 have extended
the theory fromF centers19,20 to semiconductor quantum
dots. They give a general formula for the spectrum but th
©2002 The American Physical Society13-1
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do not provide numerical results. Takagahara12,23 has ex-
tracted dephasing times due to the coupling with acou
phonons. In his perturbative calculations he has included
citon ground and excited states and he has determined
total dephasing rate semiempirically by combining his res
with measured population decay rates. He finds a g
agreement of the total dephasing rates with experime
data. However, he does not analyze in detail the line sh
associated with the coupling to phonons. Uskovet al.22 have
recently analyzed the dephasing due to the interaction w
optical phonons based on an effective coupling which is q
dratic in the phonon ampltiudes and therefore differs fr
the usual linear coupling mechanisms. With this mechan
they find a broadening of the zero-phonon line~ZPL! which
is not present in the linear coupling model.

The aim of our work is a systematic analysis of the a
sorption line shape due to carrier-phonon interaction wh
in general turns out to deviate strongly from a Lorentz
and which exhibits characteristic features for the differ
interaction mechanisms. We show that in small quantum d
the dispersion of optical phonons comes into play and res
in a dephasing of phonon quantum beats. By comparing
act results with approximate treatments we can clearly id
tify the role of multiphonon processes for the spectral l
shape. Finally we analyze how the dynamics of the opt
polarization is modified by an applied electric field which
known to strongly influence in particular the polar coupli
mechanisms.24

The paper is organized as follows. In Sec. II we brie
introduce the model and the various interaction types and
give both the exact formula for the spectrum as well as
result which is obtained by performing a correlation expa
sion up to second order in the matrix element. The dynam
of the optically induced polarization as well as the cor
sponding absorption spectra are presented in Sec. III w
we discuss in detail the role of optical- and acoustic-phon
interactions, deviations in the perturbative approach, and
effect of an external field on the dynamics of the polariz
tion. Finally, in Sec. IV we summarize our results.

II. THEORY

A. Model

We consider a model of a quantum dot with well sep
rated sublevels. We are interested in optical transitions fr
the uppermost level in the valence band to the low
conduction-band state. The corresponding electronic deg
of freedom shall be represented by Fermi operatorsc†, c
(d†,d) for the creation and annihilation of an electron~hole!
in the lowest~uppermost! conduction-~valence-! band state.
Apart from the dipole coupling to an external laser field o
model comprises interactions of the electron and hole w
acoustic and optical phonons. More specifically, our mode
defined by the following Hamiltonian:

H5\Vc†c2M0•E~c†d†1dc!1\(
j ,q

v j~q!bj ,q
† bj ,q

1\(
j ,q

~gj ,q
e bj ,qc

†c2gj ,q
h bj ,qd

†d1H.c.!, ~1!
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wherebj ,q
† , bj ,q denote Bose operators for the creation a

destruction of a phonon in the phonon branchj with wave
vectorq and energy\v j (q). The branch indexj can repre-
sent either longitudinal-optical~LO! phonons, longitudinal-
acoustic~LA ! phonons, or transverse-acoustic~TA! phonons.
It could also refer to interface or confined phonons. He
however, we will restrict ourselves to the case of bulk ph
non modes.\V is the energy of the optical gap including th
exciton binding energy but without polaronic renormaliz
tions; note that we have chosen the energy of the hole
define the zero of energy. If the exciton binding energy
smaller than the separation of the single-particle energies
mixing of different states by the Coulomb interaction can
neglected and the excitonic effect reduces to a lowering
the gap by an amount given by the electron-hole Coulo
matrix element.21 Finally, M0 provides for the dipole cou-
pling to the laser fieldE and gj ,q

e/h are the phonon coupling
matrix elements for the electron and hole, respectively.

Without the dipole coupling the above model is known
the independent boson model.25 It has been well known for a
long time that independent boson models allow for analyti
results. In early studies the phonon-broadened density
electronic states has been calculated for different types
impurities.20 More recently, there was a renewed interest
this model mainly because of its ability to capture essen
features of experiments devoted to the coherent contro
phonon-quantum beats.26–29 It is not too surprising that few-
level systems provide for adequate models for zero dim
sional structures such as quantum dots, but it turns out th
two-level model coupled to a single LO phonon mode
helpful even for the interpretion of experiments controllin
phonon beats in bulk semiconductors.26,28 In order to enable
a meaningful comparison in the latter case the two levels
identified with the semiconductor ground state and thes
exciton, respectively.

The goal of the present paper is to analyze the depha
properties of the optical polarization induced by the phon
coupling defined in Eq.~1!. It should be noted that the
carrier-phonon interaction in Eq.~1! does not lead to a
change of the occupations of the electron or the hole le
because the interaction Hamiltonian commutes with the
erators c†c and d†d for the respective occupations. Th
model does therefore not provide for an energy relaxat
mechanism. Nevertheless, the phonon coupling may
contribute to the dephasing of the polarization which in t
case is called pure dephasing.11 In recent experiments evi
dence has been found that pure dephasing may becom
dominant dephasing mechanism at not too low temperat
for optically excited quantum wells30 or quantum dots.13 Fur-
thermore, it was shown in Ref. 12 that the contribution
pure dephasing due to couplings to higher excited state
under realistic conditions considerably smaller than the
rect diagonal coupling even in dots which are somew
larger than those studied here. This finding also justifies
restriction to only two sublevels.

In order to proceed we still have to specify the phon
coupling matrix elementsgj ,q

e/h for each interaction mecha
nism relevant for the respective phonon branches. Assum
that the dot and the surrounding barrier material do not di
3-2
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THEORY OF PURE DEPHASING AND THE RESULTING . . . PHYSICAL REVIEW B65 195313
significantly in their lattice and dielectric properties we c
approximate the phonon modes with the correspond
three-dimensional bulk modes. Then, the coupling matrix
ementsgj ,q

e/h for the electron and hole separate into two fa
tors, where the first depends on the specific coupling mec
nism, whereas the second can be calculated from the w
functionsCe/h(r ) of the electron and hole within the quan
tum dot potential:

gj ,q
e/h5Gj ,q

e/hFq
e/h , ~2!

with the form factors

Fq
e/h5E d3r uCe/h~r !u2eiq•r, ~3!

andGj ,q
e/h is the bulk coupling matrix element.

In this paper we consider the respective influences
three types of carrier-phonon coupling mechanisms: the
lar optical coupling to LO phonons, the deformation pote
tial coupling to LA phonons, and the piezoelectric coupli
to LA and TA phonons. The polar optical interaction is a
counted for by the usual Fro¨hlich-coupling:

GLO,q
e/h 5 i F2pe2vLO~q!

\4pe0V S 1

e`
2

1

es
D G1/21

q
, ~4!

whereqªuqu is the modulus ofq, es and e` are the static
and high-frequency dielectric constants, respectively,e0 de-
notes the vacuum susceptibility, whilee represents the el
ementary charge, andV is a normalization volume. Finally
vLO(q) is the dispersion relation of the LO phonons.

The coupling to acoustic phonons may be mediated ei
by the deformation potential or via the piezoelectric co
pling. While the deformation potential primarily yields inte
actions with LA phonons, the piezoelectric scattering coup
the electronic system to both LA and TA phonons; usua
the TA piezoelectric scattering is considerably larger due
the smaller sound velocity.31 Accounting together for piezo
electric and deformation potential interactions the coupl
G AC

e/h to acoustic phonons may be written as25,31

G AC, j ,q
e/h 5

1

A2%\v j~q!V
@qDj

e/h1 iM j~ q̂!#, ~5!

where q̂ is the unit vector in the direction ofq, % is the
density of the semiconductor material andD j

e/h denotes the
deformation potential constants for electrons or holes.
nally, M j provides for the piezoelectric coupling. The bran
index j runs over the longitudinal and the two transver
modes and the constantsD j

e/h are nonzero only for the LA
mode.

The piezoelectric coupling would in principle lead to a
anisotropy25,31 that is, however, usually neglected. Instea
an effective isotropic model is constructed that is obtained
averaging over the angles. More specifically, it is only t
square ofM (q̂) that introduces the anisotropy in our fin
results as will become evident later. Therefore an angle
erage over this quantity is required. For a crystal with zin
blende structure the averaging yields31
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4pE0

2p

dwE
0

p

du sin~u!M j
2~ q̂!5Aj S 2ee14

ese0
D 2

, ~6!

where e14 is the piezoelectric coefficient andAj are mode
dependent geometrical factors that can be found, e.g., in
31. It should be noted that taking the square modulus
G LA, q

e/h does not introduce an interference between deform
tion potential and piezoelectric scattering, because
former is real while the latter is purely imaginary.

Strictly speaking, all three coupling matrix elements a
valid only in the long-wavelength limit because they are d
rived on the basis of a continuum model for the phono
However, as will be seen in the next section even in the c
of the smallest dots studied here the coupling only exte
over a relatively small part of the Brillouin zone where th
dispersion relations do not deviate much from the continu
case so that these matrix elements can still be considere
be good approximations.

B. Analytical results

It was already mentioned that within independent Bos
models it is possible to derive closed-form analytical expr
sions for a number of linear or nonlinear signals.20,25,27–29

The derivation may be done by a number of different the
retical approaches. For our present purposes we have to
termine the complex polarization vectorP to linear order in
the laser field. AsP is related to the off-diagonal elemen
Yª^dc& of the electronic density matrix by

P5M0Y, ~7!

we have to calculate the linear response ofY. To this end we
found it convenient to follow the generating functions a
proach that was outlined in Refs. 27 and 28 for a single m
system and in Ref. 32 for the multimode case. Specialize
our present model the generating function method invol
the following steps: First one has to set up the Heisenb
equation of motion for the generating function,

Y~$a j ,q ,b j ,q%!ª^dceS j ,qa j ,qb†
eS j ,qb j ,qbj ,q&. ~8!

Up to linear order in the laser field the resulting equation
closed. It is a first-order partial differential equation that
easily solved along the lines described in Refs. 27, 28,
32. Finally the polarization is obtained fromP5M0Y
5M0Y($a j ,q5b j ,q50%). As a result of this procedure w
find in agreement with previous results21 that the linear po-
larization induced by ad-like laser pulse, i.e.,E(t)
5E0d(t), which is polarized parallel toM0 is given by

P~ t !5Q~ t !
i uM0u2E0

\
e2 i V̄ texpF(

j ,q
ug j ,qu2~e2 iv j (q)t

2nj~q!ue2 iv j (q)t21u221!G5:e0x~ t !E0 , ~9!

where
3-3
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nj~q!ª
1

e\v j (q)/kbT21
~10!

stands for the equilibrium phonon occupation at tempera
T, g j ,qªgj ,q

x /v j (q) is a dimensionless coupling strengt
gj ,q

x
ªgj ,q

e 2gj ,q
h being the exciton coupling matrix elemen

and

V̄ªV2(
j ,q

v j~q!ug j ,qu2 ~11!

represents the polaron shifted transition frequency. In
case of optical phonons the quantitySª(qugLO,qu2 is usu-
ally called the Huang-Rhys parameter.19,21 In the derivation
of Eq. ~9! it has been assumed that before the laser excita
the system is in the electronic ground state and that the
tistical operator for the phonon system initially correspon
to an equilibrium distribution at temperatureT and is thus
given by

r̂ph5
e2Hph

0 /kbT

Tr~e2Hph
0 /kbT!

, ~12!

with Hph
0
ª( j ,q\v j (q)bj ,q

† bj ,q . The linear susceptibility
x(t) defined in Eq.~9! comprises contributions from all pos
sible multiphonon processes. It is valid for arbitrary coupli
strengths and temperatures. Using Eq.~9! it is easy to deter-
mine the linear absorption spectrum as the absorption c
ficient at frequencyv is directly proportional to the imagi
nary part;Im@x(v)# wherex(v) is the Fourier transform
of x(t). In numerically performing the Fourier transform
some care has to be taken, as the corresponding spec
may contain unbroadened lines because energy relaxati
not included in our model. We have obtained our numeri
results by multiplyingx(t) by a factore2t/t0 and then per-
forming the Fourier transformation. As we are interested
seeing the effect of pure dephasing separately from o
dephasing mechanisms we have chosen the rather long
constant oft05500 ps which is longer than typical est
mates for real energy relaxation or recombination times.

C. Perturbative approach

For models with more complicated coupling schemes i
usually not possible to obtain analytical results. Mostly p
turbative approaches are used in these cases in order t
proximate the desired spectrum. It is therefore instructive
compare the analytical result@Eq. ~9!# with the outcome of
commonly used approximations. A widely used method
quantum kinetic studies of the carrier-phonon interaction
the correlation expansion.33,34Within this approach one start
with the equation of motion for the off-diagonal elementY of
the density matrix which reads

]

]t
Y52 iVY1

i

\
M0•E2 i(

j ,q
@gj ,q

x Yj ,q
(2)1gj ,q

x* Yj ,q
(1)#,

~13!
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where thephonon-assisteddensity matricesYj ,q
(2) and Yj ,q

(1)

are defined asYj ,q
(2)

ª^dcbj ,q& and Yj ,q
(1)

ª^dcbj ,q
† &. Unlike

the equation of motion for the generating functio
Y($a j ,q ,b j ,q%), Eq. ~13! is not closed; instead it is the star
ing point for an infinite hierarchy of higher-order phono
assisted density matrices. The idea of the correlation exp
sion is to truncate the phonon-assisted hierarchy
factorizing higher order phonon-assisted density matrices
a chosen level. Mostly the truncation is invoked after the fi
step, i.e., one writes down equations of motion for the d
sity matricesYj ,q

(2) andYj ,q
(1) and factorizes the density mat

ces with double phonon assistances, e.g., according
^dcbj ,q

† bj ,q&'^dc& ^bj ,q
† bj ,q&. This procedure results in th

following equations for the phonon-assisted density ma
ces:

]

]t
Yj ,q

(2)52 i @V1v j~q!#Yj ,q
(2)2 ig j ,q

x* @11nj~q!#Y,

]

]t
Yj ,q

(1)52 i @V2v j~q!#Yj ,q
(1)2 ig j ,q

x nj~q!Y. ~14!

It is easy to verify that the correlation expansion truncated
this level yields results that are correct up to second orde
the phonon coupling. The solution of Eqs.~13! and~14! may
be obtained by taking the Fourier transforms of these eq
tions. From the relation betweenY and the polarization one
can then directly read off the linear susceptibility in fr
quency space:

x~v!5
uM0u2

\e0
FV2v2 ig01(

j ,q

ugj ,q
x u2@11nj~q!#

v1 ig02V2v j~q!

1(
j ,q

ugj ,q
x u2nj~q!

v1 ig02V1v j~q!G21

. ~15!

Here, we have introduced a finite minimal spectral wid
given byg051/t0, which corresponds to the finite decay al
used in the Fourier transform of the exact result.

III. RESULTS

We have applied the theory described above to a pro
type GaAs quantum dot which is confined in the vertical~z!
direction by infinite barriers while in the lateral (x,y) plane a
parabolic confinement potential is assumed.35 We take the
same potential shape for electrons and holes, this results
lateral extension of the hole wave function which is by
factor of (me /mh)(1/4)'0.87 smaller than the electron wav
function. The vertical size of the dot is given by the we
width while we defined the lateral size as the radius wh
the electron density is reduced to half its maximum value

In order to include the dispersion of the LO phono
branch we have taken the shape of the dispersion rela
obtained from a standard diatomic linear chain model
justed to the phonon dispersion relation given in t
literature.36 All phonon branches have been taken as isot
pic. The material parameters used in the calculations
summarized in Table I. The dispersion relations of t
3-4
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THEORY OF PURE DEPHASING AND THE RESULTING . . . PHYSICAL REVIEW B65 195313
phonons are shown in Fig. 1 together with the angular in
grated effective form factors

F eff~q!ªE
0

2p

dwE
0

p

du sin~u!uF q
e2F q

hu2 ~16!

corresponding to three different dot sizes. In all cases lat
and vertical size have been taken to be equal. In the cas
the polar interaction mechanisms this effective form fac
directly determines the region in the phononq space to
which the dot is effectively coupled. For deformation pote
tial interaction due to different deformation potentials
electrons and holes a somewhat different quantity should
pear in the integral, but also in this case Eq.~16! provides a
good estimate of the range of relevantq values. With de-
creasing dot size the form factors extend to higherq values.
It is clearly seen that for large dots the assumptions o
constant LO phonon frequency as it is usually applied
systems of higher dimensionality is quite well satisfied wh
quantum dots below about 10 nm start to feel the dispers
This means that the combined electron-LO-phonon sys

TABLE I. Material parameters taken from Ref. 48 except for t
deformation potentials which are taken from Ref. 12. The in-pla
and vertical effective masses of the holes are calculated from
Luttinger parameters according to the standard formulas;~Ref. 35!;
m0 is the free-electron mass.

Effective electron massme 0.067m0

Effective hole massmh
x,y ~in plane! 0.112m0

Effective hole massmh
z ~vertical! 0.377m0

LO phonon energy\vLO 36.4 meV
Static dielectric constantes 12.53
High-frequency dielectric constante` 10.9
Densityr 5.37 g/cm3

Logitudinal sound velocityvL 5110 m/s
Transverse sound velocityvT 3340 m/s
Deformation potential for electronsDe 214.6 eV
Deformation potential for holesDh 24.8 eV
Piezoelectric constante14 0.16 C/m2

FIG. 1. Dispersion relations of the LO, LA, and TA phono
taken in the calculations as well as normalized effective form f
tors @see Eq.~16!# describing the coupling of quantum dots wi
three different sizes to the various phonon modes.
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changes from a purely discrete system into one with a c
tinuum part in the spectrum. Also in the case of acous
phonons the relevant range of phonon frequencies incre
with decreasing dot size leading to an effectively increas
width of the continuum in the spectrum. Down to the sma
est dots studied here Fig. 1 shows that the assumptio
linear dispersion of both longitudinal and transverse acou
phonons is well satisfied. Nevertheless, for the numer
evaluation of the formulas we have always taken the
dispersion.

A. Dephasing due to optical-phonon interaction

Let us first concentrate on the real time dynamics of
optically induced polarization in the electron-LO-phono
system. If the dispersion of the phonons is neglected i
clearly seen from Eq.~9! that the result is exactly the same
in the case of single phonon mode with the effective inter
tion matrix elementgeff5A(qugq

e2gq
hu2. This single mode

model has been studied in detail also in view of nonline
optical signals, in particular the coherent control of phon
quantum beats in four-wave mixing signals, and the role o
stronger electron-phonon coupling in Refs. 27–29 and
The optical polarization resulting from the excitation with a
optical pulse with ad-function-like shape in time as well a
the corresponding absorption spectrum are shown for
case of a 6-nm quantum dot at a temperature of 300 K
Figs. 2~a! and~b!. The optical polarization exhibits quantum
beats with the phonon frequency; no decay is present.
spectrum consists of a series ofd-function peaks at the zero
phonon transition and at integer multiples of the phonon f
quency above and, for nonzero temperature, below that t
sition. The weights of the various lines depend
temperature and, through the effective coupling constant~or
the Huang-Rhys parameter!, on the quantum dot parameter
A closed-form analytical expression in terms of Bessel fu
tions can be found in Refs. 19 and 21. Such phonon-assi
optical transitions in quantum dots have been observed
resonant Raman scattering38 as well as in photoluminescenc
and photoluminescence-excitation spectroscopy.24,39

Without phonon dispersion the spectrum of the electr
phonon system is completely discrete. If the dispersion of
LO phonons is taken into account the system now has c
tinuum parts and therefore decay processes are possible
resulting optical polarization and the corresponding abso
tion spectra for the 6-nm dot are plotted in Figs. 2~c! and~d!
under the same excitation condition as above while Figs. 2~e!
and~f! display the results for a 3-nm dot. We clearly see th
the phonon quantum beats in the optical polarization@Figs.
2~c! and ~e!# are damped. The typical time scale for th
damping is about 50 ps in the case of the 6-nm dot while i
about 10 ps for the 3-nm dot. This strong size depende
can be well understood from Fig. 1 which shows that t
form factor of the small dot effectively probes a considera
broader range of frequencies leading to a faster decay du
destructive interference of the variousq components in the
polarization. The spectra now consist of the unbroade
ZPL as well as LO phonon sidebands which are broade
according to the frequency range of phonons which eff

e
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-
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tively couple to the exciton. For a better comparison in Fi
2~d! and ~f! we have shifted theunu-phonon emission or ab
sorption sideband towards the ZPL by subtracting or add
n\vLO(0) and they have been multiplied by the respect
factors given in the caption. Here,n.0 refers to emission
andn,0 to absorption sidebands. SincevLO(0) is the maxi-
mum frequency of the LO phonons the emission sideba
are now completely below the ZPL while the absorpti
sidebands are above this line. It is clearly seen that theunu
52 sidebands, corresponding to two-phonon transitions,
hibit a width which is twice the width of theunu51 side-
bands. Furthermore, the widths in the case of the 3-nm
are approximately a factor of 5 larger than for the 6-nm
corresponding to the enhanced damping of the quan
beats discussed above. We want to remark that the smal
nonzero width of the ZPL is due to the additional pheno
enological dephasing timet05500 ps which has been intro
duced to perform the Fourier transformation.

B. Dephasing due to acoustic-phonon interaction

Acoustic phonons are characterized by a continuous s
trum starting at zero frequency. Therefore the phonon s

FIG. 2. Optical polarizations induced by ad-function-shaped
optical pulse~left column! and absorption spectra~right column! for
a quantum dot interacting with optical phonons at a temperatur
300 K. Parts~a! and ~b! refer to a calculation without phonon dis
persion, in parts~c! and ~d! @~e! and ~f!# the results including dis-
persion are plotted for a 6-nm~3-nm! quantum dot. The spectra o
the n-phonon sidebands due to phonon emission (n.0) or phonon
absorption (n,0) are shifted by2n\v towards the ZPL. In part
~d! they are multiplied by the factors 33103 (unu51) and 23106

(unu52); the corresponding factors in part~f! are 33104

(unu51) and 43107 (unu52).
19531
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bands approach the ZPL and, under suitable conditions,
result in a broadened ZPL.20 In Fig. 3 we have plotted the
optical polarization and the absorption spectrum for a 3-
quantum dot at three different temperatures as obtained f
calculations including piezoelectric@Figs. 3~a! and ~b!# and
deformation potential@Figs. 3~c! and ~d!# coupling. Interest-
ingly, we find that in all cases the polarization remains a
finite value at long times corresponding to an unbroade
ZPL. This can be understood from theq dependence of the
matrix element in the limit of smallq values. According to
Eq. ~5! the bulk coupling matrix elements of deformatio
and piezoelectric coupling are proportional toAq and 1/Aq,
respectively. The deformation potential for electrons a
holes are, in general, different, and the form factors of b
carrier types approach unity forq→0, therefore the total
coupling constant is proportional toAq. The bulk piezoelec-
tric coupling constant, on the other hand, being a po
mechanism, has exactly the same value for electrons
holes. Then, the form factors of the electron and hole exa
cancel atq50. The lowest order the in difference of th
form factors is proportional toq2 and thus the total coupling
constant is proportional toq3/2. A vanishing coupling con-
stant for q→0 gives rise to an unbroadened ZPL~see the
Appendix for a more detailed discussion!. This is in contrast
to the electron spectral function which has been calcula
already in 1965 by Duke and Mahan20 for the case of impu-
rity spectra. Since in their case there is no cancellation
tween the electron and hole part they find a broadening of
ZPL for piezoelectric coupling while deformation potenti
results in a sharp ZPL.

As can be expected the dynamics due to interactions w
acoustic phonons exhibits a pronounced temperature de
dence. At low temperatures the line is strongly asymmet
there is only a contribution on the high-energy side of t
ZPL due to phonon emission. With increasing temperat
phonon absorption processes come into play and the

of

FIG. 3. Optical polarizations induced by ad-function-shaped
optical pulse~left column! and absorption spectra~right column! for
a 3-nm quantum dot interacting with acoustic phonons at three
ferent temperatures. Parts~a! and~b! refer to piezoelectric coupling
parts~c! and ~d! to deformation potential coupling.
3-6



th
he
o
it
is
re
is
ce
hi
tri

on
er
on
re
er
ion
e
le
m

se
in
ac
st
a
o

s
de

are
ing
the

at
dot

the
tan-
-

he
ow
ies.

sed
ure
to
nsi-
tech-
op-
ed
re

e it
and
os-

nm

s

THEORY OF PURE DEPHASING AND THE RESULTING . . . PHYSICAL REVIEW B65 195313
becomes more symmetric. Furthermore, the weight of
ZPL is reduced resulting in lower long time values of t
polarization. By comparing the results for deformation p
tential and piezoelectric coupling we find, in agreement w
Takagahara,12 that the deformation potential contribution
clearly dominant. Even at 300 K piezoelectric coupling
duces the initial coherence by less than one percent. Th
due to the large electron-hole overlap which strongly redu
all polar interaction mechanisms. We will come back to t
point below when discussing the influence of an elec
field.

C. Combined dynamics

Let us now combine the results of the previous secti
by taking into account simultanously all three types of int
action mechansims. Figure 4 shows the optical polarizati
and the corresponding absorption spectra at three diffe
temperatures for the case of a 6-nm quantum dot. The ov
dynamics of the polarization is dominated by deformat
potential interaction. Superimposed there are quantum b
due to LO phonon coupling which, due to the different sca
of the polarization axes, are visible only at the lowest te
perature. Around the ZPL we see the lineshape due
acoustic-phonon interaction as discussed in the previous
tion. This line is then repeated, however, with decreas
strength, at multiples of the LO phonon frequency. Thus e
LO phonon sideband acquires a background due to acou
phonon interaction. Very similar spectra consisting of a n
row ZPL and a broad background have recently been

FIG. 4. Optical polarizations induced by ad-function-like opti-
cal pulse~left column! and absorption spectra~right column! for a
6-nm quantum dot interacting with optical and acoustic phonon
three different temperatures.
19531
e

-
h

-
is
s

s
c

s
-
s
nt
all

ats
s
-
to
c-

g
h
ic-
r-
b-

served in four-wave-mixing experiments on InGaA
quantum dots.18 Even if these spectra do not exactly conici
with the linear absorption spectra as calculated here, they
strongly related because time-integrated four-wave-mix
signals at least in few-level systems essentially measure
linear polarization dynamics.

In Fig. 5 the polarization curves and absorption spectra
the same temperatures as above are plotted for a quantum
of 3 nm size. The extension of the form factor to largerq
values results in a pronounced increase in the widths of
acoustic-phonon contribution in the spectra and a subs
tially faster initial decay of the polarization which now oc
curs on a time scale of 100 fs. In particular at 300 K t
acoustic wings of the different LO phonon sidebands n
merge and result in a smooth spectrum up to high energ

D. Comparison with the perturbative approach

A particular feature of the independent boson model u
here is the fact that it can be solved analytically. This feat
is typically lost if the model is extended, e.g., by taking in
account excited exciton states and phonon-induced tra
tions between these states. In such cases approximate
niques have to be used. The present model provides the
portunity to compare the exact results with results obtain
from a correlation expansion as it is often applied in mo
complex and higher dimensional systems and therefor
allows us to clearly analyze the deviations between exact
approximate solutions, which in most other cases is not p
sible.

In Fig. 6 we compare the absorption spectra of a 3-
quantum dot obtained from the exact solution~left column!

at

FIG. 5. Same as Fig. 4 but for a 3-nm quantum dot.
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B. KRUMMHEUER, V. M. AXT, AND T. KUHN PHYSICAL REVIEW B 65 195313
with the spectra obtained from the correlation expansion
to second order in the interaction matrix element@Eq. ~15!#
at a temperature of 4 K for the individual interaction mecha
nisms as well as for the complete model. In the case of
polar optical interaction@Figs. 6~a! and ~b!# we find a good
agreement for the ZPL and for the first phonon sideband
course, the second sideband, involving a two-phonon tra
tion, is absent in the perturbative result because multipho
processes are neglected on this level. As has been show
the previous sections the piezoelectric interaction is v
weak. In particular at low temperatures it gives only a ve
small contribution to the spectrum. Therefore it is not s
prising that multiphonon processes are negligible and e
and perturbative results are in good agreement@Figs. 6~c!
and~d!#. In the case of deformation potential coupling@Figs.

FIG. 6. Comparison of the exact absorption spectra~left col-
umn! with those obtained from a correlation expansion up to
second order in the coupling matrix elements~right column! for
polar optical@~a! and~b!#, piezoelectric@~c! and~d!#, and deforma-
tion potential@~e! and ~f!#, as well as for the combination of a
mechanisms@~g! and ~h!# at a temperature of 4 K.
19531
p

e

f
i-
n
in

y
y
-
ct

6~e! and~f!# we find that when comparing exact and appro
mate solutions both the height and the width of the spectr
are in quite good agreement. However, there are remark
differences in the detailed shape. First, in the perturba
result the dip above the ZPL is much more pronounced t
in the exact result. This is due to the fact that one-phon
transitions with a small wave vector are strongly suppres
because, as already discussed above, in this range the m
element is proportional toAq. Therefore positions in the im
mediate vicinity of the ZPL can only be reached by at le
two-phonon processes which again are absent in the pe
bative treatment. Second, the approximate absorption s
trum exhibits a series of dips above 10 meV which is abs
in the exact result. These dips result from the form factor
particular from the Fourier transform of the cosine wa
function in thez direction. We have checked that they a
absent if also in this direction a Gaussian wave function
used. In the exact result these dips are obviously washed
due to multiphonon processes. Third, the approximate sp
trum exhibits a sharp cutoff at an energy of 26 meV cor
sponding to the maximum energy of LA phonons~see Fig. 1!
because higher energies are not accessible in a one-ph
process. Finally, in Figs. 6~g! and ~h! the spectra of the full
model are compared. Besides the features already discu
the most pronounced difference is the missing acoustic ba
ground of the one-LO phonon sideband. Of course, t
background involves at least one optical and one acou
phonon and it is therefore at least related to two-phon
processes and thus it is absent in the perturbative treatm
which takes into account only one-phonon processes.

E. Influence of a static electric field

Polar interaction mechanisms are completely absent if
system is locally electrically neutral, i.e., if the electron a
hole wave functions are identical. In the cases studied so
the wave functions were slightly different because of t
different confinement of electron and hole in the lateral
rections due to the different masses. If an electric field
applied to such a structure, the electron and hole wave fu
tions are displaced with respect to each other. Then, thq
dependence of the difference between electron and hole f
factors in the range of smallq values changes from quadrat
to linear resulting in an increasing polar couplin
efficiency.24 Such an electric field can be applied in the ve
tical or in the lateral direction. In this section we will stud
the influence of an electric field in these two directions
the dynamics of the optical polarization.

A vertical electric field gives rise to the quantum confin
Stark effect:40–43Electron and hole are separated towards
opposite edges of the confining quantum well potential. S
an electric field may be applied externally, but in materi
like GaN it may exist even intrinsically due to polarizatio
charges.44 Furthermore, by applying a vertical electric fie
we can model the situation which is present in many py
midal quantum dot structures that the wave function of o
carrier type is located more towards the base of the pyra
while the other is located close to the top.42,45–47The appli-
cation of a lateral electric field, on the other hand, has

e
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THEORY OF PURE DEPHASING AND THE RESULTING . . . PHYSICAL REVIEW B65 195313
cently become of interest because it has been shown th
this case the different dipole moments associated with
ground and excited states of the dot, respectively, may
used to couple different quantum dots and to perform a c
ditional dynamics which serves as a basic building block
quantum information processing.8 The same type of dipole
coupling has been proposed for the case of vertical fiel2

However, since in that proposal a dynamics based on tra
tions between different conduction-band levels has been u
it does not directly fit our model.

Figure 7 shows the temporal evolution of the optical p
larization after excitation with ad-shaped pulse at a temper
ture of 4 K for the case of a vertical~left column! and lateral
~right column! electric field of different strengths. In the cas
of polar optical interaction@Figs. 7~a! and~b!# we clearly see
that with increasing field strength the initial amplitude of t
phonon quantum beats considerably increases and the
time value of the polarization decreases. This is because
increasing coupling efficiency the relative weight of the ph
non sideband is enhanced leading to a more pronoun
beating and a smaller weight of the ZPL which determin
the final value of the polarization. At a given field value th
effect is much stronger for a lateral field than for a vertic
field because in the vertical case the separation of elec
and hole wave function is limited by the width of the co
fining potential well while in the lateral direction no suc
limitation exists. Furthermore, we notice that the time sc
of the initial decay in the vertical case is essentially not

FIG. 7. Optical polarizations induced by ad-function-shaped
optical pulse for a 6-nm quantum dot interacting with phonons
polar optical@~a! and~b!#, piezoelectric@~c! and~d!#, and deforma-
tion potential @~e! and ~f!# interaction in the presence of a stat
vertical ~left column! and lateral~right column! electric field at a
temperature of 4 K.
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fected while in the lateral case the decay time of the beat
increased by a factor of about 3. This is again a result of
width of the effective form factor inq space which is re-
duced when the electron-hole overlap is reduced.

The piezoelectric interaction@Figs. 7~c! and ~d!#, being
also a polar interaction mechanism, exhibits essentially
same behavior as the polar optical case. It is also stron
enhanced by electric fields. Notice that while without fie
the initial coherence is reduced only by a factor of abou
31024 at a field of 400 kV/cm this reduction is enhanced
a factor of 3.531023 for a vertical and even 631022 for a
lateral field.

The deformation potential interaction@Figs. 7~e! and ~f!#
is much less affected by the field because in this case, du
different deformation potentials of electrons and holes, th
is no cancellation of electron and hole form factors at z
electric field. Nevertheless, there is a slight enhancemen
the dephasing efficiency with increasing field. In contrast
the polar mechanisms, here the time scale of the initial de
is not affected by the field. Due to the absence of cance
tion effects the extension of the effective form factor in m
mentum space is here always directly determined by the
tial extension of electron and hole wave function. In
parabolic confinement potential, as is assumed here in
lateral direction, a static field leads only to a rigid displac
ment of electron and hole wave functions without chang
their respective shapes. In a vertical field the shape of
wave functions is modified, however, in the fields conside
here the spatial widths do not change much. Therefore
extension of the form factor in momentum space on
slightly depends on the field.

In Fig. 8 the same polarization curves for vertical a

a FIG. 8. Same as Fig. 7 but at a temperature of 77 K.
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B. KRUMMHEUER, V. M. AXT, AND T. KUHN PHYSICAL REVIEW B 65 195313
lateral fields are plotted at a temperature of 77 K. For po
optical interaction the results are essentially the same
cause 77 K is still much less than the temperature of 42
corresponding to\vLO(0). Theacoustic interaction mecha
nisms, on the other hand, are strongly enhanced compar
the 4-K case. In the presence of a lateral field of 400 kV/
piezoelectric interaction now results in a reduction of t
initial coherence of the order of 60% and it is therefore of
same order of magnitude as the deformation potential in
action which gives rise to a reduction of about 85%. The
fore in the presence of strong electric fields there may
situations where the dephasing due to the piezoelectric in
action is no more negligible compared to the deformat
potential interaction.

IV. CONCLUSIONS

We have presented a detailed analysis of the loss of in
band coherence due to carrier-phonon interaction in an o
cally excited quantum dot. Only the ground-state exciton
been taken into account, therefore we have restricted
selves to the case of small quantum dots where the exc
states are sufficiently far above the ground state. In this c
it has indeed been shown that the dominant contribution
the dephasing stems from the ground state and excited s
give rise to a minor correction.12 The main advantage of th
present model is the fact that it can be solved exactly
thus multiphonon processes of all orders involving equa
well as different types of phonons are fully included. Besid
being a relevant model for small quantum dots it is theref
an ideal test case to study the validity of approximate te
niques.

The general finding is that none of the coupling mec
nisms studied, polar optical, piezoelectric, and deformat
potential interaction, results in an exponential decay
equivalently, in a Lorentzian line shape characterized b
single decay time. In all cases the optically induced polari
tion exhibits an initial decay on a time scale which is ess
tially determined by the range of phonon frequency acc
sible by the interaction matrix element. This range is mai
determined by the form factor resulting from the electron a
hole wave functions. This frequency range increases w
decreasing dot size leading to a faster initial decay. Howe
even this initial decay is in general strongly nonexponent
After this initial decay the polarization retains a finite val
corresponding to a sharp ZPL in the spectrum. The leve
this remaining polarization or, equivalently, the weight of t
ZPL in the spectrum strongly depends on the interact
mechanism and on the temperature. For high temperat
essentially all of the polarization is destroyed. This is in li
with recent studies where pure dephasing has been foun
be the dominant decoherence mechanism at elev
temperature.13 Piezoelectric coupling turns out to be insi
nificant in most cases and at elevated temperatures defo
tion potential interaction is the most important process
the loss of coherence. It should be noted that the n
Lorentzian line shape of the spectra has interesting co
quences for the more realistic case of excitation with pul
of finite duration. All the polarization curves shown he
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have been calculated for an excitation with
d-function-shaped pulse which excites all frequency com
nents with the same weight. Of course, a pulse with a fin
width excites only a part of the spectrum. Therefore in t
case of resonant excitation the weight of the ZPL in t
excited polarization may be considerably enhanced resul
in a considerably higher value of the long-time coheren
than in the curves presented here.

When comparing the exact results with a perturbat
treatment we find that in the present case of a GaAs quan
dot, where all phonon couplings are relatively weak, both
height and the width of phonon-related structures in the sp
tra are in quite good agreement. The perturbative appro
however, may produce some sharp spectral features re
to details in the matrix elements, in particular if some fr
quencies are not accessible by one-phonon transitions. T
features are much less pronounced or even comple
smoothed out in the exact result. Therefore some care sh
be taken when such structures appear in perturbative ca
lations of more complex systems where a comparison w
the exact solution is not possible.

Finally we have shown that a static electric field, both
the vertical and the lateral direction, has a pronounced ef
on the dephasing, in particular the dephasing due to the p
interaction mechanisms. By displacing the electron and h
wave functions with respect to each other the polar ma
elements are strongly enhanced. This reduces the rema
coherence, i.e., the weight of the ZPL in the spectrum. T
initial decay or, in the case of polar optical interaction, t
decay of the phonon quantum beats, is slowed down
strong lateral fields because the range of accessible pho
frequencies determined by the effective form factor is
duced. Deformation potential interaction, on the other ha
is much less influenced by the electric field. Thus in ve
high fields piezoelectric and deformation potential intera
tion may even become of comparable strength. In addition
the modification of the pure dephasing processes discu
in this paper such electric fields will also modify the radi
tive recombination. Due to the reduced electron-hole over
the dipole matrix element will be reduced resulting in
increasingT1 time. Thus the relative contribution of pur
dephasing to the total dephasing may be enhanced.
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APPENDIX: ASYMPTOTICS OF THE POLARIZATION
FOR LONG TIMES

The purpose of this Appendix is to discuss the asympto
behavior of the linear polarization in the limit oft→`. In
3-10
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THEORY OF PURE DEPHASING AND THE RESULTING . . . PHYSICAL REVIEW B65 195313
particular we want to show explicitly that the polarizatio
does not vanish in this limit, reflecting the fact that the ze
phonon line is unbroadend in our model.

According to Eq.~9! the absolute modulus of the pola
ization is given by

uP~ t !u5Q~ t !
uM0u2uE0u

\
exp@2F~ t !#, ~A1!

where

F~ t !5(
j ,q

ug j ,qu2Re~12e2 iv j (q)t1nj~q!ue2 iv j (q)t21u2!

5(
j
E

0

QB
dq q2G j~q!@214nj~q!#sin2S v j~q!

2
t D ,

~A2!

with

G j~q!5E
0

2p

dwE
0

p

du sin~u!
V

~2p!3
ug j ,qu2. ~A3!

In Eq. ~A2! we have converted the sum overq into an inte-
gration, whereQB marks the boundary of the Brillouin zone
Obviously, a vanishinguP(t)u for long times is equivalent to
the requirement that the functionF(t) approaches infinity for
t→`. However, the integral~A2! can easily be estimated a
follows:

0<E
0

QB
dqq2G j~q!@214nj~q!#sin2S v j~q!

2
t D

<E
0

QB
dq q2G j~q!@214nj~q!#. ~A4!

The integral in Eq.~A4! exists and has a finite value, becau
the integration is over a finite range and the integrand
continuous with the exception of the pointq50 where it has
an integrable singularity. The integrability of the singular
follows from the smallq behavior of the functionsG j (q),
nj (q) and v j (q). More specifically, we find for smal
q: v j (q)→vLO for the optical branch andv j (q)→cjq for
the acoustic branches, wherecj are the respective sound ve
locities. As already discussed in the text the couplingsgj ,q

x

ªgj ,q
e 2gj ,q

h scale asq1/2 for deformation potential and a
q3/2 for piezoelectric coupling. For the Fro¨hlich coupling we
obtain from Eq.~4! that the bulk couplings are equal fo
e

19531
-

is

electrons and holes and scale like 1/q. As in the piezoelectric
case accounting for the cancellation of the electron and h
form factors yields an extra factorq2 such thatgLO,q

x ;q.
Thus for the asymptotics ofG j (q);ug j (q)u25ugj ,q

x /v j (q)u2

we obtain 1/q, q, andq2 in the cases deformation potentia
piezoelectric, and Fro¨hlich coupling, respectively. Finally, in
the smallq limit nj (q) approaches a finite constant for L
phonons, while for acoustic phonons we findnj (q)
→kbT/(\cjq). The strongest singularity (;1/q2) therefore
results form the deformation potential and is canceled by
factor q2 from the volume element. Consequently,F(t) is
bounded by time-independent bounds and thusuPu never ap-
proaches zero.

It is instructive to rewrite Eq.~A2! in the form F(t)
5t f (t). Then, by using the identity

lim
t→`

sin2~xt!

ptx2
5d~x!,

we find

lim
t→`

f ~ t !5E
0

QB
dq q2G j~q!@2

14nj~q!#pS v j~q!

2 D 2

dS v j~q!

2 D . ~A5!

The LO branch does not contribute to Eq.~A5!, because
vLO(q) has no zeros. For the acoustic branches the only z
is at q50 and each branch contributes a pa
limq→01pcjq

4G j (q)@112nj (q)# which also vanishes due t
the asymptotics discussed above. The interesting insight
is that the occurrence of thed function in Eq.~A5! explicitly
prove that the asymptotic behavior for larget is determined
exclusively by the behavior of the couplings in the vicini
of q50. This also sheds light on the previous finding
Duke and Mahan20 that without the cancellation of electro
and hole parts at smallq values the zero phonon line acquire
a finite width. While Duke and Mahan used model wa
functions such that allq integrations could be performe
analytically, it now becomes clear that the width of the ze
phonon line is determined only by the scaling of the phon
coupling in the limitq→0; in the case discussed in Ref. 2
this scaling was given byG j (q);1/q3. And indeed, using
this small q behavior in Eq.~A5! we find that f (t) in the
limit t→` approaches a finite value indicating thatuP(t)u
asymptotically exhibits an exponential decay towards ze
Obviously, the exponent given by the asymptotics off (t)
also determines the width of the zero-phonon line.
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