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Two types of modes in finite size one-dimensional coaxial photonic crystals: General rules
and experimental evidence
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We demonstrate analytically and experimentally the existence and behavior of two types of modes in finite
size one-dimensional coaxial photonic crystals made of N cells with vanishing magnetic field on both sides. We
highlight the existence of N—1 confined modes in each band and one mode by gap associated to either one or
the other of the two surfaces surrounding the structure. The latter modes are independent of N. These results
generalize our previous findings on the existence of surface modes in two semi-infinite superlattices obtained
from the cleavage of an infinite superlattice between two cells. The analytical results are obtained by means of
the Green’s function method, whereas the experiments are carried out using coaxial cables in the radio-

frequency regime.
DOI: 10.1103/PhysRevE.76.026607

I. INTRODUCTION

The problem of propagation of electromagnetic waves in
artificial periodic dielectric materials received a great deal of
attention in the last two decades [1,2]. Of particular interest
is the existence of photonic band gaps in the electromagnetic
band structures of such materials called photonic crystals
(PCs). These structures present unusual properties which can
be exploited in the control and the guidance of the propaga-
tion of light [3,4]. However, in real materials, the PCs are
often of finite size with free surfaces. The study of electro-
magnetic wave propagation in finite size one-dimensional
(1D) multilayer PCs (or superlattice) was largely developed
theoretically and experimentally [5—17]. In general, the finite
size structure is deposited on a homogeneous substrate with
or without a buffer layer or encapsulated with a cap layer [9].
The results obtained show that, in addition to the standing
waves in the finite size structure, there exists additional
modes inside the band gaps induced by the different inhomo-
geneities introduced in the periodic structure.

Some years ago [18] we demonstrated that in the case of
transverse elastic waves, the creation of two semi-infinite
SLs from the cleavage of an infinite N-layer SL gives rise to
one surface mode by gap for any value of the wave vector
parallel to the interfaces. This mode belongs to one or the
other of the two complementary SLs. These results were con-
firmed experimentally in a two-layer elastic SL [19,20]. Re-
cently [21,22], we have given theoretical demonstration and
experimental evidence that the same conclusions hold in
quasi-one-dimensional (Q1D) periodic systems made of co-
axial cables with different geometries such as comblike [21]
and serial loop structures [22]. The analogy between surface
elastic waves in multilayered structures and surface electro-
magnetic waves in coaxial cables is straightforward in two
limiting cases, namely, when the boundary conditions at the
ends of the coaxial cables are either E=0 or H=0. Let us
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recall that these two conditions mean, respectively, that the
two constituting conductors of the coaxial cables are, or are
not, short circuited. However, this analogy is not fulfilled in
the case of multilayered optical structures where the bound-
ary conditions at the surface are neither E=0 nor H=0. In-
deed, when dealing with layered media, the SL is in contact
with a dielectric homogeneous medium (such as vacuum, for
example) and therefore, the continuity of the transverse com-
ponent of H and the normal component of the displacement
field D should be satisfied at the surface. For these reasons,
coaxial cables are good candidates for highlighting general
rules about confined and surface electromagnetic modes in
finite size 1D structures in the above mentioned cases (i.e.,
E=0 or H=0). Of course, these rules do not apply for optical
multilayered media [11]. Also, it was shown that coaxial
cables present an easily realizable experimental approach to
the study of wave interference phenomena such as band gap
structures with or without defect modes [23-25], superlumi-
nal and subluminal effects [25-27], and standing waves
[21,22].

In this paper, we consider a finite size SL made of N unit
cells [Figs. 1(a) and 1(b)]. The left and right surfaces of one
unit cell [Fig. 1(a)], indicated by a circle and a cross, are in
general different. We shall call them complementary sur-
faces. We suppose that the boundary conditions at both ends
of the finite structure [Fig. 1(b)] are of type H=0. Our goal is
to show analytically and experimentally the existence of N
—1 modes in each allowed band and one additional mode by
gap induced by one of the two complementary surfaces sur-
rounding the structure. We show that these modes are those
of a unique single cell (i.e., N=1). In the particular case
where the cells are symmetrical (i.e., with the same surface
terminations), we show that the surface modes fall at the
band edges.

Contrary to the usual results where the defect modes in-
duced by the two surfaces surrounding the finite structure
depend strongly on its size [9,17], we show that the modes
induced by the two complementary surfaces of the finite
structure [Fig. 1(b)] are independent of N and coincide ex-
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actly with the surface modes associated to two complemen-
tary semi-infinite SLs [Fig. 1(c)] obtained from the cleavage
of an infinite SL [Fig. 1(d)] [18,21,22]. So, even the standing
waves of only one cell [N=1, Fig. 1(a)] give the surface
modes of two complementary SLs [Fig. 1(c)]. Among the
different theoretical models, the transfer-matrix [28] and
Green’s function methods [29,30] are quite suitable to de-
duce the eigenmodes and eigenvectors as well as the trans-
mission and reflection coefficients in composite media. In
addition to these quantities, the Green’s function approach
also enables one to deduce easily the local and total densities
of states [9,11,17,18,22]. The experiments are realized on
PCs based on coaxial BNC connectors with different imped-
ances called coaxial PCs. The propagation in these structures
is monomode [30] and one can obtain very accurate experi-
mental results that may be fitted with a simple 1D theoretical
model. The interference of the multiple reflected waves leads
to the same phenomena in the radiofrequency range as for
light propagation through a photonic crystal [31-33].

It is worth noting that different results (eigenmodes and
spatial localization) are obtained if the boundary conditions
on both ends of the finite size structure [Fig. 1(b)] are of type
E=0 instead of H=0 [21]. However, the same rules apply to
confined and surface modes in these structures. For the sake
of brevity, we shall avoid giving the results concerning the
case E=0. Let us mention that similar results to those pre-
sented here are found theoretically by Ren [34,35] for the
complete confinement of electronic states in 1D crystals of
finite size.

This paper is organized as follows. In Sec. II, we give a
short summary of the theoretical model and the main analyti-
cal results. Section III gives the principal numerical and ex-
perimental results about confined and surface modes in finite
size coaxial PCs with symmetric and asymmetric cells. Con-
clusions are presented in Sec. IV.

II. METHOD OF THEORETICAL AND NUMERICAL
CALCULATION

A. Interface response theory of continuous media

Our theoretical analysis is performed with the help of the
interface response theory of continuous media, which allows
the calculation of the Green’s function of any composite ma-
terial. In what follows, we present the basic concept and the
fundamental equations of this theory [29]. Let us consider
any composite material contained in its space of definition D
and formed out of N different homogeneous pieces located in
their domains D,. Each piece is bounded by an interface M,
adjacent in general to j (1 <j<J) other pieces through sub-
interface domains M;;. The ensemble of all these interface
spaces M; will be called the interface space M of the com-
posite material. The elements of the Green’s function g(DD)
of any composite material can be obtained from [29]

g(DD) = G(DD) - G(DM)G™'(MM)G(MD)
+G(DM)G ' (MM)g(MM)G™ (MM)G(MD),
(1)

where G(DD) is the reference Green’s function formed out
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FIG. 1. Schematic representation of (a) a finite cell bounded by
the space of interfaces M ={0, 1}, the circle and the cross indicate
the left and the right surfaces of the cell, respectively. (b) A finite
SL constituted of N cells. (¢c) Two semi-infinite SLs obtained from
the cleavage of an infinite SL (d) between two cells. Notice the
similarities between the surfaces ending the two complementary
SLs [(c)] and those corresponding to a finite SL [(a),(b)].

of truncated pieces in D; of the bulk Green’s functions of the
infinite continuous media and g(MM) the interface element
of the Green’s function of the composite system. The knowl-
edge of the inverse of g(MM) is sufficient to calculate the
interface states of a composite system through the relation
[29]

det[g~'(MM)]=0. (2)

Moreover if U(D) represents an eigenvector of the reference
system, Eq. (1) enables the calculation of the eigenvectors
u(D) of the composite material [29]

u(D) = U(D) - UM)G™ (MM)G(MD)
+UM)G Y (MM)g(MM)G™\(MM)G(MD). (3)

In Eq. (3), U(D), U(M), and u(D) are row vectors. Equa-
tion (3) provides a description of all the waves reflected and
transmitted by the interfaces, as well as the reflection and
transmission coefficients of the composite system. In this
case, U(D) is a bulk wave launched in one homogeneous
piece of the composite material [30].

B. Dispersion relations of infinite, finite, and semi-infinite
periodic 1D structures

Consider an infinite SL made of a periodic repetition of a
given 1D cell [Fig. 1(d)]. In this work, the cell is a multi-
waveguide one-dimensional system (see below). Using the
Green’s function formalism, each cell is characterized by a
2 X2 matrix constituted by the Green’s function elements on
the surfaces bounding the cell [Fig. 1(a)]. The boundary con-
ditions on both sides of the cell are H=0 (vanishing mag-
netic field). The inverse of the 2 X2 matrix can be written
explicitly as

oMM = (b b) )

where the space of interface M={0,1}. The four matrix ele-
ments are real quantities functions of the different parameters
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of the constituents of the cell (see below). It is worth noting
that in general, a # c; however, if the cell is symmetrical
(i.e., with the same surface terminations) then a=c. The
eigenmodes of the elementary cell are given by Eq. (2),
namely,

ac—-b*=0. Q)

The Green’s function of the infinite SL made of a periodic
repetition of a given cell [Fig. 1(d)] is obtained by a linear
juxtaposition of the 2 X2 matrices [Eq. (4)] in the interface
domain of all the sites n. We obtain a tridiagonal matrix
where the diagonal and off-diagonal elements of this matrix
are given, respectively, by a+c and b.

Taking advantage of the translational periodicity of this
system along the z axis, this matrix can be Fourier trans-
formed as [18]

[g(k, MM)]™" = 2b[cos(kD) - £], (6)

where k is the modulus of the one-dimensional reciprocal
vector (Bloch wave vector), D is the period of the SL, and
é=—(a+c)/2b.

The dispersion relation of the infinite periodic SL [Fig.
1(d)] is given by Egs. (2) and (6), namely,

cos(kD)=—(a+c)/2b. (7)

On the other hand, in the k space, the surface Green’s
function is

Lok M) = S ®
After inverse Fourier transformation, Eq. (8) gives
[n-n"]+1
g = (9)

where n and n' denote the positions of the different inter-
faces between the cells and r=e/*P.

Consider now a finite SL bounded by the two surfaces n
=0 and n=N [Fig. 1(b)] with vanishing magnetic field on
both ends. Following the same calculation procedure as in
our previous works on acoustic waves in finite SLs [36,37],
the 2X2 inverse matrix in the space of interface M’
={0,N} of the finite SL can be written as

a b’
[g(M'M')]‘1=(, ) (10)
b ¢
where
! 2N, b
a' =a+bt-t a+; , (11)
1
b’:—bW(t—?), (12)
and
’ b 2N
c =—a—;+t (a+bt). (13)
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The eigenmodes of the finite SL are given by Egs. (2) and
(10), namely, a’c’—b'*=0 or, equivalently,

<t+é><t+c—l>(l—t2N):O. (14)
a b

Now, if the finite composite system is sandwiched
(grafted) horizontally (vertically) between two homogeneous
waveguides characterized by their impedance Z; [see the in-
sets of Figs. 2(c) and 2(e)], then an incident plane wave
launched from the left waveguide gives rise to the transmis-
sion functions in the right waveguide as [22]

t 2jb'/Z, s
TI;, =
"Tale = b= (11Z) - j(a’ +¢')IZ,
and
-2jc'lZ
r, = JE %S (16)

a'c' -b'?-2jc'1z;’

respectively, where /4 and v stand for horizontal and vertical
insertion of the finite PC. a’, b’, and ¢’ are given by Egs.
(11)—(13), respectively. The transmission function can be
written in an explicit complex form as tr=a+jB=|tr|e/?,
where |t is the transmission coefficient, ¢
=arctan(B/ a) £mr is the phase associated with the transmis-
sion field, and m is an integer.

C. General rules about confined and surface modes

As it is expected, we should have N eigenmodes in each
band gap. However, Eq. (14) shows that there are two types
of eigenmodes in the finite structure.

(1) If the wave vector k is real which corresponds to an
allowed band, then the eigenmodes of the finite SL are given
by the third term in Eq. (14), namely,

sin(NkD) =0, (17)

which gives

kD =—,

m=1,2, ..
N

L, N-1, (18)
whereas the first and second terms in Eq. (14) cannot vanish
in the bulk bands.

(2) If the wave vector k is imaginary (modulo 7r) which
corresponds to a forbidden band, then the eigenmodes are
given by the two first terms of Eq. (14), namely,

a
[=—— 19
) (19)
and
b
a

whereas the third term in Eq. (14) cannot vanish inside the
gap since ¢ should satisfy the condition

1l <1 (21)

to ensure the decaying of surface states from the surface.
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FIG. 2. (a) Theoretical band structure of an infinite SL. Each cell is made of a standard coaxial cable of length d;=1 m and impedance
Z=50 Q connected to a symmetric loop made of two identical coaxial cables of length d,=1 m and impedance Z=50 () (see the inset). Solid
and open circles correspond to the eigenmodes of a finite structure made of N=4 cells. (b) Same as (a) but for the experimental results. (c)
and (d) represent, respectively, theoretical (solid line) and experimental (open circles) variations of the transmission amplitude and phase
through a finite SL containing N=4 cells [see the inset of (c)] with the same characteristic lengths as in (a). (¢) Same as (c) but for the finite

structure grafted vertically along the guide (see the inset).

In addition, we remark that if N— oo the term 2" vanishes
and therefore the two expressions [Egs. (19) and (20)] give
the surface modes for two semi-infinite SLs with comple-
mentary surfaces [Fig. 1(c)].

Equations (19) and (20) can be written in a unique explicit
form by replacing them in Eq. (7) and factorizing by the
factor %, one obtains

ac—-b*=0. (22)

Therefore, the surface modes of one semi-infinite SL are
given by Eq. (22) together with the condition || <1 [Eqs.
(19) and (21)], whereas the surface modes of the comple-
mentary SL are given by Eq. (22) but with the condition
|§| <1 [Egs. (20) and (21)]. This result shows that if a sur-
face mode appears on the surface of one SL, it does not
appear on the other surface of the complementary SL. More-

over, Eq. (22) shows that the expression giving the surface
modes for two complementary SLs is exactly the same ex-
pression giving the eigenmodes of one cell [Eq. (5)].

In addition to these results, let us recall briefly another
result concerning the existence and behavior of surface
waves in a quasi-one-dimensional SL [22], namely, the cre-
ation from the infinite SL of a surface with vanishing mag-
netic field gives rise to & peaks of weight (—1/4) in the
density of states, at the edges of the SL bulk bands. Now, one
considers together the two complementary SLs: (i) the varia-
tion of density of states presents a loss of one half-mode at
the limit of each band, i.e., one mode by band and (ii) the
variation of density of states vanishes inside the bulk bands
of the two complementary SLs. These two results associated
with the necessary conservation of the total number of modes
show that one surface mode of weight unity by gap must
exist to compensate the loss of one mode by band. These
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modes are associated with either one or the other surface of
the two SLs.

From all the above results, one can deduce that a finite SL
constituted of N cells gives rise to N—1 confined modes in-
side the bulk bands of the SL and one surface mode in each
gap of the SL that may be attributed to one of the two sur-
faces surrounding the finite SL. The surface modes are inde-
pendent of N and coincide with those of two semi-infinite
SLs obtained by the cleavage of an infinite SL between two
cells.

In the particular case of a symmetric cell, the surface
modes inside the gaps move to the band gap edges. Indeed,
in symmetric cells, a=c and therefore Eq. (22) reduces to
a==b. This expression corresponds to a band gap edge as
cos(kd)=+1 [Eq. (7)]. In what follows, we shall give a nu-
merical and experimental confirmation of these results in the
case of electromagnetic wave propagation in coaxial cables
treated as quasi-one-dimensional waveguides.

III. NUMERICAL AND EXPERIMENTAL RESULTS
A. Case of a finite periodic structure made of asymmetric cells

In what follows, we consider a finite periodic photonic
crystal where each cell is made of a standard coaxial cable of
length d4=1 m and impedance Z=50 () and a loop made of
two identical coaxial cables of length dz=1 m and imped-
ance Z=50 () [see the inset of Fig. 2(a)]. We can show easily
(see Ref. [25]) that the loop is equivalent to a coaxial cable
of length dy and half the impedance of the constituting
cables (i.e., Z=25 ). Therefore, we shall call Z,=50 () and
Zp=25 ) the impedances of the segment and the loop, re-
spectively. Each cell becomes equivalent to a 50 {1/25 Q
bisegment. One can notice that the two surfaces surrounding
the cell are different and therefore the cell is asymmetric.

When applied to a SL made of a periodic repetition of a
segment and a loop, the general dispersion relation [Eq. (7)]
gives the well-known relation

COS(kD) = CACB - OS(ZA/ZB + ZB/ZA)SASB’ (23)

where CA,B=cos(wdA,B\f‘;/c), Sy p=sin(wd, g\e/c), and D
=d,+dp.

In the particular case where d=d,=dg=1 m and Z,/Zg
=2, the above equation becomes simply

cos(kD) =1 - Z sin(Q)), (24)

where Q=wd\e/c is the reduced frequency.

The limits of the band gaps are given by the successive
sequences kD=0,,7,0,0,7,7,0,..., and therefore ()
=0,0.397,0.617, 7, 7,1.397,1.617,2m,....

These results show that the band gap structure is periodic
every (d=m. The width of the successive bands is about
0.4, the width of the gaps at the edge of the Brillouin zone
is about 0.2, whereas the width of the gaps at the center of
the Brillouin zone vanishes. These results are confirmed
theoretically [Fig. 2(a)] and experimentally [Fig. 2(b)],
where we have plotted the dispersion curves (frequency ver-
sus kD) for the periodic structure depicted above. The ex-
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perimental curves are obtained from the amplitude |f| [Fig.
2(c)] and the phase ¢ [Fig. 2(d)] of the transmission through
a finite size structure inserted horizontally between two wave
guides [25] [see the inset of Fig. 2(c)]. Indeed, writing the
transmission coefficient tr=|tr|e/® under the form tr=e/*%,
where L is the total length of the finite structure, one obtains
the effective wave number k=¢/L—j In|tr|/L. One can no-
tice that despite the small number of cells (N=4) used in the
periodic structure, the amplitude and the phase describe very
well the band structure of the infinite system (N— ) [Fig.
2(a)]. As mentioned above, because of the periodicity of the
band gap structure, we limited ourselves to the reduced fre-
quency region 0<Q <.

Inside the first gap kD=m=+jk and the dispersion relation
[Eq. (24)] becomes

3
cosh(k/2) = —= sin((}). 25
(02) = = sin(6) (25)

Equation (25) gives the imaginary part x of the reduced
wave vector kD inside the gaps which is responsible for the
attenuation of the modes that may lie inside these gaps when
a defect is inserted in the structure such as the surface
[21,22]. From the above results, one can deduce that the
center of the first gap is given by {)=1r/2 and the value of k
at this frequency is k=0.69 [Eq. (25)] as illustrated by the
dashed curves in Figs. 2(a) and 2(b).

The theoretical transmission curves (amplitude and phase)
are obtained from Eq. (15), whereas the transmission mea-
surements have been realized by using the tracking generator
coupled to a spectrum analyzer in the frequency range of
10 to 100 MHz. The attenuation inside the coaxial cables
was simulated by introducing a complex dielectric constant
e(e=g’—j&"). The attenuation coefficient &’ can be ex-
pressed as a’=g"w/c. On the other hand, the attenuation
specification data supplied by the manufacturer of the co-
axial cables in the frequency range of 10 to 100 MHz can be
approximately fitted with the expression In(a”)=y+ SIn(w),
where 7y and & are two constants. From this fitting procedure,
a useful expression for &” as a function of frequency can be
obtained under the form &”=0.017f"3, where the frequency
f is expressed in Hz. The experimental results are very well
fitted by the 1D model using the Green’s function method.
One can notice in Fig. 2(c) that the attenuation inside the
cables induces transmission depletion especially at high fre-
quencies.

As concerns the eigenmodes of the finite SL, one can
distinguish, as described in Sec. II B, the bulk modes [Eq.
(18)] lying inside the allowed bands and the surface modes
[Eq. (22)] lying inside the forbidden bands. The expression
giving the surface modes [Eq. (22)] can be written as [18]

ZACASB+ZBCBSA:05 (26)

together with the condition [Eq. (21)]

<1 (27)

Zs
CaCp=7, SaSp
A

when the structure is terminated by a segment and
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FIG. 3. Variation of the eigenmodes of the finite SL as a func-
tion of the number of cells N. Open and solid circles have the same
meaning as in Fig. 2.

<1 (28)

Zy
CyCp— Z_SASB
B

when the structure is terminated by a loop.

In the particular case considered here, C,=Cg=cos({})

and S,=Sz=sin({)). Therefore, Eq. (26) becomes simply

sin(2Q) =0, ie., Q=nn/2, (29)
where n is an integer. If n is even (i.e., =0, 7,27,...), then
neither Eq. (27) nor Eq. (28) are fulfilled since the left-hand
term in these equations is unity. As mentioned above, this
situation corresponds to the center of the Brillouin zone [i.e.,
kD=0, see Eq. (24)] where the band gaps close. However, if
nis odd (i.e., Q=m/2,37/2,...), then only Eq. (27) is ful-
filled since Zz<Z,, which means that all the surface modes
appear on the surface of the structure terminated by a seg-
ment and no surface modes appear when the structure termi-
nates with a loop. In Fig. 2(a) we have plotted by open
circles the surface mode lying in the first gap at Q=7/2 (i.e.,
f=49.34 MHz) as well as the frequencies lying at the band
gap edges Q=0 and Q=7 (i.e., f=0 and f=98.86 MHz).
These modes, given by Eq. (29), are independent of N. How-
ever, as predicted, there exist N—1=3 modes in each band
given by Eq. (18).

In order to give experimental evidence of the eigenmodes
of the finite SL, we measure the transmission coefficient
through the structure grafted vertically along the guide [see
the inset of Fig. 2(e)]. Indeed, from Egs. (14) and (16), one
can notice that the maxima of the transmission (i.e., tr,=1)
occur at the frequencies of the finite SL with vanishing mag-
netic field on both ends. An example of the transmission
spectrum of a finite structure made of four loops is sketched
in Fig. 2(e). The frequencies of the corresponding maxima
are reported in Fig. 2(b). One can notice that the positions of
the eigenmodes of the finite SL coincide exactly with those
obtained from theory [Fig. 2(a)].

Figure 3 shows the variation of the eigenmodes of a finite
SL as a function of the number of cells N. For N=1 (one
cell), the eigenmodes are given by Eq. (29) and we can dis-
tinguish the modes lying at the closing of the band gaps (i.e.,
Q=0 and Q=) and the surface mode lying at the center of
the band gap (i.e., Q=7/2). When N increases, the above
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FIG. 4. The local density of states (LDOS) (in arbitrary units) as
a function of the space position z for the mode lying at the central
gap frequency Q=m/2 (Fig. 3) for N=2(a), 3 (b), 4 (c), 6 (d), and
10 (e). The finite SL is terminated by a segment and a loop at the
left and the right of the structure, respectively.

modes remain constant, whereas there exists N—1 modes in
each band for every value of N in accordance with the ana-
lytical results in Sec. II B.

The Green’s function approach enables one also to deduce
the local and total densities of states (LDOS). The details of
these calculations are given in Refs. [18,22,36,37]. The
LDOS reflects the behavior of the square modulus of the
electric field inside the structure. An analysis of the LDOS as
a function of the space position (Fig. 4) shows, as expected,
that the surface mode lying in the first gap at {2=/2 exhib-
its a strong localization at the surface terminated with a seg-
ment, with almost the same localization length regardless of
the length of the structure. Indeed, the localization length is
defined as [=D/|«|, where « is the imaginary part of the
reduced wave vector kD [Eq. (25)]. As mentioned in Sec.
I A, k=0.69 for the surface mode lying at {=/2 and
therefore /=3 m which is in accordance with the results of
Fig. 4.

B. Case of a finite structure with symmetric cells

In what follows, we consider a finite periodic structure
made of symmetric cells. Each cell is composed of a sym-
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FIG. 5. Same as in Fig. 2 but here each cell is made of a loop sandwiched between two identical segments [symmetric cell, see the inset

of Fig. 5(a)].

metric loop of type B inserted between two identical seg-
ments of type A. Therefore, each cell becomes equivalent to
a 50 /25 /50 Q trisegment [see the inset of Fig. 5(a)].
One can notice that the two surfaces surrounding the cell are
equivalent and therefore the cell is symmetrical. Also, when
connected together, the cells give rise to a finite SL made of
loops separated by segments of length 2 m and the whole
structure terminates by segments of length 1 m on both
sides.
In this case, the dispersion relation (7) becomes [18]

cos(kD) = C3Cy — C3Cy — CuSASp(ZulZy + ZplZ,),
(30)

where D=2d,+dp. In the particular case where d=d,=dp
=1 m and Z,/Zyz=2, the above equation becomes simply

cos(@)) [9 cos?(Q2) - 7].

cos(kD) = 2

(31)

The band gap edges are given by cos(kD)==1, namely,
cos(Q))==+1, £1/3, and £2/3. Therefore,

0=0,0.277,0.397,0.617,0.73 7, T, ... . (32)

Inside the two first gaps kD=m=+jx and kD= +jk, respec-
tively, and the dispersion relation (31) becomes

cosh(k) = ¥ COSZ(Q)

[9 cos?(Q) - 7]. (33)

Thus, one can deduce the reduced frequencies at the cen-
ter of the first two gaps, namely,
7w5
cos(Q)) = ﬁ’ ie., Q=0337and QO =0.677 (34)
\‘J

as well as, the corresponding values of x [k=0.59, see the
dashed curves in Fig. 5(a)]. The surface modes [Eq. (22)] are
given in general by [18]
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FIG. 6. Variation of the eigenmodes of the finite SL as a func-
tion of the number of cells N for the structure described in Fig. 5.

Z V4
2CASACB+SB<C§—A +S§—B) =0. (35)
Zp Zy
In the particular case considered here, Cy=Cpz=cos({}),
Sy=Sp=sin(Q), and Z,/Zz=2. Then, Eq. (35) becomes

sin(Q)[9 cos?(Q) - 1]=0, (36)
which leads to
sin(Q)) =0, ie., Q=0,727 (37)
or

cos() = = 1/3, ie., Q=0397,0.617,1.397 1.6, ....
(38)

However, the two latter equations give cos(kD)==1 [Eq.
(31)]. Consequently, as mentioned in Sec. II B, the finite pe-
riodic SL with symmetric cells does not exhibit surface
modes inside the band gaps, but leads only to constant fre-
quency band-edge modes. These results are similar to those
found by Ren [34,35] for a complete confinement of elec-
tronic states in finite one-dimensional systems. Of course, in
addition to the band-edge modes, one can expect N—1 modes
in each band given by Eq. (18).

Figure 5(a) summarizes the numerical results correspond-
ing to the analytical results detailed above, whereas Fig. 5(b)
together with Figs. 5(c)-5(e) summarize the experimental re-
sults. One can notice a good agreement between theory and
experiment concerning the band gap structure as well as the
eigenmodes of the finite SL. Among the different eigen-
modes, one can distinguish the band-edge modes plotted by
open circles and the bulk band modes (N—1=3) lying inside
each allowed band. Figure 6 gives the variation of the eigen-
modes of the finite SL as a function of the number of cells N.
One can notice the existence of band-edge modes lying at a
constant frequency independent of N [Egs. (37) and (38)]
and N—1 modes in each band and for each value of N.

IV. CONCLUSION

In this paper, we have presented theoretical and experi-
mental evidence of the existence of two types of modes in

PHYSICAL REVIEW E 76, 026607 (2007)

finite size 1D coaxial photonic crystals made of a periodic
repetition of N cells. In particular, we have shown the exis-
tence of N—1 modes that match the bulk bands and one
additional mode per gap if the cell is asymmetric. However,
if the cell is symmetric, the additional mode falls at a con-
stant frequency at the bulk band edges. These modes are
independent of N. These results generalize our previous find-
ings [18,21,22] on the existence of surface modes associated
to two semi-infinite complementary SLs obtained from the
cleavage of an infinite SL between two cells. The theoretical
results are confirmed experimentally by using asymmetric
cells made of a simple coaxial cable connected to a loop
(constituted of two identical coaxial cables) and symmetric
cells made of a loop inserted between two identical coaxial
cables. The band gap structure and the different eigenmodes
of these photonic systems are obtained, respectively, from
the measurement of the transmission coefficient through a
finite size structure inserted horizontally between two wave-
guide cables and a finite size structure grafted vertically
along a guide. The experimental results are in good agree-
ment with theoretical calculations based on the formalism of
the Green’s function. Finally, let us mention that the results
obtained here remain also valid for other physical situations.
First, as mentioned in the Introduction, the same rules apply
for coaxial PCs if the boundary condition at the ends of the
finite structure is the vanishing of the electric field instead of
the magnetic field. On the other hand, for elastic waves in
SLs, we obtained the same rule for the two following cases:
(i) transverse elastic waves in finite size solid-solid SL [18]
and (ii) sagittal elastic waves in finite size solid-fluid SL
[38]. In both cases, the boundary conditions at the ends of
the structure are free of stress.

Note added in proof: Recently, we noticed that similar
results to those presented here for coaxial photonic crystal
have been obtained theoretically in a different demonstration
for transverse elastic waves in 1D phononic crystal [39]. We
believe that similar conclusions can be derived for phonons
in a linear multi-atomic chain, i.e., when the unit cell is
constituted by several atoms differing either by their mass or
the spring constant that link them together. Actually, this is
straightforward in the simple cases of a mono-atomic and
bi-atomic linear chain. Recent experiments [40] on linear
chains composed of welded steel spheres of the same or dif-
ferent diameters have been explained in this framework.
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